/* * Matroska file demuxer * Copyright (c) 2003-2008 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Matroska file demuxer * @author Ronald Bultje * @author with a little help from Moritz Bunkus * @author totally reworked by Aurelien Jacobs * @see specs available on the Matroska project page: http://www.matroska.org/ */ #include "config.h" #include #include #include "libavutil/avstring.h" #include "libavutil/base64.h" #include "libavutil/dict.h" #include "libavutil/intfloat.h" #include "libavutil/intreadwrite.h" #include "libavutil/lzo.h" #include "libavutil/mastering_display_metadata.h" #include "libavutil/mathematics.h" #include "libavutil/opt.h" #include "libavutil/time_internal.h" #include "libavutil/spherical.h" #include "libavcodec/bytestream.h" #include "libavcodec/flac.h" #include "libavcodec/mpeg4audio.h" #include "avformat.h" #include "avio_internal.h" #include "internal.h" #include "isom.h" #include "matroska.h" #include "oggdec.h" /* For ff_codec_get_id(). */ #include "riff.h" #include "rmsipr.h" #if CONFIG_BZLIB #include #endif #if CONFIG_ZLIB #include #endif #include "qtpalette.h" #define EBML_UNKNOWN_LENGTH UINT64_MAX /* EBML unknown length, in uint64_t */ #define NEEDS_CHECKING 2 /* Indicates that some error checks * still need to be performed */ #define LEVEL_ENDED 3 /* return value of ebml_parse when the * syntax level used for parsing ended. */ #define SKIP_THRESHOLD 1024 * 1024 /* In non-seekable mode, if more than SKIP_THRESHOLD * of unkown, potentially damaged data is encountered, * it is considered an error. */ #define UNKNOWN_EQUIV 50 * 1024 /* An unknown element is considered equivalent * to this many bytes of unknown data for the * SKIP_THRESHOLD check. */ typedef enum { EBML_NONE, EBML_UINT, EBML_SINT, EBML_FLOAT, EBML_STR, EBML_UTF8, EBML_BIN, EBML_NEST, EBML_LEVEL1, EBML_STOP, EBML_TYPE_COUNT } EbmlType; typedef const struct EbmlSyntax { uint32_t id; EbmlType type; size_t list_elem_size; size_t data_offset; union { int64_t i; uint64_t u; double f; const char *s; const struct EbmlSyntax *n; } def; } EbmlSyntax; typedef struct EbmlList { int nb_elem; unsigned int alloc_elem_size; void *elem; } EbmlList; typedef struct EbmlBin { int size; AVBufferRef *buf; uint8_t *data; int64_t pos; } EbmlBin; typedef struct Ebml { uint64_t version; uint64_t max_size; uint64_t id_length; char *doctype; uint64_t doctype_version; } Ebml; typedef struct MatroskaTrackCompression { uint64_t algo; EbmlBin settings; } MatroskaTrackCompression; typedef struct MatroskaTrackEncryption { uint64_t algo; EbmlBin key_id; } MatroskaTrackEncryption; typedef struct MatroskaTrackEncoding { uint64_t scope; uint64_t type; MatroskaTrackCompression compression; MatroskaTrackEncryption encryption; } MatroskaTrackEncoding; typedef struct MatroskaMasteringMeta { double r_x; double r_y; double g_x; double g_y; double b_x; double b_y; double white_x; double white_y; double max_luminance; double min_luminance; } MatroskaMasteringMeta; typedef struct MatroskaTrackVideoColor { uint64_t matrix_coefficients; uint64_t bits_per_channel; uint64_t chroma_sub_horz; uint64_t chroma_sub_vert; uint64_t cb_sub_horz; uint64_t cb_sub_vert; uint64_t chroma_siting_horz; uint64_t chroma_siting_vert; uint64_t range; uint64_t transfer_characteristics; uint64_t primaries; uint64_t max_cll; uint64_t max_fall; MatroskaMasteringMeta mastering_meta; } MatroskaTrackVideoColor; typedef struct MatroskaTrackVideoProjection { uint64_t type; EbmlBin private; double yaw; double pitch; double roll; } MatroskaTrackVideoProjection; typedef struct MatroskaTrackVideo { double frame_rate; uint64_t display_width; uint64_t display_height; uint64_t pixel_width; uint64_t pixel_height; EbmlBin color_space; uint64_t display_unit; uint64_t interlaced; uint64_t field_order; uint64_t stereo_mode; uint64_t alpha_mode; EbmlList color; MatroskaTrackVideoProjection projection; } MatroskaTrackVideo; typedef struct MatroskaTrackAudio { double samplerate; double out_samplerate; uint64_t bitdepth; uint64_t channels; /* real audio header (extracted from extradata) */ int coded_framesize; int sub_packet_h; int frame_size; int sub_packet_size; int sub_packet_cnt; int pkt_cnt; uint64_t buf_timecode; uint8_t *buf; } MatroskaTrackAudio; typedef struct MatroskaTrackPlane { uint64_t uid; uint64_t type; } MatroskaTrackPlane; typedef struct MatroskaTrackOperation { EbmlList combine_planes; } MatroskaTrackOperation; typedef struct MatroskaTrack { uint64_t num; uint64_t uid; uint64_t type; char *name; char *codec_id; EbmlBin codec_priv; char *language; double time_scale; uint64_t default_duration; uint64_t flag_default; uint64_t flag_forced; uint64_t seek_preroll; MatroskaTrackVideo video; MatroskaTrackAudio audio; MatroskaTrackOperation operation; EbmlList encodings; uint64_t codec_delay; uint64_t codec_delay_in_track_tb; AVStream *stream; int64_t end_timecode; int ms_compat; uint64_t max_block_additional_id; uint32_t palette[AVPALETTE_COUNT]; int has_palette; } MatroskaTrack; typedef struct MatroskaAttachment { uint64_t uid; char *filename; char *mime; EbmlBin bin; AVStream *stream; } MatroskaAttachment; typedef struct MatroskaChapter { uint64_t start; uint64_t end; uint64_t uid; char *title; AVChapter *chapter; } MatroskaChapter; typedef struct MatroskaIndexPos { uint64_t track; uint64_t pos; } MatroskaIndexPos; typedef struct MatroskaIndex { uint64_t time; EbmlList pos; } MatroskaIndex; typedef struct MatroskaTag { char *name; char *string; char *lang; uint64_t def; EbmlList sub; } MatroskaTag; typedef struct MatroskaTagTarget { char *type; uint64_t typevalue; uint64_t trackuid; uint64_t chapteruid; uint64_t attachuid; } MatroskaTagTarget; typedef struct MatroskaTags { MatroskaTagTarget target; EbmlList tag; } MatroskaTags; typedef struct MatroskaSeekhead { uint64_t id; uint64_t pos; } MatroskaSeekhead; typedef struct MatroskaLevel { uint64_t start; uint64_t length; } MatroskaLevel; typedef struct MatroskaBlock { uint64_t duration; int64_t reference; uint64_t non_simple; EbmlBin bin; uint64_t additional_id; EbmlBin additional; int64_t discard_padding; } MatroskaBlock; typedef struct MatroskaCluster { MatroskaBlock block; uint64_t timecode; int64_t pos; } MatroskaCluster; typedef struct MatroskaLevel1Element { int64_t pos; uint32_t id; int parsed; } MatroskaLevel1Element; typedef struct MatroskaDemuxContext { const AVClass *class; AVFormatContext *ctx; /* EBML stuff */ MatroskaLevel levels[EBML_MAX_DEPTH]; int num_levels; uint32_t current_id; int64_t resync_pos; int unknown_count; uint64_t time_scale; double duration; char *title; char *muxingapp; EbmlBin date_utc; EbmlList tracks; EbmlList attachments; EbmlList chapters; EbmlList index; EbmlList tags; EbmlList seekhead; /* byte