/* * Nvidia CUVID decoder * Copyright (c) 2016 Timo Rothenpieler * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config_components.h" #include "compat/cuda/dynlink_loader.h" #include "libavutil/buffer.h" #include "libavutil/mathematics.h" #include "libavutil/hwcontext.h" #include "libavutil/hwcontext_cuda_internal.h" #include "libavutil/cuda_check.h" #include "libavutil/fifo.h" #include "libavutil/log.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avcodec.h" #include "bsf.h" #include "codec_internal.h" #include "decode.h" #include "hwconfig.h" #include "nvdec.h" #include "internal.h" #if !NVDECAPI_CHECK_VERSION(9, 0) #define cudaVideoSurfaceFormat_YUV444 2 #define cudaVideoSurfaceFormat_YUV444_16Bit 3 #endif #if NVDECAPI_CHECK_VERSION(11, 0) #define CUVID_HAS_AV1_SUPPORT #endif typedef struct CuvidContext { AVClass *avclass; CUvideodecoder cudecoder; CUvideoparser cuparser; /* This packet coincides with AVCodecInternal.in_pkt * and is not owned by us. */ AVPacket *pkt; char *cu_gpu; int nb_surfaces; int drop_second_field; char *crop_expr; char *resize_expr; struct { int left; int top; int right; int bottom; } crop; struct { int width; int height; } resize; AVBufferRef *hwdevice; AVBufferRef *hwframe; AVFifo *frame_queue; int deint_mode; int deint_mode_current; int64_t prev_pts; int progressive_sequence; int internal_error; int decoder_flushing; int *key_frame; cudaVideoCodec codec_type; cudaVideoChromaFormat chroma_format; CUVIDDECODECAPS caps8, caps10, caps12; CUVIDPARSERPARAMS cuparseinfo; CUVIDEOFORMATEX *cuparse_ext; CudaFunctions *cudl; CuvidFunctions *cvdl; } CuvidContext; typedef struct CuvidParsedFrame { CUVIDPARSERDISPINFO dispinfo; int second_field; int is_deinterlacing; } CuvidParsedFrame; #define CHECK_CU(x) FF_CUDA_CHECK_DL(avctx, ctx->cudl, x) // NV recommends [2;4] range #define CUVID_MAX_DISPLAY_DELAY (4) // Actual pool size will be determined by parser. #define CUVID_DEFAULT_NUM_SURFACES (CUVID_MAX_DISPLAY_DELAY + 1) static int CUDAAPI cuvid_handle_video_sequence(void *opaque, CUVIDEOFORMAT* format) { AVCodecContext *avctx = opaque; CuvidContext *ctx = avctx->priv_data; AVHWFramesContext *hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data; CUVIDDECODECAPS *caps = NULL; CUVIDDECODECREATEINFO cuinfo; int surface_fmt; int chroma_444; int fifo_size_inc; int old_width = avctx->width; int old_height = avctx->height; enum AVPixelFormat pix_fmts[3] = { AV_PIX_FMT_CUDA, AV_PIX_FMT_NONE, // Will be updated below AV_PIX_FMT_NONE }; av_log(avctx, AV_LOG_TRACE, "pfnSequenceCallback, progressive_sequence=%d\n", format->progressive_sequence); memset(&cuinfo, 0, sizeof(cuinfo)); ctx->internal_error = 0; avctx->coded_width = cuinfo.ulWidth = format->coded_width; avctx->coded_height = cuinfo.ulHeight = format->coded_height; // apply cropping cuinfo.display_area.left = format->display_area.left + ctx->crop.left; cuinfo.display_area.top = format->display_area.top + ctx->crop.top; cuinfo.display_area.right = format->display_area.right - ctx->crop.right; cuinfo.display_area.bottom = format->display_area.bottom - ctx->crop.bottom; // width and height need to be set before calling ff_get_format if (ctx->resize_expr) { avctx->width = ctx->resize.width; avctx->height = ctx->resize.height; } else { avctx->width = cuinfo.display_area.right - cuinfo.display_area.left; avctx->height = cuinfo.display_area.bottom - cuinfo.display_area.top; } // target width/height need to be multiples of two cuinfo.ulTargetWidth = avctx->width = (avctx->width + 1) & ~1; cuinfo.ulTargetHeight = avctx->height = (avctx->height + 1) & ~1; // aspect ratio conversion, 1:1, depends on scaled resolution cuinfo.target_rect.left = 0; cuinfo.target_rect.top = 0; cuinfo.target_rect.right = cuinfo.ulTargetWidth; cuinfo.target_rect.bottom = cuinfo.ulTargetHeight; chroma_444 = format->chroma_format == cudaVideoChromaFormat_444; switch (format->bit_depth_luma_minus8) { case 0: // 8-bit pix_fmts[1] = chroma_444 ? AV_PIX_FMT_YUV444P : AV_PIX_FMT_NV12; caps = &ctx->caps8; break; case 2: // 10-bit pix_fmts[1] = chroma_444 ? AV_PIX_FMT_YUV444P16 : AV_PIX_FMT_P010; caps = &ctx->caps10; break; case 4: // 12-bit pix_fmts[1] = chroma_444 ? AV_PIX_FMT_YUV444P16 : AV_PIX_FMT_P016; caps = &ctx->caps12; break; default: break; } if (!caps || !caps->bIsSupported) { av_log(avctx, AV_LOG_ERROR, "unsupported bit depth: %d\n", format->bit_depth_luma_minus8 + 8); ctx->internal_error = AVERROR(EINVAL); return 0; } surface_fmt = ff_get_format(avctx, pix_fmts); if (surface_fmt < 0) { av_log(avctx, AV_LOG_ERROR, "ff_get_format failed: %d\n", surface_fmt); ctx->internal_error = AVERROR(EINVAL); return 0; } av_log(avctx, AV_LOG_VERBOSE, "Formats: Original: %s | HW: %s | SW: %s\n", av_get_pix_fmt_name(avctx->pix_fmt), av_get_pix_fmt_name(surface_fmt), av_get_pix_fmt_name(avctx->sw_pix_fmt)); avctx->pix_fmt = surface_fmt; // Update our hwframe ctx, as the get_format callback might have refreshed it! if (avctx->hw_frames_ctx) { av_buffer_unref(&ctx->hwframe); ctx->hwframe = av_buffer_ref(avctx->hw_frames_ctx); if (!ctx->hwframe) { ctx->internal_error = AVERROR(ENOMEM); return 0; } hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data; } ff_set_sar(avctx, av_div_q( (AVRational){ format->display_aspect_ratio.x, format->display_aspect_ratio.y }, (AVRational){ avctx->width, avctx->height })); ctx->deint_mode_current = format->progressive_sequence ? cudaVideoDeinterlaceMode_Weave : ctx->deint_mode; ctx->progressive_sequence = format->progressive_sequence; if (!format->progressive_sequence && ctx->deint_mode_current == cudaVideoDeinterlaceMode_Weave) avctx->flags |= AV_CODEC_FLAG_INTERLACED_DCT; else avctx->flags &= ~AV_CODEC_FLAG_INTERLACED_DCT; if (format->video_signal_description.video_full_range_flag) avctx->color_range = AVCOL_RANGE_JPEG; else avctx->color_range = AVCOL_RANGE_MPEG; avctx->color_primaries = format->video_signal_description.color_primaries; avctx->color_trc = format->video_signal_description.transfer_characteristics; avctx->colorspace = format->video_signal_description.matrix_coefficients; if (format->bitrate) avctx->bit_rate = format->bitrate; if (format->frame_rate.numerator && format->frame_rate.denominator) { avctx->framerate.num = format->frame_rate.numerator; avctx->framerate.den = format->frame_rate.denominator; } if (ctx->cudecoder && avctx->coded_width == format->coded_width && avctx->coded_height == format->coded_height && avctx->width == old_width && avctx->height == old_height && ctx->chroma_format == format->chroma_format && ctx->codec_type == format->codec) return 1; if (ctx->cudecoder) { av_log(avctx, AV_LOG_TRACE, "Re-initializing decoder\n"); ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder)); if (ctx->internal_error < 0) return 0; ctx->cudecoder = NULL; } if (hwframe_ctx->pool && ( hwframe_ctx->width < avctx->width || hwframe_ctx->height < avctx->height || hwframe_ctx->format != AV_PIX_FMT_CUDA || hwframe_ctx->sw_format != avctx->sw_pix_fmt)) { av_log(avctx, AV_LOG_ERROR, "AVHWFramesContext is already initialized with incompatible parameters\n"); av_log(avctx, AV_LOG_DEBUG, "width: %d <-> %d\n", hwframe_ctx->width, avctx->width); av_log(avctx, AV_LOG_DEBUG, "height: %d <-> %d\n", hwframe_ctx->height, avctx->height); av_log(avctx, AV_LOG_DEBUG, "format: %s <-> cuda\n", av_get_pix_fmt_name(hwframe_ctx->format)); av_log(avctx, AV_LOG_DEBUG, "sw_format: %s <-> %s\n", av_get_pix_fmt_name(hwframe_ctx->sw_format), av_get_pix_fmt_name(avctx->sw_pix_fmt)); ctx->internal_error = AVERROR(EINVAL); return 0; } ctx->chroma_format = format->chroma_format; cuinfo.CodecType = ctx->codec_type = format->codec; cuinfo.ChromaFormat = format->chroma_format; switch (avctx->sw_pix_fmt) { case AV_PIX_FMT_NV12: cuinfo.OutputFormat = cudaVideoSurfaceFormat_NV12; break; case AV_PIX_FMT_P010: case AV_PIX_FMT_P016: cuinfo.OutputFormat = cudaVideoSurfaceFormat_P016; break; case AV_PIX_FMT_YUV444P: cuinfo.OutputFormat = cudaVideoSurfaceFormat_YUV444; break; case AV_PIX_FMT_YUV444P16: cuinfo.OutputFormat = cudaVideoSurfaceFormat_YUV444_16Bit; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported output format: %s\n", av_get_pix_fmt_name(avctx->sw_pix_fmt)); ctx->internal_error = AVERROR(EINVAL); return 0; } fifo_size_inc = ctx->nb_surfaces; ctx->nb_surfaces = FFMAX(ctx->nb_surfaces, format->min_num_decode_surfaces + 3); if (avctx->extra_hw_frames > 0) ctx->nb_surfaces += avctx->extra_hw_frames; fifo_size_inc = ctx->nb_surfaces - fifo_size_inc; if (fifo_size_inc > 0 && av_fifo_grow2(ctx->frame_queue, fifo_size_inc) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to grow frame queue on video sequence callback\n"); ctx->internal_error = AVERROR(ENOMEM); return 0; } if (fifo_size_inc > 0 && av_reallocp_array(&ctx->key_frame, ctx->nb_surfaces, sizeof(int)) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to grow key frame array on video sequence callback\n"); ctx->internal_error = AVERROR(ENOMEM); return 0; } cuinfo.ulNumDecodeSurfaces = ctx->nb_surfaces; cuinfo.ulNumOutputSurfaces = 1; cuinfo.ulCreationFlags = cudaVideoCreate_PreferCUVID; cuinfo.bitDepthMinus8 = format->bit_depth_luma_minus8; cuinfo.DeinterlaceMode = ctx->deint_mode_current; if (ctx->deint_mode_current != cudaVideoDeinterlaceMode_Weave && !ctx->drop_second_field) avctx->framerate = av_mul_q(avctx->framerate, (AVRational){2, 1}); ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidCreateDecoder(&ctx->cudecoder, &cuinfo)); if (ctx->internal_error < 0) return 0; if (!hwframe_ctx->pool) { hwframe_ctx->format = AV_PIX_FMT_CUDA; hwframe_ctx->sw_format = avctx->sw_pix_fmt; hwframe_ctx->width = avctx->width; hwframe_ctx->height = avctx->height; if ((ctx->internal_error = av_hwframe_ctx_init(ctx->hwframe)) < 0) { av_log(avctx, AV_LOG_ERROR, "av_hwframe_ctx_init failed\n"); return 0; } } if(ctx->cuparseinfo.ulMaxNumDecodeSurfaces != cuinfo.ulNumDecodeSurfaces) { ctx->cuparseinfo.ulMaxNumDecodeSurfaces = cuinfo.ulNumDecodeSurfaces; return cuinfo.ulNumDecodeSurfaces; } return 1; } static int CUDAAPI cuvid_handle_picture_decode(void *opaque, CUVIDPICPARAMS* picparams) { AVCodecContext *avctx = opaque; CuvidContext *ctx = avctx->priv_data; av_log(avctx, AV_LOG_TRACE, "pfnDecodePicture\n"); if(picparams->intra_pic_flag) ctx->key_frame[picparams->CurrPicIdx] = picparams->intra_pic_flag; ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidDecodePicture(ctx->cudecoder, picparams)); if (ctx->internal_error < 0) return 0; return 1; } static int CUDAAPI cuvid_handle_picture_display(void *opaque, CUVIDPARSERDISPINFO* dispinfo) { AVCodecContext *avctx = opaque; CuvidContext *ctx = avctx->priv_data; CuvidParsedFrame parsed_frame = { { 0 } }; parsed_frame.dispinfo = *dispinfo; ctx->internal_error = 0; // For some reason, dispinfo->progressive_frame is sometimes wrong. parsed_frame.dispinfo.progressive_frame = ctx->progressive_sequence; if (ctx->deint_mode_current == cudaVideoDeinterlaceMode_Weave) { av_fifo_write(ctx->frame_queue, &parsed_frame, 1); } else { parsed_frame.is_deinterlacing = 1; av_fifo_write(ctx->frame_queue, &parsed_frame, 1); if (!ctx->drop_second_field) { parsed_frame.second_field = 1; av_fifo_write(ctx->frame_queue, &parsed_frame, 1); } } return 1; } static int cuvid_is_buffer_full(AVCodecContext *avctx) { CuvidContext *ctx = avctx->priv_data; int delay = ctx->cuparseinfo.ulMaxDisplayDelay; if (ctx->deint_mode != cudaVideoDeinterlaceMode_Weave && !ctx->drop_second_field) delay *= 2; return av_fifo_can_read(ctx->frame_queue) + delay >= ctx->nb_surfaces; } static int cuvid_decode_packet(AVCodecContext *avctx, const AVPacket *avpkt) { CuvidContext *ctx = avctx->priv_data; AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data; AVCUDADeviceContext *device_hwctx = device_ctx->hwctx; CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx; CUVIDSOURCEDATAPACKET cupkt; int ret = 0, eret = 0, is_flush = ctx->decoder_flushing; av_log(avctx, AV_LOG_TRACE, "cuvid_decode_packet\n"); if (is_flush && avpkt && avpkt->size) return AVERROR_EOF; if (cuvid_is_buffer_full(avctx) && avpkt && avpkt->size) return AVERROR(EAGAIN); ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx)); if (ret < 0) { return ret; } memset(&cupkt, 0, sizeof(cupkt)); if (avpkt && avpkt->size) { cupkt.payload_size = avpkt->size; cupkt.payload = avpkt->data; if (avpkt->pts != AV_NOPTS_VALUE) { cupkt.flags = CUVID_PKT_TIMESTAMP; if (avctx->pkt_timebase.num && avctx->pkt_timebase.den) cupkt.timestamp = av_rescale_q(avpkt->pts, avctx->pkt_timebase, (AVRational){1, 10000000}); else cupkt.timestamp = avpkt->pts; } } else { cupkt.flags = CUVID_PKT_ENDOFSTREAM; ctx->decoder_flushing = 1; } ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &cupkt)); if (ret < 0) goto error; // cuvidParseVideoData doesn't return an error just because stuff