/* * On2 Audio for Video Codec decoder * * Copyright (c) 2013 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/channel_layout.h" #include "libavutil/ffmath.h" #include "libavutil/float_dsp.h" #include "avcodec.h" #include "bytestream.h" #include "fft.h" #include "get_bits.h" #include "internal.h" #include "on2avcdata.h" #define ON2AVC_SUBFRAME_SIZE 1024 enum WindowTypes { WINDOW_TYPE_LONG = 0, WINDOW_TYPE_LONG_STOP, WINDOW_TYPE_LONG_START, WINDOW_TYPE_8SHORT = 3, WINDOW_TYPE_EXT4, WINDOW_TYPE_EXT5, WINDOW_TYPE_EXT6, WINDOW_TYPE_EXT7, }; typedef struct On2AVCContext { AVCodecContext *avctx; AVFloatDSPContext *fdsp; FFTContext mdct, mdct_half, mdct_small; FFTContext fft128, fft256, fft512, fft1024; void (*wtf)(struct On2AVCContext *ctx, float *out, float *in, int size); int is_av500; const On2AVCMode *modes; int window_type, prev_window_type; int num_windows, num_bands; int bits_per_section; const int *band_start; int grouping[8]; int ms_present; int ms_info[ON2AVC_MAX_BANDS]; int is_long; uint8_t band_type[ON2AVC_MAX_BANDS]; uint8_t band_run_end[ON2AVC_MAX_BANDS]; int num_sections; float band_scales[ON2AVC_MAX_BANDS]; VLC scale_diff; VLC cb_vlc[16]; float scale_tab[128]; DECLARE_ALIGNED(32, float, coeffs)[2][ON2AVC_SUBFRAME_SIZE]; DECLARE_ALIGNED(32, float, delay) [2][ON2AVC_SUBFRAME_SIZE]; DECLARE_ALIGNED(32, float, temp) [ON2AVC_SUBFRAME_SIZE * 2]; DECLARE_ALIGNED(32, float, mdct_buf) [ON2AVC_SUBFRAME_SIZE]; DECLARE_ALIGNED(32, float, long_win) [ON2AVC_SUBFRAME_SIZE]; DECLARE_ALIGNED(32, float, short_win)[ON2AVC_SUBFRAME_SIZE / 8]; } On2AVCContext; static void on2avc_read_ms_info(On2AVCContext *c, GetBitContext *gb) { int w, b, band_off = 0; c->ms_present = get_bits1(gb); if (!c->ms_present) return; for (w = 0; w < c->num_windows; w++) { if (!c->grouping[w]) { memcpy(c->ms_info + band_off, c->ms_info + band_off - c->num_bands, c->num_bands * sizeof(*c->ms_info)); band_off += c->num_bands; continue; } for (b = 0; b < c->num_bands; b++) c->ms_info[band_off++] = get_bits1(gb); } } // do not see Table 17 in ISO/IEC 13818-7 static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb) { int bits_per_sect = c->is_long ? 5 : 3; int esc_val = (1 << bits_per_sect) - 1; int num_bands = c->num_bands * c->num_windows; int band = 0, i, band_type, run_len, run; while (band < num_bands) { band_type = get_bits(gb, 4); run_len = 1; do { run = get_bits(gb, bits_per_sect); if (run > num_bands - band - run_len) { av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n"); return AVERROR_INVALIDDATA; } run_len += run; } while (run == esc_val); for (i = band; i < band + run_len; i++) { c->band_type[i] = band_type; c->band_run_end[i] = band + run_len; } band += run_len; } return 0; } // completely not like Table 18 in ISO/IEC 13818-7 // (no intensity stereo, different coding for the first coefficient) static int on2avc_decode_band_scales(On2AVCContext *c, GetBitContext *gb) { int w, w2, b, scale, first = 1; int band_off = 0; for (w = 0; w < c->num_windows; w++) { if (!c->grouping[w]) { memcpy(c->band_scales + band_off, c->band_scales + band_off - c->num_bands, c->num_bands * sizeof(*c->band_scales)); band_off += c->num_bands; continue; } for (b = 0; b < c->num_bands; b++) { if (!c->band_type[band_off]) { int all_zero = 1; for (w2 = w + 1; w2 < c->num_windows; w2++) { if (c->grouping[w2]) break; if (c->band_type[w2 * c->num_bands + b]) { all_zero = 0; break; } } if (all_zero) { c->band_scales[band_off++] = 0; continue; } } if (first) { scale = get_bits(gb, 7); first = 0; } else { scale += get_vlc2(gb, c->scale_diff.table, 9, 3) - 60; } if (scale < 0 || scale > 127) { av_log(c->avctx, AV_LOG_ERROR, "Invalid scale value %d\n", scale); return AVERROR_INVALIDDATA; } c->band_scales[band_off++] = c->scale_tab[scale]; } } return 0; } static inline float on2avc_scale(int v, float scale) { return v * sqrtf(abs(v)) * scale; } // spectral data is coded completely differently - there are no unsigned codebooks static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst, int dst_size, int type, float band_scale) { int i, j, val, val1; for (i = 0; i < dst_size; i += 4) { val = get_vlc2(gb, c->cb_vlc[type].table, 9, 3); for (j = 0; j < 4; j++) { val1 = sign_extend((val >> (12 - j * 4)) & 0xF, 4); *dst++ = on2avc_scale(val1, band_scale); } } return 0; } static inline int get_egolomb(GetBitContext *gb) { int v = 4; while (get_bits1(gb)) { v++; if (v > 30) { av_log(NULL, AV_LOG_WARNING, "Too large golomb code in get_egolomb.