position of the segment inside the stream */ int64_t segment_start; /* the packet queue */ AVPacketList *queue; AVPacketList *queue_end; int done; /* What to skip before effectively reading a packet. */ int skip_to_keyframe; uint64_t skip_to_timecode; /* File has a CUES element, but we defer parsing until it is needed. */ int cues_parsing_deferred; /* Level1 elements and whether they were read yet */ MatroskaLevel1Element level1_elems[64]; int num_level1_elems; MatroskaCluster current_cluster; /* WebM DASH Manifest live flag */ int is_live; /* Bandwidth value for WebM DASH Manifest */ int bandwidth; } MatroskaDemuxContext; #define CHILD_OF(parent) { .def = { .n = parent } } // The following forward declarations need their size because // a tentative definition with internal linkage must not be an // incomplete type (6.7.2 in C90, 6.9.2 in C99). // Removing the sizes breaks MSVC. static EbmlSyntax ebml_syntax[3], matroska_segment[9], matroska_track_video_color[15], matroska_track_video[19], matroska_track[27], matroska_track_encoding[6], matroska_track_encodings[2], matroska_track_combine_planes[2], matroska_track_operation[2], matroska_tracks[2], matroska_attachments[2], matroska_chapter_entry[9], matroska_chapter[6], matroska_chapters[2], matroska_index_entry[3], matroska_index[2], matroska_tag[3], matroska_tags[2], matroska_seekhead[2], matroska_blockadditions[2], matroska_blockgroup[8], matroska_cluster_parsing[8]; static EbmlSyntax ebml_header[] = { { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } }, { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } }, { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } }, { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } }, { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } }, { EBML_ID_EBMLVERSION, EBML_NONE }, { EBML_ID_DOCTYPEVERSION, EBML_NONE }, CHILD_OF(ebml_syntax) }; static EbmlSyntax ebml_syntax[] = { { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } }, { MATROSKA_ID_SEGMENT, EBML_STOP }, { 0 } }; static EbmlSyntax matroska_info[] = { { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } }, { MATROSKA_ID_DURATION, EBML_FLOAT, 0, offsetof(MatroskaDemuxContext, duration) }, { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) }, { MATROSKA_ID_WRITINGAPP, EBML_NONE }, { MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) }, { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) }, { MATROSKA_ID_SEGMENTUID, EBML_NONE }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_mastering_meta[] = { { MATROSKA_ID_VIDEOCOLOR_RX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, r_x), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_RY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, r_y), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_GX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, g_x), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_GY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, g_y), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_BX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, b_x), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_BY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, b_y), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_WHITEX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, white_x), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_WHITEY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, white_y), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_LUMINANCEMIN, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, min_luminance), { .f=-1 } }, { MATROSKA_ID_VIDEOCOLOR_LUMINANCEMAX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, max_luminance), { .f=-1 } }, CHILD_OF(matroska_track_video_color) }; static EbmlSyntax matroska_track_video_color[] = { { MATROSKA_ID_VIDEOCOLORMATRIXCOEFF, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, matrix_coefficients), { .u = AVCOL_SPC_UNSPECIFIED } }, { MATROSKA_ID_VIDEOCOLORBITSPERCHANNEL, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, bits_per_channel), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORCHROMASUBHORZ, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_sub_horz), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORCHROMASUBVERT, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_sub_vert), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORCBSUBHORZ, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, cb_sub_horz), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORCBSUBVERT, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, cb_sub_vert), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORCHROMASITINGHORZ, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_siting_horz), { .u = MATROSKA_COLOUR_CHROMASITINGHORZ_UNDETERMINED } }, { MATROSKA_ID_VIDEOCOLORCHROMASITINGVERT, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_siting_vert), { .u = MATROSKA_COLOUR_CHROMASITINGVERT_UNDETERMINED } }, { MATROSKA_ID_VIDEOCOLORRANGE, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, range), { .u = AVCOL_RANGE_UNSPECIFIED } }, { MATROSKA_ID_VIDEOCOLORTRANSFERCHARACTERISTICS, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, transfer_characteristics), { .u = AVCOL_TRC_UNSPECIFIED } }, { MATROSKA_ID_VIDEOCOLORPRIMARIES, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, primaries), { .u = AVCOL_PRI_UNSPECIFIED } }, { MATROSKA_ID_VIDEOCOLORMAXCLL, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, max_cll), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORMAXFALL, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, max_fall), { .u=0 } }, { MATROSKA_ID_VIDEOCOLORMASTERINGMETA, EBML_NEST, 0, offsetof(MatroskaTrackVideoColor, mastering_meta), { .n = matroska_mastering_meta } }, CHILD_OF(matroska_track_video) }; static EbmlSyntax matroska_track_video_projection[] = { { MATROSKA_ID_VIDEOPROJECTIONTYPE, EBML_UINT, 0, offsetof(MatroskaTrackVideoProjection, type), { .u = MATROSKA_VIDEO_PROJECTION_TYPE_RECTANGULAR } }, { MATROSKA_ID_VIDEOPROJECTIONPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrackVideoProjection, private) }, { MATROSKA_ID_VIDEOPROJECTIONPOSEYAW, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, yaw), { .f=0.0 } }, { MATROSKA_ID_VIDEOPROJECTIONPOSEPITCH, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, pitch), { .f=0.0 } }, { MATROSKA_ID_VIDEOPROJECTIONPOSEROLL, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, roll), { .f=0.0 } }, CHILD_OF(matroska_track_video) }; static EbmlSyntax