failed... if (ctx->internal_error) { av_log(avctx, AV_LOG_ERROR, "cuvid decode callback error\n"); ret = ctx->internal_error; goto error; } error: eret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy)); if (eret < 0) return eret; else if (ret < 0) return ret; else if (is_flush) return AVERROR_EOF; else return 0; } static int cuvid_output_frame(AVCodecContext *avctx, AVFrame *frame) { CuvidContext *ctx = avctx->priv_data; AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data; AVCUDADeviceContext *device_hwctx = device_ctx->hwctx; CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx; CuvidParsedFrame parsed_frame; CUdeviceptr mapped_frame = 0; int ret = 0, eret = 0; av_log(avctx, AV_LOG_TRACE, "cuvid_output_frame\n"); if (ctx->decoder_flushing) { ret = cuvid_decode_packet(avctx, NULL); if (ret < 0 && ret != AVERROR_EOF) return ret; } if (!cuvid_is_buffer_full(avctx)) { AVPacket *const pkt = ctx->pkt; ret = ff_decode_get_packet(avctx, pkt); if (ret < 0 && ret != AVERROR_EOF) return ret; ret = cuvid_decode_packet(avctx, pkt); av_packet_unref(pkt); // cuvid_is_buffer_full() should avoid this. if (ret == AVERROR(EAGAIN)) ret = AVERROR_EXTERNAL; if (ret < 0 && ret != AVERROR_EOF) return ret; } ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx)); if (ret < 0) return ret; if (av_fifo_read(ctx->frame_queue, &parsed_frame, 1) >= 0) { const AVPixFmtDescriptor *pixdesc; CUVIDPROCPARAMS params; unsigned int pitch = 0; int offset = 0; int i; memset(¶ms, 0, sizeof(params)); params.progressive_frame = parsed_frame.dispinfo.progressive_frame; params.second_field = parsed_frame.second_field; params.top_field_first = parsed_frame.dispinfo.top_field_first; ret = CHECK_CU(ctx->cvdl->cuvidMapVideoFrame(ctx->cudecoder, parsed_frame.dispinfo.picture_index, &mapped_frame, &pitch, ¶ms)); if (ret < 0) goto error; if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { ret = av_hwframe_get_buffer(ctx->hwframe, frame, 0); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "av_hwframe_get_buffer failed\n"); goto error; } ret = ff_decode_frame_props(avctx, frame); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "ff_decode_frame_props failed\n"); goto error; } pixdesc = av_pix_fmt_desc_get(avctx->sw_pix_fmt); for (i = 0; i < pixdesc->nb_components; i++) { int height = avctx->height >> (i ? pixdesc->log2_chroma_h : 0); CUDA_MEMCPY2D cpy = { .srcMemoryType = CU_MEMORYTYPE_DEVICE, .dstMemoryType = CU_MEMORYTYPE_DEVICE, .srcDevice = mapped_frame, .dstDevice = (CUdeviceptr)frame->data[i], .srcPitch = pitch, .dstPitch = frame->linesize[i], .srcY = offset, .WidthInBytes = FFMIN(pitch, frame->linesize[i]), .Height = height, }; ret = CHECK_CU(ctx->cudl->cuMemcpy2DAsync(&cpy, device_hwctx->stream)); if (ret < 0) goto error; offset += height; } } else if (avctx->pix_fmt == AV_PIX_FMT_NV12 || avctx->pix_fmt == AV_PIX_FMT_P010 || avctx->pix_fmt == AV_PIX_FMT_P016 || avctx->pix_fmt == AV_PIX_FMT_YUV444P || avctx->pix_fmt == AV_PIX_FMT_YUV444P16) { unsigned int offset = 0; AVFrame *tmp_frame = av_frame_alloc(); if (!tmp_frame) { av_log(avctx, AV_LOG_ERROR, "av_frame_alloc failed\n"); ret = AVERROR(ENOMEM); goto error; } pixdesc = av_pix_fmt_desc_get(avctx->sw_pix_fmt); tmp_frame->format = AV_PIX_FMT_CUDA; tmp_frame->hw_frames_ctx = av_buffer_ref(ctx->hwframe); if (!tmp_frame->hw_frames_ctx) { ret = AVERROR(ENOMEM); av_frame_free(&tmp_frame); goto error; } tmp_frame->width = avctx->width; tmp_frame->height = avctx->height; /* * Note that the following logic would not work for three plane * YUV420 because the pitch value is different for the chroma * planes. */ for (i = 0; i < pixdesc->nb_components; i++) { tmp_frame->data[i] = (uint8_t*)mapped_frame + offset; tmp_frame->linesize[i] = pitch; offset += pitch * (avctx->height >> (i ? pixdesc->log2_chroma_h : 0)); } ret = ff_get_buffer(avctx, frame, 0); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "ff_get_buffer failed\n"); av_frame_free(&tmp_frame); goto error; } ret = av_hwframe_transfer_data(frame, tmp_frame, 0); if (ret) { av_log(avctx, AV_LOG_ERROR, "av_hwframe_transfer_data failed\n"); av_frame_free(&tmp_frame); goto error; } av_frame_free(&tmp_frame); } else { ret = AVERROR_BUG; goto error; } if (ctx->key_frame[parsed_frame.dispinfo.picture_index]) frame->flags |= AV_FRAME_FLAG_KEY; else frame->flags &= ~AV_FRAME_FLAG_KEY; ctx->key_frame[parsed_frame.dispinfo.picture_index] = 0; frame->width = avctx->width; frame->height = avctx->height; if (avctx->pkt_timebase.num && avctx->pkt_timebase.den) frame->pts = av_rescale_q(parsed_frame.dispinfo.timestamp, (AVRational){1, 10000000}, avctx->pkt_timebase); else frame->pts = parsed_frame.dispinfo.timestamp; if (parsed_frame.second_field) { if (ctx->prev_pts == INT64_MIN) { ctx->prev_pts = frame->pts; frame->pts += (avctx->pkt_timebase.den * avctx->framerate.den) / (avctx->pkt_timebase.num * avctx->framerate.num); } else { int pts_diff = (frame->pts - ctx->prev_pts) / 2; ctx->prev_pts = frame->pts; frame->pts += pts_diff; } } /* CUVIDs opaque reordering breaks the internal pkt logic. * So set pkt_pts and clear all the other pkt_ fields. */ frame->duration = 0; #if FF_API_FRAME_PKT FF_DISABLE_DEPRECATION_WARNINGS frame->pkt_pos = -1; frame->pkt_size = -1; FF_ENABLE_DEPRECATION_WARNINGS #endif if (!parsed_frame.is_deinterlacing && !parsed_frame.dispinfo.progressive_frame) frame->flags |= AV_FRAME_FLAG_INTERLACED; if ((frame->flags & AV_FRAME_FLAG_INTERLACED) && parsed_frame.dispinfo.top_field_first) frame->flags |= AV_FRAME_FLAG_TOP_FIELD_FIRST; } else if (ctx->decoder_flushing) { ret = AVERROR_EOF; } else { ret = AVERROR(EAGAIN); } error: if (ret < 0) av_frame_unref(frame); if (mapped_frame) eret = CHECK_CU(ctx->cvdl->cuvidUnmapVideoFrame(ctx->cudecoder, mapped_frame)); eret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy)); if (eret < 0) return eret; else return ret; } static av_cold int cuvid_decode_end(AVCodecContext *avctx) { CuvidContext *ctx = avctx->priv_data; AVHWDeviceContext *device_ctx = ctx->hwdevice ? (AVHWDeviceContext *)ctx->hwdevice->data : NULL; AVCUDADeviceContext *device_hwctx = device_ctx ? device_ctx->hwctx : NULL; CUcontext dummy, cuda_ctx = device_hwctx ? device_hwctx->cuda_ctx : NULL; av_fifo_freep2(&ctx->frame_queue); if (cuda_ctx) { ctx->cudl->cuCtxPushCurrent(cuda_ctx); if (ctx->cuparser) ctx->cvdl->cuvidDestroyVideoParser(ctx->cuparser); if (ctx->cudecoder) ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder); ctx->cudl->cuCtxPopCurrent(&dummy); } ctx->cudl = NULL; av_buffer_unref(&ctx->hwframe); av_buffer_unref(&ctx->hwdevice); av_freep(&ctx->key_frame); av_freep(&ctx->cuparse_ext); cuvid_free_functions(&ctx->cvdl); return 0; } static int cuvid_test_capabilities(AVCodecContext *avctx, const CUVIDPARSERPARAMS *cuparseinfo, int probed_width, int probed_height, int bit_depth) { CuvidContext *ctx = avctx->priv_data; CUVIDDECODECAPS *caps; int res8 = 0, res10 = 0, res12 = 0; if (!ctx->cvdl->cuvidGetDecoderCaps) { av_log(avctx, AV_LOG_WARNING, "Used Nvidia driver is too old to perform a capability check.\n"); av_log(avctx, AV_LOG_WARNING, "The minimum required version is " #if defined(_WIN32) || defined(__CYGWIN__) "378.66" #else "378.13" #endif ". Continuing blind.\n"); ctx->caps8.bIsSupported = ctx->caps10.bIsSupported = 1; // 12 bit was not supported before the capability check was introduced, so disable it. ctx->caps12.bIsSupported = 0; return 0; } ctx->caps8.eCodecType = ctx->caps10.eCodecType = ctx->caps12.eCodecType = cuparseinfo->CodecType; ctx->caps8.eChromaFormat = ctx->caps10.eChromaFormat = ctx->caps12.eChromaFormat = cudaVideoChromaFormat_420; ctx->caps8.nBitDepthMinus8 = 0; ctx->caps10.nBitDepthMinus8 = 2; ctx->caps12.nBitDepthMinus8 = 4; res8 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps8)); res10 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps10)); res12 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps12)); av_log(avctx, AV_LOG_VERBOSE, "CUVID capabilities for %s:\n", avctx->codec->name); av_log(avctx, AV_LOG_VERBOSE, "8 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n", ctx->caps8.bIsSupported, ctx->caps8.nMinWidth, ctx->caps8.nMaxWidth, ctx->caps8.nMinHeight, ctx->caps8.nMaxHeight); av_log(avctx, AV_LOG_VERBOSE, "10 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n", ctx->caps10.bIsSupported, ctx->caps10.nMinWidth, ctx->caps10.nMaxWidth, ctx->caps10.nMinHeight, ctx->caps10.nMaxHeight); av_log(avctx, AV_LOG_VERBOSE, "12 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n", ctx->caps12.bIsSupported, ctx->caps12.nMinWidth, ctx->caps12.nMaxWidth, ctx->caps12.nMinHeight, ctx->caps12.nMaxHeight); switch (bit_depth) { case 10: caps = &ctx->caps10; if (res10 < 0) return res10; break; case 12: caps = &ctx->caps12; if (res12 < 0) return res12; break; default: caps = &ctx->caps8; if (res8 < 0) return res8; } if (!ctx->caps8.bIsSupported) { av_log(avctx, AV_LOG_ERROR, "Codec %s is not supported.