/* * Copyright (C) 2001-2011 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef SWSCALE_SWSCALE_INTERNAL_H #define SWSCALE_SWSCALE_INTERNAL_H #include #include "config.h" #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/frame.h" #include "libavutil/intreadwrite.h" #include "libavutil/log.h" #include "libavutil/mem_internal.h" #include "libavutil/pixfmt.h" #include "libavutil/pixdesc.h" #include "libavutil/slicethread.h" #if HAVE_ALTIVEC #include "libavutil/ppc/util_altivec.h" #endif #include "libavutil/half2float.h" #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long #define YUVRGB_TABLE_HEADROOM 512 #define YUVRGB_TABLE_LUMA_HEADROOM 512 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE #if HAVE_BIGENDIAN #define ALT32_CORR (-1) #else #define ALT32_CORR 1 #endif #if ARCH_X86_64 # define APCK_PTR2 8 # define APCK_COEF 16 # define APCK_SIZE 24 #else # define APCK_PTR2 4 # define APCK_COEF 8 # define APCK_SIZE 16 #endif #define RETCODE_USE_CASCADE -12345 struct SwsContext; typedef enum SwsDither { SWS_DITHER_NONE = 0, SWS_DITHER_AUTO, SWS_DITHER_BAYER, SWS_DITHER_ED, SWS_DITHER_A_DITHER, SWS_DITHER_X_DITHER, SWS_DITHER_NB, } SwsDither; typedef enum SwsAlphaBlend { SWS_ALPHA_BLEND_NONE = 0, SWS_ALPHA_BLEND_UNIFORM, SWS_ALPHA_BLEND_CHECKERBOARD, SWS_ALPHA_BLEND_NB, } SwsAlphaBlend; typedef struct Range { unsigned int start; unsigned int len; } Range; typedef struct RangeList { Range *ranges; unsigned int nb_ranges; int ranges_allocated; } RangeList; int ff_range_add(RangeList *r, unsigned int start, unsigned int len); typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[]); /** * Write one line of horizontally scaled data to planar output * without any additional vertical scaling (or point-scaling). * * @param src scaled source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param dest pointer to the output plane. For >8-bit * output, this is in uint16_t * @param dstW width of destination in pixels * @param dither ordered dither array of type int16_t and size 8 * @param offset Dither offset */ typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset); /** * Write one line of horizontally scaled data to planar output * with multi-point vertical scaling between input pixels. * * @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096] * @param src scaled luma (Y) or alpha (A) source data, 15 bits for * 8-10-bit output, 19 bits for 16-bit output (in int32_t) * @param filterSize number of vertical input lines to scale * @param dest pointer to output plane. For >8-bit * output, this is in uint16_t * @param dstW width of destination pixels * @param offset Dither offset */ typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset); /** * Write one line of horizontally scaled chroma to interleaved output * with multi-point vertical scaling between input pixels. * * @param dstFormat destination pixel format * @param chrDither ordered dither array of type uint8_t and size 8 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit * output, 19 bits for 16-bit output (in int32_t) * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit * output, 19 bits for 16-bit output (in int32_t) * @param chrFilterSize number of vertical chroma input lines to scale * @param dest pointer to the output plane. For >8-bit * output, this is in uint16_t * @param dstW width of chroma planes */ typedef void (*yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, const uint8_t *chrDither, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW); /** * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB * output without any additional vertical scaling (or point-scaling). Note * that this function may do chroma scaling, see the "uvalpha" argument. * * @param c SWS scaling context * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param dest pointer to the output plane. For 16-bit output, this is * uint16_t * @param dstW width of lumSrc and alpSrc in pixels, number of pixels * to write into dest[] * @param uvalpha chroma scaling coefficient for the second line of chroma * pixels, either 2048 or 0. If 0, one chroma input is used * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag * is set, it generates 1 output pixel). If 2048, two chroma * input pixels should be averaged for 2 output pixels (this * only happens if SWS_FLAG_FULL_CHR_INT is not set) * @param y vertical line number for this output. This does not need * to be used to calculate the offset in the destination, * but can