matroska_track_video[] = { { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) }, { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } }, { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } }, { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) }, { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) }, { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) }, { MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) }, { MATROSKA_ID_VIDEOCOLOR, EBML_NEST, sizeof(MatroskaTrackVideoColor), offsetof(MatroskaTrackVideo, color), { .n = matroska_track_video_color } }, { MATROSKA_ID_VIDEOPROJECTION, EBML_NEST, 0, offsetof(MatroskaTrackVideo, projection), { .n = matroska_track_video_projection } }, { MATROSKA_ID_VIDEOPIXELCROPB, EBML_NONE }, { MATROSKA_ID_VIDEOPIXELCROPT, EBML_NONE }, { MATROSKA_ID_VIDEOPIXELCROPL, EBML_NONE }, { MATROSKA_ID_VIDEOPIXELCROPR, EBML_NONE }, { MATROSKA_ID_VIDEODISPLAYUNIT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_unit), { .u= MATROSKA_VIDEO_DISPLAYUNIT_PIXELS } }, { MATROSKA_ID_VIDEOFLAGINTERLACED, EBML_UINT, 0, offsetof(MatroskaTrackVideo, interlaced), { .u = MATROSKA_VIDEO_INTERLACE_FLAG_UNDETERMINED } }, { MATROSKA_ID_VIDEOFIELDORDER, EBML_UINT, 0, offsetof(MatroskaTrackVideo, field_order), { .u = MATROSKA_VIDEO_FIELDORDER_UNDETERMINED } }, { MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, stereo_mode), { .u = MATROSKA_VIDEO_STEREOMODE_TYPE_NB } }, { MATROSKA_ID_VIDEOASPECTRATIO, EBML_NONE }, CHILD_OF(matroska_track) }; static EbmlSyntax matroska_track_audio[] = { { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } }, { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) }, { MATROSKA_ID_AUDIOBITDEPTH, EBML_UINT, 0, offsetof(MatroskaTrackAudio, bitdepth) }, { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } }, CHILD_OF(matroska_track) }; static EbmlSyntax matroska_track_encoding_compression[] = { { MATROSKA_ID_ENCODINGCOMPALGO, EBML_UINT, 0, offsetof(MatroskaTrackCompression, algo), { .u = 0 } }, { MATROSKA_ID_ENCODINGCOMPSETTINGS, EBML_BIN, 0, offsetof(MatroskaTrackCompression, settings) }, CHILD_OF(matroska_track_encoding) }; static EbmlSyntax matroska_track_encoding_encryption[] = { { MATROSKA_ID_ENCODINGENCALGO, EBML_UINT, 0, offsetof(MatroskaTrackEncryption,algo), {.u = 0} }, { MATROSKA_ID_ENCODINGENCKEYID, EBML_BIN, 0, offsetof(MatroskaTrackEncryption,key_id) }, { MATROSKA_ID_ENCODINGENCAESSETTINGS, EBML_NONE }, { MATROSKA_ID_ENCODINGSIGALGO, EBML_NONE }, { MATROSKA_ID_ENCODINGSIGHASHALGO, EBML_NONE }, { MATROSKA_ID_ENCODINGSIGKEYID, EBML_NONE }, { MATROSKA_ID_ENCODINGSIGNATURE, EBML_NONE }, CHILD_OF(matroska_track_encoding) }; static EbmlSyntax matroska_track_encoding[] = { { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } }, { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } }, { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } }, { MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } }, { MATROSKA_ID_ENCODINGORDER, EBML_NONE }, CHILD_OF(matroska_track_encodings) }; static EbmlSyntax matroska_track_encodings[] = { { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } }, CHILD_OF(matroska_track) }; static EbmlSyntax matroska_track_plane[] = { { MATROSKA_ID_TRACKPLANEUID, EBML_UINT, 0, offsetof(MatroskaTrackPlane,uid) }, { MATROSKA_ID_TRACKPLANETYPE, EBML_UINT, 0, offsetof(MatroskaTrackPlane,type) }, CHILD_OF(matroska_track_combine_planes) }; static EbmlSyntax matroska_track_combine_planes[] = { { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} }, CHILD_OF(matroska_track_operation) }; static EbmlSyntax matroska_track_operation[] = { { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} }, CHILD_OF(matroska_track) }; static EbmlSyntax matroska_track[] = { { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) }, { MATROSKA_ID_TRACKNAME, EBML_UTF8, 0, offsetof(MatroskaTrack, name) }, { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) }, { MATROSKA_ID_TRACKTYPE, EBML_UINT, 0, offsetof(MatroskaTrack, type) }, { MATROSKA_ID_CODECID, EBML_STR, 0, offsetof(MatroskaTrack, codec_id) }, { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) }, { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) }, { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } }, { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) }, { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } }, { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } }, { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } }, { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } }, { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } }, { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } }, { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } }, { MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) }, { MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) }, { MATROSKA_ID_TRACKFLAGENABLED, EBML_NONE }, { MATROSKA_ID_TRACKFLAGLACING, EBML_NONE }, { MATROSKA_ID_CODECNAME, EBML_NONE }, { MATROSKA_ID_CODECDECODEALL, EBML_NONE }, { MATROSKA_ID_CODECINFOURL, EBML_NONE }, { MATROSKA_ID_CODECDOWNLOADURL, EBML_NONE }, { MATROSKA_ID_TRACKMINCACHE, EBML_NONE }, { MATROSKA_ID_TRACKMAXCACHE, EBML_NONE }, CHILD_OF(matroska_tracks) }; static EbmlSyntax matroska_tracks[] = { { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_attachment[] = { { MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) }, { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) }, { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) }, { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) }, { MATROSKA_ID_FILEDESC, EBML_NONE }, CHILD_OF(matroska_attachments) }; static EbmlSyntax matroska_attachments[] = { { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_chapter_display[] = { { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) }, { MATROSKA_ID_CHAPLANG, EBML_NONE }, { MATROSKA_ID_CHAPCOUNTRY, EBML_NONE }, CHILD_OF(matroska_chapter_entry) }; static EbmlSyntax matroska_chapter_entry[] = { { MATROSKA_ID_CHAPTERTIMESTART, EBML_UINT, 0, offsetof(MatroskaChapter, start), { .u = AV_NOPTS_VALUE } }, { MATROSKA_ID_CHAPTERTIMEEND, EBML_UINT, 0, offsetof(MatroskaChapter, end), { .u = AV_NOPTS_VALUE } }, { MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) }, { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } }, { MATROSKA_ID_CHAPTERFLAGHIDDEN, EBML_NONE }, { MATROSKA_ID_CHAPTERFLAGENABLED, EBML_NONE }, { MATROSKA_ID_CHAPTERPHYSEQUIV, EBML_NONE }, { MATROSKA_ID_CHAPTERATOM, EBML_NONE }, CHILD_OF(matroska_chapter) }; static EbmlSyntax matroska_chapter[] = { { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } }, { MATROSKA_ID_EDITIONUID, EBML_NONE }, { MATROSKA_ID_EDITIONFLAGHIDDEN, EBML_NONE }, { MATROSKA_ID_EDITIONFLAGDEFAULT, EBML_NONE }, { MATROSKA_ID_EDITIONFLAGORDERED, EBML_NONE }, CHILD_OF(matroska_chapters) }; static EbmlSyntax matroska_chapters[] = { { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_index_pos[] = { { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) }, { MATROSKA_ID_CUECLUSTERPOSITION, EBML_UINT, 