\n", avctx->codec->name); return AVERROR(EINVAL); } if (!caps->bIsSupported) { av_log(avctx, AV_LOG_ERROR, "Bit depth %d is not supported.\n", bit_depth); return AVERROR(EINVAL); } if (probed_width > caps->nMaxWidth || probed_width < caps->nMinWidth) { av_log(avctx, AV_LOG_ERROR, "Video width %d not within range from %d to %d\n", probed_width, caps->nMinWidth, caps->nMaxWidth); return AVERROR(EINVAL); } if (probed_height > caps->nMaxHeight || probed_height < caps->nMinHeight) { av_log(avctx, AV_LOG_ERROR, "Video height %d not within range from %d to %d\n", probed_height, caps->nMinHeight, caps->nMaxHeight); return AVERROR(EINVAL); } if ((probed_width * probed_height) / 256 > caps->nMaxMBCount) { av_log(avctx, AV_LOG_ERROR, "Video macroblock count %d exceeds maximum of %d\n", (int)(probed_width * probed_height) / 256, caps->nMaxMBCount); return AVERROR(EINVAL); } return 0; } static av_cold int cuvid_decode_init(AVCodecContext *avctx) { CuvidContext *ctx = avctx->priv_data; AVCUDADeviceContext *device_hwctx; AVHWDeviceContext *device_ctx; AVHWFramesContext *hwframe_ctx; CUVIDSOURCEDATAPACKET seq_pkt; CUcontext cuda_ctx = NULL; CUcontext dummy; uint8_t *extradata; int extradata_size; int ret = 0; enum AVPixelFormat pix_fmts[3] = { AV_PIX_FMT_CUDA, AV_PIX_FMT_NV12, AV_PIX_FMT_NONE }; int probed_width = avctx->coded_width ? avctx->coded_width : 1280; int probed_height = avctx->coded_height ? avctx->coded_height : 720; int probed_bit_depth = 8; const AVPixFmtDescriptor *probe_desc = av_pix_fmt_desc_get(avctx->pix_fmt); if (probe_desc && probe_desc->nb_components) probed_bit_depth = probe_desc->comp[0].depth; ctx->pkt = avctx->internal->in_pkt; // Accelerated transcoding scenarios with 'ffmpeg' require that the // pix_fmt be set to AV_PIX_FMT_CUDA early. The sw_pix_fmt, and the // pix_fmt for non-accelerated transcoding, do not need to be correct // but need to be set to something. We arbitrarily pick NV12. ret = ff_get_format(avctx, pix_fmts); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "ff_get_format failed: %d\n", ret); return ret; } avctx->pix_fmt = ret; if (ctx->resize_expr && sscanf(ctx->resize_expr, "%dx%d", &ctx->resize.width, &ctx->resize.height) != 2) { av_log(avctx, AV_LOG_ERROR, "Invalid resize expressions\n"); ret = AVERROR(EINVAL); goto error; } if (ctx->crop_expr && sscanf(ctx->crop_expr, "%dx%dx%dx%d", &ctx->crop.top, &ctx->crop.bottom, &ctx->crop.left, &ctx->crop.right) != 4) { av_log(avctx, AV_LOG_ERROR, "Invalid cropping expressions\n"); ret = AVERROR(EINVAL); goto error; } ret = cuvid_load_functions(&ctx->cvdl, avctx); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Failed loading nvcuvid.\n"); goto error; } // respect the deprecated "surfaces" option if non-default value is given by user; if(ctx->nb_surfaces < 0) ctx->nb_surfaces = CUVID_DEFAULT_NUM_SURFACES; ctx->frame_queue = av_fifo_alloc2(ctx->nb_surfaces, sizeof(CuvidParsedFrame), 0); if (!ctx->frame_queue) { ret = AVERROR(ENOMEM); goto error; } if (avctx->hw_frames_ctx) { ctx->hwframe = av_buffer_ref(avctx->hw_frames_ctx); if (!ctx->hwframe) { ret = AVERROR(ENOMEM); goto error; } hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data; ctx->hwdevice = av_buffer_ref(hwframe_ctx->device_ref); if (!ctx->hwdevice) { ret = AVERROR(ENOMEM); goto error; } } else { if (avctx->hw_device_ctx) { ctx->hwdevice = av_buffer_ref(avctx->hw_device_ctx); if (!ctx->hwdevice) { ret = AVERROR(ENOMEM); goto error; } } else { ret = av_hwdevice_ctx_create(&ctx->hwdevice, AV_HWDEVICE_TYPE_CUDA, ctx->cu_gpu, NULL, 0); if (ret < 0) goto error; } ctx->hwframe = av_hwframe_ctx_alloc(ctx->hwdevice); if (!ctx->hwframe) { av_log(avctx, AV_LOG_ERROR, "av_hwframe_ctx_alloc failed\n"); ret = AVERROR(ENOMEM); goto error; } hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data; } device_ctx = hwframe_ctx->device_ctx; device_hwctx = device_ctx->hwctx; cuda_ctx = device_hwctx->cuda_ctx; ctx->cudl = device_hwctx->internal->cuda_dl; memset(&ctx->cuparseinfo, 0, sizeof(ctx->cuparseinfo)); memset(&seq_pkt, 0, sizeof(seq_pkt)); switch (avctx->codec->id) { #if CONFIG_H264_CUVID_DECODER case AV_CODEC_ID_H264: ctx->cuparseinfo.CodecType = cudaVideoCodec_H264; break; #endif #if CONFIG_HEVC_CUVID_DECODER case AV_CODEC_ID_HEVC: ctx->cuparseinfo.CodecType = cudaVideoCodec_HEVC; break; #endif #if CONFIG_MJPEG_CUVID_DECODER case AV_CODEC_ID_MJPEG: ctx->cuparseinfo.CodecType = cudaVideoCodec_JPEG; break; #endif #if CONFIG_MPEG1_CUVID_DECODER case AV_CODEC_ID_MPEG1VIDEO: ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG1; break; #endif #if CONFIG_MPEG2_CUVID_DECODER case AV_CODEC_ID_MPEG2VIDEO: ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG2; break; #endif #if CONFIG_MPEG4_CUVID_DECODER case AV_CODEC_ID_MPEG4: ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG4; break; #endif #if CONFIG_VP8_CUVID_DECODER case AV_CODEC_ID_VP8: ctx->cuparseinfo.CodecType = cudaVideoCodec_VP8; break; #endif #if CONFIG_VP9_CUVID_DECODER case AV_CODEC_ID_VP9: ctx->cuparseinfo.CodecType = cudaVideoCodec_VP9; break; #endif #if CONFIG_VC1_CUVID_DECODER case AV_CODEC_ID_VC1: ctx->cuparseinfo.CodecType = cudaVideoCodec_VC1; break; #endif #if CONFIG_AV1_CUVID_DECODER && defined(CUVID_HAS_AV1_SUPPORT) case AV_CODEC_ID_AV1: ctx->cuparseinfo.CodecType = cudaVideoCodec_AV1; break; #endif default: av_log(avctx, AV_LOG_ERROR, "Invalid CUVID codec!\n"); return AVERROR_BUG; } if (ffcodec(avctx->codec)->bsfs) { const AVCodecParameters *par = avctx->internal->bsf->par_out; extradata = par->extradata; extradata_size = par->extradata_size; } else { extradata = avctx->extradata; extradata_size = avctx->extradata_size; } // Check first bit to determine whether it's AV1CodecConfigurationRecord. // Skip first 4 bytes of AV1CodecConfigurationRecord to keep configOBUs // only, otherwise cuvidParseVideoData report unknown error. if (avctx->codec->id == AV_CODEC_ID_AV1 && extradata_size > 4 && extradata[0] & 0x80) { extradata += 4; extradata_size -= 4; } ctx->cuparse_ext = av_mallocz(sizeof(*ctx->cuparse_ext) + FFMAX(extradata_size - (int)sizeof(ctx->cuparse_ext->raw_seqhdr_data), 0)); if (!ctx->cuparse_ext) { ret = AVERROR(ENOMEM); goto error; } if (extradata_size > 0) memcpy(ctx->cuparse_ext->raw_seqhdr_data, extradata, extradata_size); ctx->cuparse_ext->format.seqhdr_data_length = extradata_size; ctx->cuparseinfo.pExtVideoInfo = ctx->cuparse_ext; ctx->key_frame = av_mallocz(ctx->nb_surfaces * sizeof(int)); if (!ctx->key_frame) { ret = AVERROR(ENOMEM); goto error; } ctx->cuparseinfo.ulMaxNumDecodeSurfaces = 1; ctx->cuparseinfo.ulMaxDisplayDelay = (avctx->flags & AV_CODEC_FLAG_LOW_DELAY) ? 0 : CUVID_MAX_DISPLAY_DELAY; ctx->cuparseinfo.pUserData = avctx; ctx->cuparseinfo.pfnSequenceCallback = cuvid_handle_video_sequence; ctx->cuparseinfo.pfnDecodePicture = cuvid_handle_picture_decode; ctx->cuparseinfo.pfnDisplayPicture = cuvid_handle_picture_display; ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx)); if (ret < 0) goto error; ret = cuvid_test_capabilities(avctx, &ctx->cuparseinfo, probed_width, probed_height, probed_bit_depth); if (ret < 0) goto error; ret = CHECK_CU(ctx->cvdl->cuvidCreateVideoParser(&ctx->cuparser, &ctx->cuparseinfo)); if (ret < 0) goto error; seq_pkt.payload = ctx->cuparse_ext->raw_seqhdr_data; seq_pkt.payload_size = ctx->cuparse_ext->format.seqhdr_data_length; if (seq_pkt.payload && seq_pkt.payload_size) { ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &seq_pkt)); if (ret < 0) goto error; } ret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy)); if (ret < 0) goto error; ctx->prev_pts = INT64_MIN; if (!avctx->pkt_timebase.num || !avctx->pkt_timebase.den) av_log(avctx, AV_LOG_WARNING, "Invalid pkt_timebase, passing timestamps as-is.