\n"); v = 30; break; } } return (1 << v) + get_bits_long(gb, v); } static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst, int dst_size, int type, float band_scale) { int i, val, val1, val2, sign; for (i = 0; i < dst_size; i += 2) { val = get_vlc2(gb, c->cb_vlc[type].table, 9, 3); val1 = sign_extend(val >> 8, 8); val2 = sign_extend(val & 0xFF, 8); if (type == ON2AVC_ESC_CB) { if (val1 <= -16 || val1 >= 16) { sign = 1 - (val1 < 0) * 2; val1 = sign * get_egolomb(gb); } if (val2 <= -16 || val2 >= 16) { sign = 1 - (val2 < 0) * 2; val2 = sign * get_egolomb(gb); } } *dst++ = on2avc_scale(val1, band_scale); *dst++ = on2avc_scale(val2, band_scale); } return 0; } static int on2avc_read_channel_data(On2AVCContext *c, GetBitContext *gb, int ch) { int ret; int w, b, band_idx; float *coeff_ptr; if ((ret = on2avc_decode_band_types(c, gb)) < 0) return ret; if ((ret = on2avc_decode_band_scales(c, gb)) < 0) return ret; coeff_ptr = c->coeffs[ch]; band_idx = 0; memset(coeff_ptr, 0, ON2AVC_SUBFRAME_SIZE * sizeof(*coeff_ptr)); for (w = 0; w < c->num_windows; w++) { for (b = 0; b < c->num_bands; b++) { int band_size = c->band_start[b + 1] - c->band_start[b]; int band_type = c->band_type[band_idx + b]; if (!band_type) { coeff_ptr += band_size; continue; } if (band_type < 9) on2avc_decode_quads(c, gb, coeff_ptr, band_size, band_type, c->band_scales[band_idx + b]); else on2avc_decode_pairs(c, gb, coeff_ptr, band_size, band_type, c->band_scales[band_idx + b]); coeff_ptr += band_size; } band_idx += c->num_bands; } return 0; } static int on2avc_apply_ms(On2AVCContext *c) { int w, b, i; int band_off = 0; float *ch0 = c->coeffs[0]; float *ch1 = c->coeffs[1]; for (w = 0; w < c->num_windows; w++) { for (b = 0; b < c->num_bands; b++) { if (c->ms_info[band_off + b]) { for (i = c->band_start[b]; i < c->band_start[b + 1]; i++) { float l = *ch0, r = *ch1; *ch0++ = l + r; *ch1++ = l - r; } } else { ch0 += c->band_start[b + 1] - c->band_start[b]; ch1 += c->band_start[b + 1] - c->band_start[b]; } } band_off += c->num_bands; } return 0; } static void zero_head_and_tail(float *src, int len, int order0, int order1) { memset(src, 0, sizeof(*src) * order0); memset(src + len - order1, 0, sizeof(*src) * order1); } static void pretwiddle(float *src, float *dst, int dst_len, int tab_step, int step, int order0, int order1, const double * const *tabs) { float *src2, *out; const double *tab; int i, j; out = dst; tab = tabs[0]; for (i = 0; i < tab_step; i++) { double sum = 0; for (j = 0; j < order0; j++) sum += src[j] * tab[j * tab_step + i]; out[i] += sum; } out = dst + dst_len - tab_step; tab = tabs[order0]; src2 = src + (dst_len - tab_step) / step + 1 + order0; for (i = 0; i < tab_step; i++) { double sum = 0; for (j = 0; j < order1; j++) sum += src2[j] * tab[j * tab_step + i]; out[i] += sum; } } static void twiddle(float *src1, float *src2, int src2_len, const double *tab, int tab_len, int step, int order0, int order1, const double * const *tabs) { int steps; int mask; int i, j; steps = (src2_len - tab_len) / step + 1; pretwiddle(src1, src2, src2_len, tab_len, step, order0, order1, tabs); mask = tab_len - 1; for (i = 0; i < steps; i++) { float in0 = src1[order0 + i]; int pos = (src2_len - 1) & mask; if (pos < tab_len) { const double *t = tab; for (j = pos; j >= 0; j--) src2[j] += in0 * *t++; for (j = 0; j < tab_len - pos - 1; j++) src2[src2_len - j - 1] += in0 * tab[pos + 1 + j]; } else { for (j = 0; j < tab_len; j++) src2[pos - j] += in0 * tab[j]; } mask = pos + step; } } #define CMUL1_R(s, t, is, it) \ s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1] #define CMUL1_I(s, t, is, it) \ s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0] #define CMUL2_R(s, t, is, it) \ s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1] #define CMUL2_I(s, t, is, it) \ s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0] #define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \ dst[id] = s0[is] * t0[it] + s1[is] * t1[it] \ + s2[is] * t2[it] + s3[is] * t3[it]; \ dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1] \ + s2[is] * t2[it + 1] + s3[is] * t3[it + 1]; #define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \ *dst++ = CMUL1_R(s0, t0, is, it) \ + CMUL1_R(s1, t1, is, it) \ + CMUL1_R(s2, t2, is, it) \ + CMUL1_R(s3, t3, is, it); \ *dst++ = CMUL1_I(s0, t0, is, it) \ + CMUL1_I(s1, t1, is, it) \ + CMUL1_I(s2, t2, is, it) \ + CMUL1_I(s3, t3, is, it); #define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \ *dst++ = CMUL2_R(s0, t0, is, it) \ + CMUL2_R(s1, t1, is, it) \ + CMUL2_R(s2, t2, is, it) \ + CMUL2_R(s3, t3, is, it); \ *dst++ = CMUL2_I(s0, t0, is, it) \ + CMUL2_I(s1, t1, is, it) \ + CMUL2_I(s2, t2, is, it) \ + CMUL2_I(s3, t3, is, it); static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst, const float *t0, const float *t1, const float *t2, const float *t3, int len, int step) { const float *h0, *h1, *h2, *h3; float *d1, *d2; int tmp, half; int len2 = len >> 1, len4 = len >> 2; int hoff; int i, j, k; tmp = step; for (half = len2; tmp > 1; half <<= 1, tmp >>= 1); h0 = t0 + half; h1 = t1 + half; h2 = t2 + half; h3 = t3 + half; CMUL0(dst, 0, s0, s1, s2, s3, t0, t1, t2, t3, 0, 0); hoff = 2 * step * (len4 >> 1); j = 2; k = 2 * step; d1 = dst + 2; d2 = dst + 2 + (len >> 1); for (i = 0; i < (len4 - 1) >> 1; i++) { CMUL1(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k); CMUL1(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k); j += 2; k += 2 * step; } CMUL0(dst, len4, s0, s1, s2, s3, t0, t1, t2, t3, 1, hoff); CMUL0(dst, len4 + len2, s0, s1, s2, s3, h0, h1, h2, h3, 1, hoff); j = len4; k = hoff + 2 * step * len4; d1 = dst + len4 + 2; d2 = dst + len4 + 2 + len2; for (i = 0; i < (len4 - 2) >> 1; i++) { CMUL2(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k); CMUL2(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k); j -= 2; k += 2 * step; } CMUL0(dst, len2 + 4, s0, s1, s2, s3, t0, t1, t2, t3, 0, k); } static void wtf_end_512(On2AVCContext *c, float *out, float *src, float *tmp0, float *tmp1) { memcpy(src, tmp0, 384 * sizeof(*tmp0)); memcpy(tmp0 + 384, src + 384, 128 * sizeof(*tmp0)); zero_head_and_tail(src, 128, 16, 4); zero_head_and_tail(src + 128, 128, 16, 4); zero_head_and_tail(src + 256, 128, 13, 7); zero_head_and_tail(src + 384, 128, 15, 5); c->fft128.fft_permute(&c->fft128, (FFTComplex*)src); c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 128)); c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 256)); c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 384)); c->fft128.fft_calc(&c->fft128, (FFTComplex*)src); c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 128)); c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 256)); c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 384)); combine_fft(src, src + 128, src + 256, src + 384, tmp1, ff_on2avc_ctab_1, ff_on2avc_ctab_2, ff_on2avc_ctab_3, ff_on2avc_ctab_4, 512, 2); c->fft512.fft_permute(&c->fft512, (FFTComplex*)tmp1); c->fft512.fft_calc(&c->fft512, (FFTComplex*)tmp1); pretwiddle(&tmp0[ 0], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); pretwiddle(&tmp0[128], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); pretwiddle(&tmp0[256], tmp1, 512, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); pretwiddle(&tmp0[384], tmp1, 512, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); memcpy(src, tmp1, 512 * sizeof(float)); } static void wtf_end_1024(On2AVCContext *c, float *out, float *src, float *tmp0, float *tmp1) { memcpy(src, tmp0, 768 * sizeof(*tmp0)); memcpy(tmp0 + 768, src + 768, 256 * sizeof(*tmp0)); zero_head_and_tail(src, 256, 16, 4); zero_head_and_tail(src + 256, 256, 16, 4); zero_head_and_tail(src + 512, 256, 13, 7); zero_head_and_tail(src + 768, 256, 15, 5); c->fft256.fft_permute(&c->fft256, (FFTComplex*)src); c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 256)); c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 512)); c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 768)); c->fft256.fft_calc(&c->fft256, (FFTComplex*)src); c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 256)); c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 512)); c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 768)); combine_fft(src, src + 256, src + 512, src + 768, tmp1, ff_on2avc_ctab_1, ff_on2avc_ctab_2, ff_on2avc_ctab_3, ff_on2avc_ctab_4, 1024, 1); c->fft1024.fft_permute(&c->fft1024, (FFTComplex*)tmp1); c->fft1024.fft_calc(&c->fft1024, (FFTComplex*)tmp1); pretwiddle(&tmp0[ 0], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); pretwiddle(&tmp0[256], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); pretwiddle(&tmp0[512], tmp1, 1024, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); pretwiddle(&tmp0[768], tmp1, 1024, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); memcpy(src, tmp1, 1024 * sizeof(float)); } static void wtf_40(On2AVCContext *c, float *out, float *src, int size) { float *tmp0 = c->temp, *tmp1 = c->temp + 1024; memset(tmp0, 0, sizeof(*tmp0) * 1024); memset(tmp1, 0, sizeof(*tmp1) * 1024); if (size == 512) { twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 16, &tmp0[ 16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 24, &tmp0[ 16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(src + 32, &tmp0[ 32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(src + 40, &tmp0[ 32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 48, &tmp0[ 48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 56, &tmp0[ 48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(&tmp0[32], &tmp1[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(&tmp0[48], &tmp1[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 64, &tmp1[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 80, &tmp1[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 96, &tmp1[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 112, &tmp1[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 128, &tmp1[128], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 144, &tmp1[128], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 160, &tmp1[160], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 176, &tmp1[160], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); memset(tmp0, 0, 64 * sizeof(*tmp0)); twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(&tmp1[ 32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(&tmp1[ 64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(&tmp1[ 96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(&tmp1[128], &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(&tmp1[160], &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(src + 288, &tmp0[256], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(src + 352, &tmp0[256], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); wtf_end_512(c, out, src, tmp0, tmp1); } else { twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 256, &tmp1[256], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 288, &tmp1[256], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(src + 320, &tmp1[320], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(src + 352, &tmp1[320], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); memset(tmp0, 