0, offsetof(MatroskaIndexPos, pos) }, { MATROSKA_ID_CUERELATIVEPOSITION,EBML_NONE }, { MATROSKA_ID_CUEDURATION, EBML_NONE }, { MATROSKA_ID_CUEBLOCKNUMBER, EBML_NONE }, CHILD_OF(matroska_index_entry) }; static EbmlSyntax matroska_index_entry[] = { { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) }, { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } }, CHILD_OF(matroska_index) }; static EbmlSyntax matroska_index[] = { { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_simpletag[] = { { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) }, { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) }, { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } }, { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) }, { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) }, { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } }, CHILD_OF(matroska_tag) }; static EbmlSyntax matroska_tagtargets[] = { { MATROSKA_ID_TAGTARGETS_TYPE, EBML_STR, 0, offsetof(MatroskaTagTarget, type) }, { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } }, { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) }, { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) }, { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) }, CHILD_OF(matroska_tag) }; static EbmlSyntax matroska_tag[] = { { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } }, { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } }, CHILD_OF(matroska_tags) }; static EbmlSyntax matroska_tags[] = { { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_seekhead_entry[] = { { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) }, { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } }, CHILD_OF(matroska_seekhead) }; static EbmlSyntax matroska_seekhead[] = { { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_segment[] = { { MATROSKA_ID_CLUSTER, EBML_STOP }, { MATROSKA_ID_INFO, EBML_LEVEL1, 0, 0, { .n = matroska_info } }, { MATROSKA_ID_TRACKS, EBML_LEVEL1, 0, 0, { .n = matroska_tracks } }, { MATROSKA_ID_ATTACHMENTS, EBML_LEVEL1, 0, 0, { .n = matroska_attachments } }, { MATROSKA_ID_CHAPTERS, EBML_LEVEL1, 0, 0, { .n = matroska_chapters } }, { MATROSKA_ID_CUES, EBML_LEVEL1, 0, 0, { .n = matroska_index } }, { MATROSKA_ID_TAGS, EBML_LEVEL1, 0, 0, { .n = matroska_tags } }, { MATROSKA_ID_SEEKHEAD, EBML_LEVEL1, 0, 0, { .n = matroska_seekhead } }, { 0 } /* We don't want to go back to level 0, so don't add the parent. */ }; static EbmlSyntax matroska_segments[] = { { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } }, { 0 } }; static EbmlSyntax matroska_blockmore[] = { { MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) }, { MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) }, CHILD_OF(matroska_blockadditions) }; static EbmlSyntax matroska_blockadditions[] = { { MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} }, CHILD_OF(matroska_blockgroup) }; static EbmlSyntax matroska_blockgroup[] = { { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) }, { MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} }, { MATROSKA_ID_BLOCKDURATION, EBML_UINT, 0, offsetof(MatroskaBlock, duration) }, { MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) }, { MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference), { .i = INT64_MIN } }, { MATROSKA_ID_CODECSTATE, EBML_NONE }, { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } }, CHILD_OF(matroska_cluster_parsing) }; // The following array contains SimpleBlock and BlockGroup twice // in order to reuse the other values for matroska_cluster_enter. static EbmlSyntax matroska_cluster_parsing[] = { { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) }, { MATROSKA_ID_BLOCKGROUP, EBML_NEST, 0, 0, { .n = matroska_blockgroup } }, { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) }, { MATROSKA_ID_SIMPLEBLOCK, EBML_STOP }, { MATROSKA_ID_BLOCKGROUP, EBML_STOP }, { MATROSKA_ID_CLUSTERPOSITION, EBML_NONE }, { MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE }, CHILD_OF(matroska_segment) }; static EbmlSyntax matroska_cluster_enter[] = { { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = &matroska_cluster_parsing[2] } }, { 0 } }; #undef CHILD_OF static const char *const matroska_doctypes[] = { "matroska", "webm" }; static int matroska_read_close(AVFormatContext *s); /* * This function prepares the status for parsing of level 1 elements. */ static int matroska_reset_status(MatroskaDemuxContext *matroska, uint32_t id, int64_t position) { if (position >= 0) { int64_t err = avio_seek(matroska->ctx->pb, position, SEEK_SET); if (err < 0) return err; } matroska->current_id = id; matroska->num_levels = 1; matroska->unknown_count = 0; matroska->resync_pos = avio_tell(matroska->ctx->pb); if (id) matroska->resync_pos -= (av_log2(id) + 7) / 8; return 0; } static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos) { AVIOContext *pb = matroska->ctx->pb; uint32_t id; /* Try to seek to the last position to resync from. If this doesn't work, * we resync from the earliest position available: The start of the buffer. */ if (last_pos < avio_tell(pb) && avio_seek(pb, last_pos + 1, SEEK_SET) < 0) { av_log(matroska->ctx, AV_LOG_WARNING, "Seek to desired resync point failed. Seeking to " "earliest point available instead.\n"); avio_seek(pb, FFMAX(avio_tell(pb) + (pb->buffer - pb->buf_ptr), last_pos + 1), SEEK_SET); } id = avio_rb32(pb); // try to find a toplevel element while (!avio_feof(pb)) { if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS || id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS || id == MATROSKA_ID_SEEKHEAD || id == MATROSKA_ID_ATTACHMENTS || id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) { /* Prepare the context for parsing of a level 1 element. */ matroska_reset_status(matroska, id, -1); /* Given that we are here means that an error has occured, * so treat the segment as unknown length in order not to * discard valid data that happens to be beyond the designated * end of the segment. */ matroska->levels[0].length = EBML_UNKNOWN_LENGTH; return 0; } id = (id << 8) | avio_r8(pb); } matroska->done = 1; return pb->error ? pb->error : AVERROR_EOF; } /* * Read: an "EBML number", which is defined as a variable-length * array of bytes. The first byte indicates the length by giving a * number of 0-bits followed by a one. The position of the first * "one" bit inside the first byte indicates the length of this * number. * Returns: number of bytes read, < 0 on error */ static int ebml_read_num(MatroskaDemuxContext *matroska, AVIOContext *pb, int max_size, uint64_t *number, int eof_forbidden) { int read, n = 1; uint64_t total; int64_t pos; /* The first byte tells us the length in bytes - except when it is zero. */ total = avio_r8(pb); if (pb->eof_reached) goto err; /* get the length of the EBML number */ read = 8 - ff_log2_tab[total]; if (!total || read > max_size) { pos = avio_tell(pb) - 1; if (!total) { av_log(matroska->ctx, AV_LOG_ERROR, "0x00 at pos %"PRId64" (0x%"PRIx64") invalid as first byte " "of an EBML number\n", pos, pos); } else { av_log(matroska->ctx, AV_LOG_ERROR, "Length %d indicated by an EBML number's first byte 0x%02x " "at pos %"PRId64" (0x%"PRIx64") exceeds max length %d.