\n"); return 0; error: cuvid_decode_end(avctx); return ret; } static void cuvid_flush(AVCodecContext *avctx) { CuvidContext *ctx = avctx->priv_data; AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data; AVCUDADeviceContext *device_hwctx = device_ctx->hwctx; CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx; CUVIDSOURCEDATAPACKET seq_pkt = { 0 }; int ret; ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx)); if (ret < 0) goto error; av_fifo_reset2(ctx->frame_queue); if (ctx->cudecoder) { ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder); ctx->cudecoder = NULL; } if (ctx->cuparser) { ctx->cvdl->cuvidDestroyVideoParser(ctx->cuparser); ctx->cuparser = NULL; } ret = CHECK_CU(ctx->cvdl->cuvidCreateVideoParser(&ctx->cuparser, &ctx->cuparseinfo)); if (ret < 0) goto error; seq_pkt.payload = ctx->cuparse_ext->raw_seqhdr_data; seq_pkt.payload_size = ctx->cuparse_ext->format.seqhdr_data_length; if (seq_pkt.payload && seq_pkt.payload_size) { ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &seq_pkt)); if (ret < 0) goto error; } ret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy)); if (ret < 0) goto error; ctx->prev_pts = INT64_MIN; ctx->decoder_flushing = 0; return; error: av_log(avctx, AV_LOG_ERROR, "CUDA reinit on flush failed\n"); } #define OFFSET(x) offsetof(CuvidContext, x) #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM static const AVOption options[] = { { "deint", "Set deinterlacing mode", OFFSET(deint_mode), AV_OPT_TYPE_INT, { .i64 = cudaVideoDeinterlaceMode_Weave }, cudaVideoDeinterlaceMode_Weave, cudaVideoDeinterlaceMode_Adaptive, VD, "deint" }, { "weave", "Weave deinterlacing (do nothing)", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Weave }, 0, 0, VD, "deint" }, { "bob", "Bob deinterlacing", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Bob }, 0, 0, VD, "deint" }, { "adaptive", "Adaptive deinterlacing", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Adaptive }, 0, 0, VD, "deint" }, { "gpu", "GPU to be used for decoding", OFFSET(cu_gpu), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD }, { "surfaces", "Maximum surfaces to be used for decoding", OFFSET(nb_surfaces), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, VD | AV_OPT_FLAG_DEPRECATED }, { "drop_second_field", "Drop second field when deinterlacing", OFFSET(drop_second_field), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VD }, { "crop", "Crop (top)x(bottom)x(left)x(right)", OFFSET(crop_expr), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD }, { "resize", "Resize (width)x(height)", OFFSET(resize_expr), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD }, { NULL } }; static const AVCodecHWConfigInternal *const cuvid_hw_configs[] = { &(const AVCodecHWConfigInternal) { .public = { .pix_fmt = AV_PIX_FMT_CUDA, .methods = AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX | AV_CODEC_HW_CONFIG_METHOD_INTERNAL, .device_type = AV_HWDEVICE_TYPE_CUDA }, .hwaccel = NULL, }, NULL }; #define DEFINE_CUVID_CODEC(x, X, bsf_name) \ static const AVClass x##_cuvid_class = { \ .class_name = #x "_cuvid", \ .item_name = av_default_item_name, \ .option = options, \ .version = LIBAVUTIL_VERSION_INT, \ }; \ const FFCodec ff_##x##_cuvid_decoder = { \ .p.name = #x "_cuvid", \ CODEC_LONG_NAME("Nvidia CUVID " #X " decoder"), \ .p.type = AVMEDIA_TYPE_VIDEO, \ .p.id = AV_CODEC_ID_##X, \ .priv_data_size = sizeof(CuvidContext), \ .p.priv_class = &x##_cuvid_class, \ .init = cuvid_decode_init, \ .close = cuvid_decode_end, \ FF_CODEC_RECEIVE_FRAME_CB(cuvid_output_frame), \ .flush = cuvid_flush, \ .bsfs = bsf_name, \ .p.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_AVOID_PROBING | AV_CODEC_CAP_HARDWARE, \ .caps_internal = FF_CODEC_CAP_NOT_INIT_THREADSAFE | \ FF_CODEC_CAP_SETS_FRAME_PROPS, \ .hw_configs = cuvid_hw_configs, \ .p.wrapper_name = "cuvid", \ }; #if CONFIG_AV1_CUVID_DECODER && defined(CUVID_HAS_AV1_SUPPORT) DEFINE_CUVID_CODEC(av1, AV1, NULL) #endif #if CONFIG_HEVC_CUVID_DECODER DEFINE_CUVID_CODEC(hevc, HEVC, "hevc_mp4toannexb") #endif #if CONFIG_H264_CUVID_DECODER DEFINE_CUVID_CODEC(h264, H264, "h264_mp4toannexb") #endif #if CONFIG_MJPEG_CUVID_DECODER DEFINE_CUVID_CODEC(mjpeg, MJPEG, NULL) #endif #if CONFIG_MPEG1_CUVID_DECODER DEFINE_CUVID_CODEC(mpeg1, MPEG1VIDEO, NULL) #endif #if CONFIG_MPEG2_CUVID_DECODER DEFINE_CUVID_CODEC(mpeg2, MPEG2VIDEO, NULL) #endif #if CONFIG_MPEG4_CUVID_DECODER DEFINE_CUVID_CODEC(mpeg4, MPEG4, NULL) #endif #if CONFIG_VP8_CUVID_DECODER DEFINE_CUVID_CODEC(vp8, VP8, NULL) #endif #if CONFIG_VP9_CUVID_DECODER DEFINE_CUVID_CODEC(vp9, VP9, NULL) #endif #if CONFIG_VC1_CUVID_DECODER DEFINE_CUVID_CODEC(vc1, VC1, NULL) #endif