0, 128 * sizeof(*tmp0)); twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(&tmp1[256], &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(&tmp1[320], &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(src + 576, &tmp0[512], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(src + 704, &tmp0[512], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); wtf_end_1024(c, out, src, tmp0, tmp1); } } static void wtf_44(On2AVCContext *c, float *out, float *src, int size) { float *tmp0 = c->temp, *tmp1 = c->temp + 1024; memset(tmp0, 0, sizeof(*tmp0) * 1024); memset(tmp1, 0, sizeof(*tmp1) * 1024); if (size == 512) { twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 16, &tmp0[16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 24, &tmp0[16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(src + 32, &tmp0[32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(src + 40, &tmp0[32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 48, &tmp0[48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2); twiddle(src + 56, &tmp0[48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1); twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(&tmp0[32], &tmp1[32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(&tmp0[48], &tmp1[32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 64, &tmp1[64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 80, &tmp1[64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 96, &tmp1[96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 112, &tmp1[96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); memset(tmp0, 0, 64 * sizeof(*tmp0)); twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(&tmp1[32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(&tmp1[64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(&tmp1[96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(src + 128, &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(src + 160, &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); wtf_end_512(c, out, src, tmp0, tmp1); } else { twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2); twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1); twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); memset(tmp0, 0, 128 * sizeof(*tmp0)); twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(src + 256, &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4); twiddle(src + 320, &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3); twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2); twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1); twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1); twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2); wtf_end_1024(c, out, src, tmp0, tmp1); } } static int on2avc_reconstruct_channel_ext(On2AVCContext *c, AVFrame *dst, int offset) { int ch, i; for (ch = 0; ch < c->avctx->channels; ch++) { float *out = (float*)dst->extended_data[ch] + offset; float *in = c->coeffs[ch]; float *saved = c->delay[ch]; float *buf = c->mdct_buf; float *wout = out + 448; switch (c->window_type) { case WINDOW_TYPE_EXT7: c->mdct.imdct_half(&c->mdct, buf, in); break; case WINDOW_TYPE_EXT4: c->wtf(c, buf, in, 1024); break; case WINDOW_TYPE_EXT5: c->wtf(c, buf, in, 512); c->mdct.imdct_half(&c->mdct_half, buf + 512, in + 512); for (i = 0; i < 256; i++) { FFSWAP(float, buf[i + 512], buf[1023 - i]); } break; case WINDOW_TYPE_EXT6: c->mdct.imdct_half(&c->mdct_half, buf, in); for (i = 0; i < 256; i++) { FFSWAP(float, buf[i], buf[511 - i]); } c->wtf(c, buf + 512, in + 512, 512); break; } memcpy(out, saved, 448 * sizeof(float)); c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64); memcpy(wout + 128, buf + 64, 448 * sizeof(float)); memcpy(saved, buf + 512, 448 * sizeof(float)); memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); } return 0; } // not borrowed from aacdec.c - the codec has