\n", read, (uint8_t) total, pos, pos, max_size); } return AVERROR_INVALIDDATA; } /* read out length */ total ^= 1 << ff_log2_tab[total]; while (n++ < read) total = (total << 8) | avio_r8(pb); if (pb->eof_reached) { eof_forbidden = 1; goto err; } *number = total; return read; err: pos = avio_tell(pb); if (pb->error) { av_log(matroska->ctx, AV_LOG_ERROR, "Read error at pos. %"PRIu64" (0x%"PRIx64")\n", pos, pos); return pb->error; } if (eof_forbidden) { av_log(matroska->ctx, AV_LOG_ERROR, "File ended prematurely " "at pos. %"PRIu64" (0x%"PRIx64")\n", pos, pos); return AVERROR(EIO); } return AVERROR_EOF; } /** * Read a EBML length value. * This needs special handling for the "unknown length" case which has multiple * encodings. */ static int ebml_read_length(MatroskaDemuxContext *matroska, AVIOContext *pb, uint64_t *number) { int res = ebml_read_num(matroska, pb, 8, number, 1); if (res > 0 && *number + 1 == 1ULL << (7 * res)) *number = EBML_UNKNOWN_LENGTH; return res; } /* * Read the next element as an unsigned int. * Returns NEEDS_CHECKING. */ static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num) { int n = 0; /* big-endian ordering; build up number */ *num = 0; while (n++ < size) *num = (*num << 8) | avio_r8(pb); return NEEDS_CHECKING; } /* * Read the next element as a signed int. * Returns NEEDS_CHECKING. */ static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num) { int n = 1; if (size == 0) { *num = 0; } else { *num = sign_extend(avio_r8(pb), 8); /* big-endian ordering; build up number */ while (n++ < size) *num = ((uint64_t)*num << 8) | avio_r8(pb); } return NEEDS_CHECKING; } /* * Read the next element as a float. * Returns NEEDS_CHECKING or < 0 on obvious failure. */ static int ebml_read_float(AVIOContext *pb, int size, double *num) { if (size == 0) *num = 0; else if (size == 4) *num = av_int2float(avio_rb32(pb)); else if (size == 8) *num = av_int2double(avio_rb64(pb)); else return AVERROR_INVALIDDATA; return NEEDS_CHECKING; } /* * Read the next element as an ASCII string. * 0 is success, < 0 or NEEDS_CHECKING is failure. */ static int ebml_read_ascii(AVIOContext *pb, int size, char **str) { char *res; int ret; /* EBML strings are usually not 0-terminated, so we allocate one * byte more, read the string and NULL-terminate it ourselves. */ if (!(res = av_malloc(size + 1))) return AVERROR(ENOMEM); if ((ret = avio_read(pb, (uint8_t *) res, size)) != size) { av_free(res); return ret < 0 ? ret : NEEDS_CHECKING; } (res)[size] = '\0'; av_free(*str); *str = res; return 0; } /* * Read the next element as binary data. * 0 is success, < 0 or NEEDS_CHECKING is failure. */ static int ebml_read_binary(AVIOContext *pb, int length, int64_t pos, EbmlBin *bin) { int ret; ret = av_buffer_realloc(&bin->buf, length + AV_INPUT_BUFFER_PADDING_SIZE); if (ret < 0) return ret; memset(bin->buf->data + length, 0, AV_INPUT_BUFFER_PADDING_SIZE); bin->data = bin->buf->data; bin->size = length; bin->pos = pos; if ((ret = avio_read(pb, bin->data, length)) != length) { av_buffer_unref(&bin->buf); bin->data = NULL; bin->size = 0; return ret < 0 ? ret : NEEDS_CHECKING; } return 0; } /* * Read the next element, but only the header. The contents * are supposed to be sub-elements which can be read separately. * 0 is success, < 0 is failure. */ static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length, int64_t pos) { MatroskaLevel *level; if (matroska->num_levels >= EBML_MAX_DEPTH) { av_log(matroska->ctx, AV_LOG_ERROR, "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH); return AVERROR(ENOSYS); } level = &matroska->levels[matroska->num_levels++]; level->start = pos; level->length = length; return 0; } /* * Read signed/unsigned "EBML" numbers. * Return: number of bytes processed, < 0 on error */ static int matroska_ebmlnum_uint(MatroskaDemuxContext *matroska, uint8_t *data, uint32_t size, uint64_t *num) { AVIOContext pb; ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL); return ebml_read_num(matroska, &pb, FFMIN(size, 8), num, 1); } /* * Same as above, but signed. */ static int matroska_ebmlnum_sint(MatroskaDemuxContext *matroska, uint8_t *data, uint32_t size, int64_t *num) { uint64_t unum; int res; /* read as unsigned number first */ if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0) return res; /* make signed (weird way) */ *num = unum - ((1LL << (7 * res - 1)) - 1); return res; } static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax, void *data); static EbmlSyntax *ebml_parse_id(EbmlSyntax *syntax, uint32_t id) { int i; // Whoever touches this should be aware of the duplication // existing in matroska_cluster_parsing. for (i = 0; syntax[i].id; i++) if (id == syntax[i].id) break; return &syntax[i]; } static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax, void *data) { int res; if (data) { for (int i = 0; syntax[i].id; i++) switch (syntax[i].type) { case EBML_UINT: *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u; break; case EBML_SINT: *(int64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.i; break; case EBML_FLOAT: *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f; break; case EBML_STR: case EBML_UTF8: // the default may be NULL if (syntax[i].def.s) { uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset); *dst = av_strdup(syntax[i].def.s); if (!*dst) return AVERROR(ENOMEM); } break; } if (!matroska->levels[matroska->num_levels - 1].length) { matroska->num_levels--; return 0; } } do { res = ebml_parse(matroska, syntax, data); } while (!res); return res == LEVEL_ENDED ? 0 : res; } static int is_ebml_id_valid(uint32_t id) { // Due to endian nonsense in Matroska, the highest byte with any bits set // will contain the leading length bit. This bit in turn identifies the // total byte length of the element by its position within the byte. unsigned int bits = av_log2(id); return id && (bits + 7) / 8 == (8 - bits % 8); } /* * Allocate and return the entry for the level1 element with the given ID. If * an entry already exists, return the existing entry. */ static MatroskaLevel1Element *matroska_find_level1_elem(MatroskaDemuxContext *matroska, uint32_t id) { int i; MatroskaLevel1Element *elem; if (!is_ebml_id_valid(id)) return NULL; // Some files link to all clusters; useless. if (id == MATROSKA_ID_CLUSTER) return NULL; // There can be multiple seekheads. if (id != MATROSKA_ID_SEEKHEAD) { for (i = 0; i < matroska->num_level1_elems; i++) { if (matroska->level1_elems[i].id == id) return &matroska->level1_elems[i]; } } // Only a completely broken file would have more elements. // It also provides a low-effort way to escape from circular seekheads // (every iteration will add a level1 entry). if (matroska->num_level1_elems >= FF_ARRAY_ELEMS(matroska->level1_elems)) { av_log(matroska->ctx, AV_LOG_ERROR, "Too many level1 elements or circular seekheads.