be used to generate comfort noise using dithering * for some output formats. */ typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y); /** * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB * output by doing bilinear scaling between two input lines. * * @param c SWS scaling context * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param dest pointer to the output plane. For 16-bit output, this is * uint16_t * @param dstW width of lumSrc and alpSrc in pixels, number of pixels * to write into dest[] * @param yalpha luma/alpha scaling coefficients for the second input line. * The first line's coefficients can be calculated by using * 4096 - yalpha * @param uvalpha chroma scaling coefficient for the second input line. The * first line's coefficients can be calculated by using * 4096 - uvalpha * @param y vertical line number for this output. This does not need * to be used to calculate the offset in the destination, * but can be used to generate comfort noise using dithering * for some output formats. */ typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y); /** * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB * output by doing multi-point vertical scaling between input pixels. * * @param c SWS scaling context * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096] * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param lumFilterSize number of vertical luma/alpha input lines to scale * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrFilterSize number of vertical chroma input lines to scale * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param dest pointer to the output plane. For 16-bit output, this is * uint16_t * @param dstW width of lumSrc and alpSrc in pixels, number of pixels * to write into dest[] * @param y vertical line number for this output. This does not need * to be used to calculate the offset in the destination, * but can be used to generate comfort noise using dithering * or some output formats. */ typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y); /** * Write one line of horizontally scaled Y/U/V/A to YUV/RGB * output by doing multi-point vertical scaling between input pixels. * * @param c SWS scaling context * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096] * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param lumFilterSize number of vertical luma/alpha input lines to scale * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param chrFilterSize number of vertical chroma input lines to scale * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, * 19 bits for 16-bit output (in int32_t) * @param dest pointer to the output planes. For 16-bit output, this is * uint16_t * @param dstW width of lumSrc and alpSrc in pixels, number of pixels * to write into dest[] * @param y vertical line number for this output. This does not need * to be used to calculate the offset in the destination, * but can be used to generate comfort noise using dithering * or some output formats. */ typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y); struct SwsSlice; struct SwsFilterDescriptor; /* This struct should be aligned on at least a 32-byte boundary. */ typedef struct SwsContext { /** * info on struct for av_log */ const AVClass *av_class; struct SwsContext *parent; AVSliceThread *slicethread; struct SwsContext **slice_ctx; int *slice_err; int nb_slice_ctx; // values passed to current sws_receive_slice() call int dst_slice_start; int dst_slice_height; /** * Note that src, dst, srcStride, dstStride will be copied in the * sws_scale() wrapper so they can be freely modified here. */ SwsFunc convert_unscaled; int srcW; ///< Width of source luma/alpha planes. int srcH; ///< Height of source luma/alpha planes. int dstH; ///< Height of destination luma/alpha planes. int chrSrcW; ///< Width of source chroma planes. int chrSrcH; ///< Height of source chroma planes. int chrDstW; ///< Width of destination chroma planes. int chrDstH; ///< Height of destination chroma planes. int lumXInc, chrXInc; int lumYInc, chrYInc; enum AVPixelFormat dstFormat; ///< Destination pixel format. enum AVPixelFormat srcFormat; ///< Source pixel format. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format. int dstBpc, srcBpc; int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top). int nb_threads; ///< Number of threads used for scaling double param[2]; ///< Input parameters for scaling algorithms that need them. AVFrame *frame_src; AVFrame *frame_dst; RangeList src_ranges; /* The cascaded_* fields allow spliting a scaler task into multiple * sequential steps, this is for example used to limit the maximum * downscaling factor that needs to be supported in one scaler. */ struct SwsContext *cascaded_context[3]; int cascaded_tmpStride[2][4]; uint8_t *cascaded_tmp[2][4]; int cascaded_mainindex; double gamma_value; int gamma_flag; int is_internal_gamma; uint16_t *gamma; uint16_t *inv_gamma; int numDesc; int descIndex[2]; int numSlice; struct SwsSlice *slice; struct SwsFilterDescriptor *desc; uint32_t pal_yuv[256]; uint32_t pal_rgb[256]; float uint2float_lut[256]; /** * @name Scaled horizontal lines ring buffer. * The horizontal scaler keeps just enough scaled lines in a ring buffer * so they may be passed to the vertical scaler. The pointers to the * allocated buffers for each line are duplicated in sequence in the ring * buffer to simplify indexing and avoid wrapping around between lines * inside the vertical scaler code. The wrapping is done before the * vertical scaler is called. */ //@{ int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer. //@} uint8_t *formatConvBuffer; int needAlpha; /** * @name Horizontal and vertical filters. * To better understand the following fields, here is a pseudo-code of * their usage in filtering a horizontal line: * @code * for (i = 0; i < width; i++) { * dst[i] = 0; * for (j = 0; j < filterSize; j++) * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ]; * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point. * } * @endcode */ //@{ int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels. int hChrFilterSize; ///< Horizontal filter size for chroma pixels. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels. int vChrFilterSize; ///< Vertical filter size for chroma pixels. //@} int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes. int canMMXEXTBeUsed; int warned_unuseable_bilinear; int dstY; ///< Last destination vertical line output from last slice. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc... void *yuvTable; // pointer to the yuv->rgb table start so it can be freed() // alignment ensures the offset can be added in a single // instruction on e.g. ARM DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM]; uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM]; uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM]; uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM]; DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points #define RY_IDX 0 #define GY_IDX 1 #define BY_IDX 2 #define RU_IDX 3 #define GU_IDX 4 #define BU_IDX 5 #define RV_IDX 6 #define GV_IDX 7 #define BV_IDX 8 #define RGB2YUV_SHIFT 15 int *dither_error[4]; //Colorspace stuff int contrast, brightness, saturation; // for sws_getColorspaceDetails int srcColorspaceTable[4]; int dstColorspaceTable[4]; int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image). int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image). int src0Alpha; int dst0Alpha; int srcXYZ; int dstXYZ; int src_h_chr_pos; int dst_h_chr_pos; int src_v_chr_pos; int dst_v_chr_pos; int yuv2rgb_y_offset; int yuv2rgb_y_coeff; int yuv2rgb_v2r_coeff; int yuv2rgb_v2g_coeff; int yuv2rgb_u2g_coeff; int yuv2rgb_u2b_coeff; #define RED_DITHER "0*8" #define GREEN_DITHER "1*8" #define BLUE_DITHER "2*8" #define Y_COEFF "3*8" #define VR_COEFF "4*8" #define UB_COEFF "5*8" #define VG_COEFF "6*8" #define UG_COEFF "7*8" #define Y_OFFSET "8*8" #define U_OFFSET "9*8" #define V_OFFSET "10*8" #define LUM_MMX_FILTER_OFFSET "11*8" #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE) #define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2" #define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8" #define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16" #define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24" #define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32" #define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40" #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48" #define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48" #define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56" #define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64" #define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80" #define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake DECLARE_ALIGNED(8, uint64_t, redDither); DECLARE_ALIGNED(8, uint64_t, greenDither); DECLARE_ALIGNED(8, uint64_t, blueDither); DECLARE_ALIGNED(8, uint64_t, yCoeff); DECLARE_ALIGNED(8, uint64_t, vrCoeff); DECLARE_ALIGNED(8, uint64_t, ubCoeff); DECLARE_ALIGNED(8, uint64_t, vgCoeff); DECLARE_ALIGNED(8, uint64_t, ugCoeff); DECLARE_ALIGNED(8, uint64_t, yOffset); DECLARE_ALIGNED(8, uint64_t, uOffset); DECLARE_ALIGNED(8, uint64_t, vOffset); int32_t lumMmxFilter[4 * MAX_FILTER_SIZE]; int32_t chrMmxFilter[4 * MAX_FILTER_SIZE]; int dstW; ///< Width of destination luma/alpha planes. DECLARE_ALIGNED(8, uint64_t, esp); DECLARE_ALIGNED(8, uint64_t, vRounder); DECLARE_ALIGNED(8, uint64_t, u_temp); DECLARE_ALIGNED(8, uint64_t, v_temp); DECLARE_ALIGNED(8, uint64_t, y_temp); int32_t alpMmxFilter[4 * MAX_FILTER_SIZE]; // alignment of these values is not necessary, but merely here // to maintain the same offset across x8632 and x86-64. Once we // use proper offset macros in the asm, they can be removed. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes DECLARE_ALIGNED(8, uint16_t, dither16)[8]; DECLARE_ALIGNED(8, uint32_t, dither32)[8]; const uint8_t *chrDither8, *lumDither8; #if HAVE_ALTIVEC vector signed short CY; vector signed short CRV; vector signed short CBU; vector signed short CGU; vector signed short CGV; vector signed short OY; vector unsigned short CSHIFT; vector signed short *vYCoeffsBank, *vCCoeffsBank; #endif int use_mmx_vfilter; /* pre defined color-spaces gamma */ #define XYZ_GAMMA (2.6f) #define RGB_GAMMA (2.2f) int16_t *xyzgamma; int16_t *rgbgamma; int16_t *xyzgammainv; int16_t *rgbgammainv; int16_t xyz2rgb_matrix[3][4]; int16_t rgb2xyz_matrix[3][4]; /* function pointers for swscale() */ yuv2planar1_fn yuv2plane1; yuv2planarX_fn yuv2planeX; yuv2interleavedX_fn yuv2nv12cX; yuv2packed1_fn yuv2packed1; yuv2packed2_fn yuv2packed2; yuv2packedX_fn yuv2packedX; yuv2anyX_fn yuv2anyX; /// Opaque data pointer passed to all input functions. void *input_opaque; /// Unscaled conversion of luma plane to YV12 for horizontal scaler. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3, int width, uint32_t *pal, void *opq); /// Unscaled conversion of alpha plane to YV12 for horizontal scaler. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3, int width, uint32_t *pal, void *opq); /// Unscaled conversion of chroma planes to YV12 for horizontal scaler. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src1, const uint8_t *src2, const uint8_t *src3, int width, uint32_t *pal, void *opq); /** * Functions to read planar input, such as planar RGB, and convert * internally to Y/UV/A. */ /** @{ */ void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv, void *opq); void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4], int width, int32_t *rgb2yuv, void *opq); void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv, void *opq); /** @} */ /** * Scale one horizontal line of input data using a bilinear filter * to produce one line of output data. Compared to SwsContext->hScale(), * please take note of the following caveats when using these: * - Scaling is done using only 7 bits instead of 14-bit coefficients. * - You can use no more than 5 input pixels to produce 4 output * pixels. Therefore, this filter should not be used for downscaling * by more than ~20% in width (because that equals more than 5/4th * downscaling and thus more than 5 pixels input per 4 pixels output). * - In general, bilinear filters create artifacts during downscaling * (even when <20%), because one output pixel will span more than one * input pixel, and thus some pixels will need edges of both neighbor * pixels to interpolate the output pixel. Since you can use at most * two input pixels per output pixel in bilinear scaling, this is * impossible and thus downscaling by any size will create artifacts. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR * in SwsContext->flags. */ /** @{ */ void (*hyscale_fast)(struct SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc); void (*hcscale_fast)(struct SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc); /** @} */ /** * Scale one horizontal line of input data using a filter over the input * lines, to produce one (differently sized) line of output data. * * @param dst pointer to destination buffer for horizontally scaled * data. If the number of bits per component of one * destination pixel (SwsContext->dstBpc) is <= 10, data * will be 15 bpc in 16 bits (int16_t) width. Else (i.e. * SwsContext->dstBpc == 16), data will be 19bpc in * 32 bits (int32_t) width. * @param dstW width of