original design after all static int on2avc_reconstruct_channel(On2AVCContext *c, int channel, AVFrame *dst, int offset) { int i; float *out = (float*)dst->extended_data[channel] + offset; float *in = c->coeffs[channel]; float *saved = c->delay[channel]; float *buf = c->mdct_buf; float *temp = c->temp; switch (c->window_type) { case WINDOW_TYPE_LONG_START: case WINDOW_TYPE_LONG_STOP: case WINDOW_TYPE_LONG: c->mdct.imdct_half(&c->mdct, buf, in); break; case WINDOW_TYPE_8SHORT: for (i = 0; i < ON2AVC_SUBFRAME_SIZE; i += ON2AVC_SUBFRAME_SIZE / 8) c->mdct_small.imdct_half(&c->mdct_small, buf + i, in + i); break; } if ((c->prev_window_type == WINDOW_TYPE_LONG || c->prev_window_type == WINDOW_TYPE_LONG_STOP) && (c->window_type == WINDOW_TYPE_LONG || c->window_type == WINDOW_TYPE_LONG_START)) { c->fdsp->vector_fmul_window(out, saved, buf, c->long_win, 512); } else { float *wout = out + 448; memcpy(out, saved, 448 * sizeof(float)); if (c->window_type == WINDOW_TYPE_8SHORT) { c->fdsp->vector_fmul_window(wout + 0*128, saved + 448, buf + 0*128, c->short_win, 64); c->fdsp->vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128, c->short_win, 64); c->fdsp->vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128, c->short_win, 64); c->fdsp->vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128, c->short_win, 64); c->fdsp->vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, c->short_win, 64); memcpy(wout + 4*128, temp, 64 * sizeof(float)); } else { c->fdsp->vector_fmul_window(wout, saved + 448, buf, c->short_win, 64); memcpy(wout + 128, buf + 64, 448 * sizeof(float)); } } // buffer update switch (c->window_type) { case WINDOW_TYPE_8SHORT: memcpy(saved, temp + 64, 64 * sizeof(float)); c->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, c->short_win, 64); c->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, c->short_win, 64); c->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, c->short_win, 64); memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); break; case WINDOW_TYPE_LONG_START: memcpy(saved, buf + 512, 448 * sizeof(float)); memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); break; case WINDOW_TYPE_LONG_STOP: case WINDOW_TYPE_LONG: memcpy(saved, buf + 512, 512 * sizeof(float)); break; } return 0; } static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf, int buf_size, AVFrame *dst, int offset) { GetBitContext gb; int i, ret; if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0) return ret; if (get_bits1(&gb)) { av_log(c->avctx, AV_LOG_ERROR, "enh bit set\n"); return AVERROR_INVALIDDATA; } c->prev_window_type = c->window_type; c->window_type = get_bits(&gb, 3); c->band_start = c->modes[c->window_type].band_start; c->num_windows = c->modes[c->window_type].num_windows; c->num_bands = c->modes[c->window_type].num_bands; c->is_long = (c->window_type != WINDOW_TYPE_8SHORT); c->grouping[0] = 1; for (i = 1; i < c->num_windows; i++) c->grouping[i] = !get_bits1(&gb); on2avc_read_ms_info(c, &gb); for (i = 0; i < c->avctx->channels; i++) if ((ret = on2avc_read_channel_data(c, &gb, i)) < 0) return AVERROR_INVALIDDATA; if (c->avctx->channels == 2 && c->ms_present) on2avc_apply_ms(c); if (c->window_type < WINDOW_TYPE_EXT4) { for (i = 0; i < c->avctx->channels; i++) on2avc_reconstruct_channel(c, i, dst, offset); } else { on2avc_reconstruct_channel_ext(c, dst, offset); } return 0; } static int on2avc_decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; On2AVCContext *c = avctx->priv_data; GetByteContext gb; int num_frames = 0, frame_size, audio_off; int ret; if (c->is_av500) { /* get output buffer */ frame->nb_samples = ON2AVC_SUBFRAME_SIZE; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; if ((ret = on2avc_decode_subframe(c, buf, buf_size, frame, 0)) < 0) return ret; } else { bytestream2_init(&gb, buf, buf_size); while (bytestream2_get_bytes_left(&gb) > 2) { frame_size = bytestream2_get_le16(&gb); if (!frame_size || frame_size > bytestream2_get_bytes_left(&gb)) { av_log(avctx, AV_LOG_ERROR, "Invalid subframe size %d\n", frame_size); return AVERROR_INVALIDDATA; } num_frames++; bytestream2_skip(&gb, frame_size); } if (!num_frames) { av_log(avctx, AV_LOG_ERROR, "No subframes present\n"); return AVERROR_INVALIDDATA; } /* get output buffer */ frame->nb_samples = ON2AVC_SUBFRAME_SIZE * num_frames; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; audio_off = 0; bytestream2_init(&gb, buf, buf_size); while (bytestream2_get_bytes_left(&gb) > 2) { frame_size = bytestream2_get_le16(&gb); if ((ret = on2avc_decode_subframe(c, gb.buffer, frame_size, frame, audio_off)) < 0) return ret; audio_off += ON2AVC_SUBFRAME_SIZE; bytestream2_skip(&gb, frame_size); } } *got_frame_ptr = 1; return buf_size; } static av_cold void on2avc_free_vlcs(On2AVCContext *c) { int i; ff_free_vlc(&c->scale_diff); for (i = 1; i < 16; i++) ff_free_vlc(&c->cb_vlc[i]); } static av_cold int on2avc_decode_init(AVCodecContext *avctx) { On2AVCContext *c = avctx->priv_data; int i; if (avctx->channels > 2U) { avpriv_request_sample(avctx, "Decoding more than 2 channels"); return AVERROR_PATCHWELCOME; } c->avctx = avctx; avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO; c->is_av500 = (avctx->codec_tag == 0x500); if (avctx->channels == 2) av_log(avctx, AV_LOG_WARNING, "Stereo mode support is not good, patch is welcome\n"); // We add -0.01 before ceil() to avoid any values to fall at exactly the // midpoint between different ceil values. The results are identical to // using pow(10, i / 10.0) without such bias for (i = 0; i < 20; i++) c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 16 - 0.01) / 32; for (; i < 128; i++) c->scale_tab[i] = ceil(ff_exp10(i * 0.1) * 0.5 - 0.01); if (avctx->sample_rate < 32000 || avctx->channels == 1) memcpy(c->long_win, ff_on2avc_window_long_24000, 1024 * sizeof(*c->long_win)); else memcpy(c->long_win, ff_on2avc_window_long_32000, 1024 * sizeof(*c->long_win)); memcpy(c->short_win, ff_on2avc_window_short, 128 * sizeof(*c->short_win)); c->modes = (avctx->sample_rate <= 40000) ? ff_on2avc_modes_40 : ff_on2avc_modes_44; c->wtf = (avctx->sample_rate <= 40000) ? wtf_40 : wtf_44; ff_mdct_init(&c->mdct, 11, 1, 1.0 / (32768.0 * 1024.0)); ff_mdct_init(&c->mdct_half, 10, 1, 1.0 / (32768.0 * 512.0)); ff_mdct_init(&c->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0)); ff_fft_init(&c->fft128, 6, 0); ff_fft_init(&c->fft256, 7, 0); ff_fft_init(&c->fft512, 8, 1); ff_fft_init(&c->fft1024, 9, 1); c->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!c->fdsp) return AVERROR(ENOMEM); if (init_vlc(&c->scale_diff, 9, ON2AVC_SCALE_DIFFS, ff_on2avc_scale_diff_bits, 1, 1, ff_on2avc_scale_diff_codes, 4, 4, 0)) { goto vlc_fail; } for (i = 1; i < 16; i++) { int idx = i - 1, codes_size = ff_on2avc_cb_codes_sizes[idx]; if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_cb_elems[idx], ff_on2avc_cb_bits[idx], 1, 1, ff_on2avc_cb_codes[idx], codes_size, codes_size, ff_on2avc_cb_syms[idx], 2, 2, 0)) { goto vlc_fail; } } return 0; vlc_fail: av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n"); on2avc_free_vlcs(c); av_freep(&c->fdsp); return AVERROR(ENOMEM); } static av_cold int on2avc_decode_close(AVCodecContext *avctx) { On2AVCContext *c = avctx->priv_data; ff_mdct_end(&c->mdct); ff_mdct_end(&c->mdct_half); ff_mdct_end(&c->mdct_small); ff_fft_end(&c->fft128); ff_fft_end(&c->fft256); ff_fft_end(&c->fft512); ff_fft_end(&c->fft1024); av_freep(&c->fdsp); on2avc_free_vlcs(c); return 0; } AVCodec ff_on2avc_decoder = { .name = "on2avc", .long_name = NULL_IF_CONFIG_SMALL("On2 Audio for Video Codec"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_ON2AVC, .priv_data_size = sizeof(On2AVCContext), .init = on2avc_decode_init, .decode = on2avc_decode_frame, .close = on2avc_decode_close, .capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, };