\n"); return NULL; } elem = &matroska->level1_elems[matroska->num_level1_elems++]; *elem = (MatroskaLevel1Element){.id = id}; return elem; } static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax, void *data) { static const uint64_t max_lengths[EBML_TYPE_COUNT] = { // Forbid unknown-length EBML_NONE elements. [EBML_NONE] = EBML_UNKNOWN_LENGTH - 1, [EBML_UINT] = 8, [EBML_SINT] = 8, [EBML_FLOAT] = 8, // max. 16 MB for strings [EBML_STR] = 0x1000000, [EBML_UTF8] = 0x1000000, // max. 256 MB for binary data [EBML_BIN] = 0x10000000, // no limits for anything else }; AVIOContext *pb = matroska->ctx->pb; uint32_t id; uint64_t length; int64_t pos = avio_tell(pb), pos_alt; int res, update_pos = 1, level_check; MatroskaLevel1Element *level1_elem; MatroskaLevel *level = matroska->num_levels ? &matroska->levels[matroska->num_levels - 1] : NULL; if (!matroska->current_id) { uint64_t id; res = ebml_read_num(matroska, pb, 4, &id, 0); if (res < 0) { if (pb->eof_reached && res == AVERROR_EOF) { if (matroska->is_live) // in live mode, finish parsing if EOF is reached. return 1; if (level && pos == avio_tell(pb)) { if (level->length == EBML_UNKNOWN_LENGTH) { // Unknown-length levels automatically end at EOF. matroska->num_levels--; return LEVEL_ENDED; } else { av_log(matroska->ctx, AV_LOG_ERROR, "File ended prematurely " "at pos. %"PRIu64" (0x%"PRIx64")\n", pos, pos); } } } return res; } matroska->current_id = id | 1 << 7 * res; pos_alt = pos + res; } else { pos_alt = pos; pos -= (av_log2(matroska->current_id) + 7) / 8; } id = matroska->current_id; syntax = ebml_parse_id(syntax, id); if (!syntax->id && id != EBML_ID_VOID && id != EBML_ID_CRC32) { if (level && level->length == EBML_UNKNOWN_LENGTH) { // Unknown-length levels end when an element from an upper level // in the hierarchy is encountered. while (syntax->def.n) { syntax = ebml_parse_id(syntax->def.n, id); if (syntax->id) { matroska->num_levels--; return LEVEL_ENDED; } }; } av_log(matroska->ctx, AV_LOG_DEBUG, "Unknown entry 0x%"PRIX32" at pos. " "%"PRId64"\n", id, pos); update_pos = 0; /* Don't update resync_pos as an error might have happened. */ } if (data) { data = (char *) data + syntax->data_offset; if (syntax->list_elem_size) { EbmlList *list = data; void *newelem; if ((unsigned)list->nb_elem + 1 >= UINT_MAX / syntax->list_elem_size) return AVERROR(ENOMEM); newelem = av_fast_realloc(list->elem, &list->alloc_elem_size, (list->nb_elem + 1) * syntax->list_elem_size); if (!newelem) return AVERROR(ENOMEM); list->elem = newelem; data = (char *) list->elem + list->nb_elem * syntax->list_elem_size; memset(data, 0, syntax->list_elem_size); list->nb_elem++; } } if (syntax->type != EBML_STOP) { matroska->current_id = 0; if ((res = ebml_read_length(matroska, pb, &length)) < 0) return res; pos_alt += res; if (matroska->num_levels > 0) { if (length != EBML_UNKNOWN_LENGTH && level->length != EBML_UNKNOWN_LENGTH) { uint64_t elem_end = pos_alt + length, level_end = level->start + level->length; if (elem_end < level_end) { level_check = 0; } else if (elem_end == level_end) { level_check = LEVEL_ENDED; } else { av_log(matroska->ctx, AV_LOG_ERROR, "Element at 0x%"PRIx64" ending at 0x%"PRIx64" exceeds " "containing master element ending at 0x%"PRIx64"\n", pos, elem_end, level_end); return AVERROR_INVALIDDATA; } } else if (length != EBML_UNKNOWN_LENGTH) { level_check = 0; } else if (level->length != EBML_UNKNOWN_LENGTH) { av_log(matroska->ctx, AV_LOG_ERROR, "Unknown-sized element " "at 0x%"PRIx64" inside parent with finite size\n", pos); return AVERROR_INVALIDDATA; } else { level_check = 0; if (id != MATROSKA_ID_CLUSTER && (syntax->type == EBML_LEVEL1 || syntax->type == EBML_NEST)) { // According to the current specifications only clusters and // segments are allowed to be unknown-length. We also accept // other unknown-length master elements. av_log(matroska->ctx, AV_LOG_WARNING, "Found unknown-length element 0x%"PRIX32" other than " "a cluster at 0x%"PRIx64". Spec-incompliant, but " "parsing will nevertheless be attempted.\n", id, pos); update_pos = -1; } } } else level_check = 0; if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) { if (length != EBML_UNKNOWN_LENGTH) { av_log(matroska->ctx, AV_LOG_ERROR, "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for element " "with ID 0x%"PRIX32" at 0x%"PRIx64"\n", length, max_lengths[syntax->type], id, pos); } else if (syntax->type != EBML_NONE) { av_log(matroska->ctx, AV_LOG_ERROR, "Element with ID 0x%"PRIX32" at pos. 0x%"PRIx64" has " "unknown length, yet the length of an element of its " "type must be known.\n", id, pos); } else { av_log(matroska->ctx, AV_LOG_ERROR, "Found unknown-length element with ID 0x%"PRIX32" at " "pos. 0x%"PRIx64" for which no syntax for parsing is " "available.\n", id, pos); } return AVERROR_INVALIDDATA; } if (!(pb->seekable & AVIO_SEEKABLE_NORMAL)) { // Loosing sync will likely manifest itself as encountering unknown // elements which are not reliably distinguishable from elements // belonging to future extensions of the format. // We use a heuristic to detect such situations: If the current // element is not expected at the current syntax level and there // were only a few unknown elements in a row, then the element is // skipped or considered defective based upon the length of the // current element (i.e. how much would be skipped); if there were // more than a few skipped elements in a row and skipping the current // element would lead us more than SKIP_THRESHOLD away from the last // known good position, then it is inferred that an error occured. // The dependency on the number of unknown elements in a row exists // because the distance to the last known good position is // automatically big if the last parsed element was big. // In both cases, each unknown element is considered equivalent to // UNKNOWN_EQUIV of skipped bytes for the check. // The whole check is only done for non-seekable output, because // in this situation skipped data can't simply be rechecked later. // This is especially important when using unkown length elements // as the check for whether a child exceeds its containing master // element