destination image * @param src pointer to source data to be scaled. If the number of * bits per component of a source pixel (SwsContext->srcBpc) * is 8, this is 8bpc in 8 bits (uint8_t) width. Else * (i.e. SwsContext->dstBpc > 8), this is native depth * in 16 bits (uint16_t) width. In other words, for 9-bit * YUV input, this is 9bpc, for 10-bit YUV input, this is * 10bpc, and for 16-bit RGB or YUV, this is 16bpc. * @param filter filter coefficients to be used per output pixel for * scaling. This contains 14bpp filtering coefficients. * Guaranteed to contain dstW * filterSize entries. * @param filterPos position of the first input pixel to be used for * each output pixel during scaling. Guaranteed to * contain dstW entries. * @param filterSize the number of input coefficients to be used (and * thus the number of input pixels to be used) for * creating a single output pixel. Is aligned to 4 * (and input coefficients thus padded with zeroes) * to simplify creating SIMD code. */ /** @{ */ void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize); void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize); /** @} */ /// Color range conversion function for luma plane if needed. void (*lumConvertRange)(int16_t *dst, int width); /// Color range conversion function for chroma planes if needed. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width); int needs_hcscale; ///< Set if there are chroma planes to be converted. SwsDither dither; SwsAlphaBlend alphablend; // scratch buffer for converting packed rgb0 sources // filled with a copy of the input frame + fully opaque alpha, // then passed as input to further conversion uint8_t *rgb0_scratch; unsigned int rgb0_scratch_allocated; // scratch buffer for converting XYZ sources // filled with the input converted to rgb48 // then passed as input to further conversion uint8_t *xyz_scratch; unsigned int xyz_scratch_allocated; unsigned int dst_slice_align; atomic_int stride_unaligned_warned; atomic_int data_unaligned_warned; Half2FloatTables *h2f_tables; } SwsContext; //FIXME check init (where 0) SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c); int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation); void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation); void ff_updateMMXDitherTables(SwsContext *c, int dstY); void ff_update_palette(SwsContext *c, const uint32_t *pal); av_cold void ff_sws_init_range_convert(SwsContext *c); av_cold void ff_sws_init_range_convert_aarch64(SwsContext *c); av_cold void ff_sws_init_range_convert_loongarch(SwsContext *c); av_cold void ff_sws_init_range_convert_x86(SwsContext *c); SwsFunc ff_yuv2rgb_init_x86(SwsContext *c); SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c); SwsFunc ff_yuv2rgb_init_loongarch(SwsContext *c); static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return desc->comp[0].depth == 16; } static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return desc->comp[0].depth == 32; } static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14; } static av_always_inline int isBE(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return desc->flags & AV_PIX_FMT_FLAG_BE; } static av_always_inline int isYUV(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2; } static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt)); } /* * Identity semi-planar YUV formats. Specifically, those are YUV formats * where the second and third components (U & V) are on the same plane. */ static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane); } static av_always_inline int isRGB(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (desc->flags & AV_PIX_FMT_FLAG_RGB); } static av_always_inline int isGray(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return !(desc->flags & AV_PIX_FMT_FLAG_PAL) && !(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) && desc->nb_components <= 2 && pix_fmt != AV_PIX_FMT_MONOBLACK && pix_fmt != AV_PIX_FMT_MONOWHITE; } static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt) { return pix_fmt == AV_PIX_FMT_RGB48BE || pix_fmt == AV_PIX_FMT_RGB48LE || pix_fmt == AV_PIX_FMT_RGB32 || pix_fmt == AV_PIX_FMT_RGB32_1 || pix_fmt == AV_PIX_FMT_RGB24 || pix_fmt == AV_PIX_FMT_RGB565BE || pix_fmt == AV_PIX_FMT_RGB565LE || pix_fmt == AV_PIX_FMT_RGB555BE || pix_fmt == AV_PIX_FMT_RGB555LE || pix_fmt == AV_PIX_FMT_RGB444BE || pix_fmt == AV_PIX_FMT_RGB444LE || pix_fmt == AV_PIX_FMT_RGB8 || pix_fmt == AV_PIX_FMT_RGB4 || pix_fmt == AV_PIX_FMT_RGB4_BYTE || pix_fmt == AV_PIX_FMT_RGBA64BE || pix_fmt == AV_PIX_FMT_RGBA64LE || pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; } static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt) { return pix_fmt == AV_PIX_FMT_BGR48BE || pix_fmt == AV_PIX_FMT_BGR48LE || pix_fmt == AV_PIX_FMT_BGR32 || pix_fmt == AV_PIX_FMT_BGR32_1 || pix_fmt == AV_PIX_FMT_BGR24 || pix_fmt == AV_PIX_FMT_BGR565BE || pix_fmt == AV_PIX_FMT_BGR565LE || pix_fmt == AV_PIX_FMT_BGR555BE || pix_fmt == AV_PIX_FMT_BGR555LE || pix_fmt == AV_PIX_FMT_BGR444BE || pix_fmt == AV_PIX_FMT_BGR444LE || pix_fmt == AV_PIX_FMT_BGR8 || pix_fmt == AV_PIX_FMT_BGR4 || pix_fmt == AV_PIX_FMT_BGR4_BYTE || pix_fmt == AV_PIX_FMT_BGRA64BE || pix_fmt == AV_PIX_FMT_BGRA64LE || pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; } static av_always_inline int isBayer(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER); } static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return desc->comp[1].depth == 8; } static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (desc->flags & AV_PIX_FMT_FLAG_RGB) || pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; } static av_always_inline int isFloat(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return desc->flags & AV_PIX_FMT_FLAG_FLOAT; } static av_always_inline int isFloat16(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (desc->flags & AV_PIX_FMT_FLAG_FLOAT) && desc->comp[0].depth == 16; } static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); if (pix_fmt == AV_PIX_FMT_PAL8) return 1; return desc->flags & AV_PIX_FMT_FLAG_ALPHA; } static av_always_inline int isPacked(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) || pix_fmt == AV_PIX_FMT_PAL8 || pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; } static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR)); } static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB); } static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)); } static av_always_inline int usePal(enum AVPixelFormat pix_fmt) { switch (pix_fmt) { case AV_PIX_FMT_PAL8: case AV_PIX_FMT_BGR4_BYTE: case AV_PIX_FMT_BGR8: case AV_PIX_FMT_GRAY8: case AV_PIX_FMT_RGB4_BYTE: case AV_PIX_FMT_RGB8: return 1; default: return 0; } } /* * Identity formats where the data is in the high bits, and the low bits are shifted away. */ static av_always_inline int isDataInHighBits(enum AVPixelFormat pix_fmt) { int i; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); if (desc->flags & (AV_PIX_FMT_FLAG_BITSTREAM | AV_PIX_FMT_FLAG_HWACCEL)) return 0; for (i = 0; i < desc->nb_components; i++) { if (!desc->comp[i].shift) return 0; if ((desc->comp[i].shift + desc->comp[i].depth) & 0x7) return 0; } return 1; } /* * Identity formats where the chroma planes are swapped (CrCb order). */ static av_always_inline int isSwappedChroma(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); if (!isYUV(pix_fmt)) return 0; if ((desc->flags & AV_PIX_FMT_FLAG_ALPHA) && desc->nb_components < 4) return 0; if (desc->nb_components < 3) return 0; if (!isPlanarYUV(pix_fmt) || isSemiPlanarYUV(pix_fmt)) return desc->comp[1].offset > desc->comp[2].offset; else return desc->comp[1].plane > desc->comp[2].plane; } extern const uint64_t ff_dither4[2]; extern const uint64_t ff_dither8[2]; extern const uint8_t ff_dither_2x2_4[3][8]; extern const uint8_t ff_dither_2x2_8[3][8]; extern const uint8_t ff_dither_4x4_16[5][8]; extern const uint8_t ff_dither_8x8_32[9][8]; extern const uint8_t ff_dither_8x8_73[9][8]; extern const uint8_t ff_dither_8x8_128[9][8]; extern const uint8_t ff_dither_8x8_220[9][8]; extern const int32_t ff_yuv2rgb_coeffs[11][4]; extern const AVClass ff_sws_context_class; /** * Set c->convert_unscaled to an unscaled converter if one exists for the * specific source and destination formats, bit depths, flags, etc. */ void ff_get_unscaled_swscale(SwsContext *c); void ff_get_unscaled_swscale_ppc(SwsContext *c); void ff_get_unscaled_swscale_arm(SwsContext *c); void ff_get_unscaled_swscale_aarch64(SwsContext *c); void ff_sws_init_scale(SwsContext *c); void ff_sws_init_input_funcs(SwsContext *c); void ff_sws_init_output_funcs(SwsContext *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX); void ff_sws_init_swscale_ppc(SwsContext *c); void ff_sws_init_swscale_vsx(SwsContext *c); void ff_sws_init_swscale_x86(SwsContext *c); void ff_sws_init_swscale_aarch64(SwsContext *c); void ff_sws_init_swscale_arm(SwsContext *c); void ff_sws_init_swscale_loongarch(SwsContext *c); void ff_sws_init_swscale_riscv(SwsContext *c); void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc); void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc); int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits); void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc); void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc); int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[]); void ff_copyPlane(const uint8_t *src, int srcStride, int srcSliceY, int srcSliceH, int width, uint8_t *dst, int dstStride); static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian) { uint8_t *ptr = plane + stride * y; int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1)); if (big_endian != HAVE_BIGENDIAN) v = av_bswap16(v); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) AV_WN16(ptr + 2 * j, v); ptr += stride; } } static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float) { uint8_t *ptr = plane + stride * y; uint32_t v; uint32_t onef32 = 0x3f800000; if (is_float) v = alpha ? onef32 : 0; else v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1)); if (big_endian != HAVE_BIGENDIAN) v = av_bswap32(v); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) AV_WN32(ptr + 4 * j, v); ptr += stride; } } #define MAX_SLICE_PLANES 4 /// Slice plane typedef struct SwsPlane { int available_lines; ///< max number of lines that can be hold by this plane int sliceY; ///< index of first line int sliceH; ///< number of lines uint8_t **line; ///< line buffer uint8_t **tmp; ///< Tmp line buffer used by mmx code } SwsPlane; /** * Struct which defines a slice of an image to be scaled or an output for * a scaled slice. * A slice can also be used as intermediate ring buffer for scaling steps. */ typedef struct SwsSlice { int width; ///< Slice line width int h_chr_sub_sample; ///< horizontal chroma subsampling factor int v_chr_sub_sample; ///< vertical chroma subsampling factor int is_ring; ///< flag to identify if this slice is a ring buffer int should_free_lines; ///< flag to identify if there are dynamic allocated lines enum AVPixelFormat fmt; ///< planes pixel format SwsPlane plane[MAX_SLICE_PLANES]; ///< color planes } SwsSlice; /** * Struct which holds all necessary data for processing a slice. * A processing step can be a color conversion or horizontal/vertical scaling. */ typedef struct SwsFilterDescriptor { SwsSlice *src; ///< Source slice SwsSlice *dst; ///< Output slice int alpha; ///< Flag for processing alpha channel void *instance; ///< Filter instance data /// Function for processing input slice sliceH lines starting from line sliceY int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH); } SwsFilterDescriptor; // warp input lines in the form (src + width*i + j) to slice format (line[i][j]) // relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y] int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative); // Initialize scaler filter descriptor chain int ff_init_filters(SwsContext *c); // Free all filter data int ff_free_filters(SwsContext *c); /* function for applying ring buffer logic into slice s It checks if the slice can hold more @lum lines, if yes do nothing otherwise remove @lum least used lines. It applies the same procedure for @chr lines. */ int ff_rotate_slice(SwsSlice *s, int lum, int chr); /// initializes gamma conversion descriptor int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table); /// initializes lum pixel format conversion descriptor int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal); /// initializes lum horizontal scaling descriptor int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc); /// initializes chr pixel format conversion descriptor int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal); /// initializes chr horizontal scaling descriptor int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc); int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst); /// initializes vertical scaling descriptors int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst); /// setup vertical scaler functions void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx); void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads); //number of extra lines to process #define MAX_LINES_AHEAD 4 //shuffle filter and filterPos for hyScale and hcScale filters in avx2 int ff_shuffle_filter_coefficients(SwsContext *c, int* filterPos, int filterSize, int16_t *filter, int dstW); #endif /* SWSCALE_SWSCALE_INTERNAL_H */