is not effective in this situation. if (update_pos) { matroska->unknown_count = 0; } else { int64_t dist = length + UNKNOWN_EQUIV * matroska->unknown_count++; if (matroska->unknown_count > 3) dist += pos_alt - matroska->resync_pos; if (dist > SKIP_THRESHOLD) { av_log(matroska->ctx, AV_LOG_ERROR, "Unknown element %"PRIX32" at pos. 0x%"PRIx64" with " "length 0x%"PRIx64" considered as invalid data. Last " "known good position 0x%"PRIx64", %d unknown elements" " in a row\n", id, pos, length, matroska->resync_pos, matroska->unknown_count); return AVERROR_INVALIDDATA; } } } if (update_pos > 0) { // We have found an element that is allowed at this place // in the hierarchy and it passed all checks, so treat the beginning // of the element as the "last known good" position. matroska->resync_pos = pos; } if (!data && length != EBML_UNKNOWN_LENGTH) goto skip; } switch (syntax->type) { case EBML_UINT: res = ebml_read_uint(pb, length, data); break; case EBML_SINT: res = ebml_read_sint(pb, length, data); break; case EBML_FLOAT: res = ebml_read_float(pb, length, data); break; case EBML_STR: case EBML_UTF8: res = ebml_read_ascii(pb, length, data); break; case EBML_BIN: res = ebml_read_binary(pb, length, pos_alt, data); break; case EBML_LEVEL1: case EBML_NEST: if ((res = ebml_read_master(matroska, length, pos_alt)) < 0) return res; if (id == MATROSKA_ID_SEGMENT) matroska->segment_start = pos_alt; if (id == MATROSKA_ID_CUES) matroska->cues_parsing_deferred = 0; if (syntax->type == EBML_LEVEL1 && (level1_elem = matroska_find_level1_elem(matroska, syntax->id))) { if (!level1_elem->pos) { // Zero is not a valid position for a level 1 element. level1_elem->pos = pos; } else if (level1_elem->pos != pos) av_log(matroska->ctx, AV_LOG_ERROR, "Duplicate element\n"); level1_elem->parsed = 1; } if (res = ebml_parse_nest(matroska, syntax->def.n, data)) return res; break; case EBML_STOP: return 1; skip: default: if (length) { int64_t res2; if (ffio_limit(pb, length) != length) { // ffio_limit emits its own error message, // so we don't have to. return AVERROR(EIO); } if ((res2 = avio_skip(pb, length - 1)) >= 0) { // avio_skip might take us past EOF. We check for this // by skipping only length - 1 bytes, reading a byte and // checking the error flags. This is done in order to check // that the element has been properly skipped even when // no filesize (that ffio_limit relies on) is available. avio_r8(pb); res = NEEDS_CHECKING; } else res = res2; } else res = 0; } if (res) { if (res == NEEDS_CHECKING) { if (pb->eof_reached) { if (pb->error) res = pb->error; else res = AVERROR_EOF; } else goto level_check; } if (res == AVERROR_INVALIDDATA) av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n"); else if (res == AVERROR(EIO)) av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n"); else if (res == AVERROR_EOF) { av_log(matroska->ctx, AV_LOG_ERROR, "File ended prematurely\n"); res = AVERROR(EIO); } return res; } level_check: if (level_check == LEVEL_ENDED && matroska->num_levels) { level = &matroska->levels[matroska->num_levels - 1]; pos = avio_tell(pb); // Given that pos >= level->start no check for // level->length != EBML_UNKNOWN_LENGTH is necessary. while (matroska->num_levels && pos == level->start + level->length) { matroska->num_levels--; level--; } } return level_check; } static void ebml_free(EbmlSyntax *syntax, void *data) { int i, j; for (i = 0; syntax[i].id; i++) { void *data_off = (char *) data + syntax[i].data_offset; switch (syntax[i].type) { case EBML_STR: case EBML_UTF8: av_freep(data_off); break; case EBML_BIN: av_buffer_unref(&((EbmlBin *) data_off)->buf); break; case EBML_LEVEL1: case EBML_NEST: if (syntax[i].list_elem_size) { EbmlList *list = data_off; char *ptr = list->elem; for (j = 0; j < list->nb_elem; j++, ptr += syntax[i].list_elem_size) ebml_free(syntax[i].def.n, ptr); av_freep(&list->elem); list->nb_elem = 0; list->alloc_elem_size = 0; } else ebml_free(syntax[i].def.n, data_off); default: break; } } } /* * Autodetecting... */ static int matroska_probe(const AVProbeData *p) { uint64_t total = 0; int len_mask = 0x80, size = 1, n = 1, i; /* EBML header? */ if (AV_RB32(p->buf) != EBML_ID_HEADER) return 0; /* length of header */ total = p->buf[4]; while (size <= 8 && !(total & len_mask)) { size++; len_mask >>= 1; } if (size > 8) return 0; total &= (len_mask - 1); while (n < size) total = (total << 8) | p->buf[4 + n++]; if (total + 1 == 1ULL << (7 * size)){ /* Unknown-length header - simply parse the whole buffer. */ total = p->buf_size - 4 - size; } else { /* Does the probe data contain the whole header? */ if (p->buf_size < 4 + size + total) return 0; } /* The header should contain a known document type. For now, * we don't parse the whole header but simply check for the * availability of that array of characters inside the header. * Not fully fool-proof, but good enough. */ for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) { size_t probelen = strlen(matroska_doctypes[i]); if (total < probelen) continue; for (n = 4 + size; n <= 4 + size + total - probelen; n++) if (!memcmp(p->buf + n, matroska_doctypes[i], probelen)) return AVPROBE_SCORE_MAX; } // probably valid EBML header but no recognized doctype return AVPROBE_SCORE_EXTENSION; } static MatroskaTrack *matroska_find_track_by_num(MatroskaDemuxContext *matroska, int num) { MatroskaTrack *tracks = matroska->tracks.elem; int i; for (i = 0; i < matroska->tracks.nb_elem; i++) if (tracks[i].num == num) return &tracks[i]; av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num); return NULL; } static int matroska_decode_buffer(uint8_t **buf, int *buf_size, MatroskaTrack *track) { MatroskaTrackEncoding *encodings = track->encodings.elem; uint8_t *data = *buf; int isize = *buf_size; uint8_t *pkt_data = NULL; uint8_t av_unused *newpktdata; int pkt_size = isize; int result = 0; int olen; if (pkt_size >= 10000000U) return AVERROR_INVALIDDATA; switch (encodings[0].compression.algo) { case MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP: { int header_size = encodings[0].compression.settings.size; uint8_t *header = encodings[0].compression.settings.data; if (header_size && !header) { av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n"); return -1; } if (!header_size) return 0; pkt_size = isize + header_size; pkt_data = av_malloc(pkt_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!pkt_data) return AVERROR(ENOMEM); memcpy(pkt_data, header, header_size); memcpy(pkt_data + header_size, data, isize); break; } #if CONFIG_LZO case MATROSKA_TRACK_ENCODING_COMP_LZO: do { olen = pkt_size *= 3; newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING + AV_INPUT_BUFFER_PADDING_SIZE); if (!newpktdata) { result = AVERROR(ENOMEM); goto failed; } pkt_data = newpktdata; result = av_lzo1x_decode(pkt_data, &olen, data, &isize); } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000); if (result) { result = AVERROR_INVALIDDATA; goto failed; } pkt_size -= olen; break; #endif #if CONFIG_ZLIB case MATROSKA_TRACK_ENCODING_COMP_ZLIB: { z_stream zstream = { 0 }; if (inflateInit(&zstream) != Z_OK) return -1; zstream.next_in = data; zstream.avail_in = isize; do { pkt_size *= 3; newpktdata = av_realloc(pkt_data, pkt_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!newpktdata) { inflateEnd(&zstream); result = AVERROR(ENOMEM); goto failed; } pkt_data = newpktdata; zstream.avail_out = pkt_size - zstream.total_out; zstream.next_out = pkt_data + zstream.total_out; result = inflate(&zstream, Z_NO_FLUSH); } while (result == Z_OK && pkt_size < 10000000); pkt_size = zstream.total_out; inflateEnd(&zstream); if (result != Z_STREAM_END) { if (result == Z_MEM_ERROR) result = AVERROR(ENOMEM); else result = AVERROR_INVALIDDATA; goto failed; } break; } #endif #if CONFIG_BZLIB case MATROSKA_TRACK_ENCODING_COMP_BZLIB: { bz_stream bzstream = { 0 }; if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK) return -1; bzstream.next_in = data; bzstream.avail_in = isize; do { pkt_size *= 3; newpktdata = av_realloc(pkt_data, pkt_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!newpktdata) { BZ2_bzDecompressEnd(&bzstream); result = AVERROR(ENOMEM); goto failed; } pkt_data = newpktdata; bzstream.avail_out = pkt_size - bzstream.total_out_lo32; bzstream.next_out = pkt_data + bzstream.total_out_lo32; result = BZ2_bzDecompress(&bzstream); } while (result == BZ_OK && pkt_size < 10000000); pkt_size = bzstream.total_out_lo32; BZ2_bzDecompressEnd(&bzstream); if (result != BZ_STREAM_END) { if (result == BZ_MEM_ERROR) result = AVERROR(ENOMEM); else result = AVERROR_INVALIDDATA; goto failed; } break; } #endif default: return AVERROR_INVALIDDATA; } memset(pkt_data + pkt_size, 0, AV_INPUT_BUFFER_PADDING_SIZE); *buf = pkt_data; *buf_size = pkt_size; return 0; failed: av_free(pkt_data); return result; } static void matroska_convert_tag(AVFormatContext *s, EbmlList *list, AVDictionary **metadata, char *prefix) { MatroskaTag *tags = list->elem; char key[1024]; int i; for (i = 0; i < list->nb_elem; i++) { const char *lang = tags[i].lang && strcmp(tags[i].lang, "und") ? tags[i].lang : NULL; if (!tags[i].name) { av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n"); continue; } if (prefix) snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name); else av_strlcpy(key, tags[i].name, sizeof(key)); if (tags[i].def || !lang) { av_dict_set(metadata, key, tags[i].string, 0); if (tags[i].sub.nb_elem) matroska_convert_tag(s, &tags[i].sub, metadata, key); } if (lang) { av_strlcat(key, "-", sizeof(key)); av_strlcat(key, lang, sizeof(key)); av_dict_set(metadata, key, tags[i].string, 0); if (tags[i].sub.nb_elem) matroska_convert_tag(s, &tags[i].sub, metadata, key); } } ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv); } static void matroska_convert_tags(AVFormatContext *s) { MatroskaDemuxContext *matroska = s->priv_data; MatroskaTags *tags = matroska->tags.elem; int i, j; for (i = 0; i < matroska->tags.nb_elem; i++) { if (tags[i].target.attachuid) { MatroskaAttachment *attachment = matroska->attachments.elem; int found = 0; for (j = 0; j < matroska->attachments.nb_elem; j++) { if (attachment[j].uid == tags[i].target.attachuid && attachment[j].stream) { matroska_convert_tag(s, &tags[i].tag, &attachment[j].stream->metadata, NULL); found = 1; } } if (!found) { av_log(NULL, AV_LOG_WARNING, "The tags at index %d refer to a " "non-existent attachment %"PRId64".\n", i, tags[i].target.attachuid); } } else if (tags[i].target.chapteruid) { MatroskaChapter *chapter = matroska->chapters.elem; int found = 0; for (j = 0; j < matroska->chapters.nb_elem; j++) { if (chapter[j].uid == tags[i].target.chapteruid && chapter[j].chapter) { matroska_convert_tag(s, &tags[i].tag, &chapter[j].chapter->metadata, NULL); found = 1; } } if (!found) { av_log(NULL, AV_LOG_WARNING, "The tags at index %d refer to a non-existent chapter " "%"PRId64".\n", i, tags[i].target.chapteruid); } } else if (tags[i].target.trackuid) { MatroskaTrack *track = matroska->tracks.elem; int found = 0; for (j = 0; j < matroska->tracks.nb_elem; j++) { if (track[j].uid == tags[i].target.trackuid && track[j].stream) { matroska_convert_tag(s, &tags[i].tag, &track[j].stream->metadata, NULL); found = 1; } } if (!found) { av_log(NULL, AV_LOG_WARNING, "The tags at index %d refer to a non-existent track " "%"PRId64".\n", i, tags[i].target.trackuid); } } else { matroska_convert_tag(s, &tags[i].tag, &s->metadata, tags[i].target.type); } } } static int matroska_parse_seekhead_entry(MatroskaDemuxContext *matroska, int64_t pos) { uint32_t saved_id = matroska->current_id; int64_t before_pos = avio_tell(matroska->ctx->pb); int ret = 0; /* seek */ if (avio_seek(matroska->ctx->pb, pos, SEEK_SET) == pos) { /* We don't want to lose our seekhead level, so we add * a dummy. This is a crude hack. */ if (matroska->num_levels == EBML_MAX_DEPTH) { av_log(matroska->ctx, AV_LOG_INFO, "Max EBML element depth (%d) reached, " "cannot parse further.\n", EBML_MAX_DEPTH); ret = AVERROR_INVALIDDATA; } else { matroska->levels[matroska->num_levels] = (MatroskaLevel) { 0, EBML_UNKNOWN_LENGTH }; matroska->num_levels++; matroska->current_id = 0; ret = ebml_parse(matroska, matroska_segment, matroska); if (ret == LEVEL_ENDED) { /* This can only happen if the seek brought us beyond EOF. */ ret = AVERROR_EOF; } } } /* Seek back - notice that in all instances where this is used * it is safe to set the level to 1. */ matroska_reset_status(matroska, saved_id, before_pos); return ret; } static void matroska_execute_seekhead(MatroskaDemuxContext *matroska) { EbmlList *seekhead_list = &matroska->seekhead; int i; // we should not do any seeking in the streaming case if (!(matroska->ctx->pb->seekable & AVIO_SEEKABLE_NORMAL)) return; for (i = 0; i < seekhead_list->nb_elem; i++) { MatroskaSeekhead *seekheads = seekhead_list->elem; uint32_t id = seekheads[i].id; int64_t pos = seekheads[i].pos + matroska->segment_start; MatroskaLevel1Element *elem = matroska_find_level1_elem(matroska, id); if (!elem || elem->parsed) continue; elem->pos = pos; // defer cues parsing until we actually need cue data. if (id == MATROSKA_ID_CUES) continue; if (matroska_parse_seekhead_entry(matroska, pos) < 0) { // mark index as broken matroska->cues_parsing_deferred = -1; break; } elem->parsed = 1; } } static void matroska_add_index_entries(MatroskaDemuxContext *matroska) { EbmlList *index_list; MatroskaIndex *index; uint64_t index_scale = 1; int i, j; if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX) return; index_list = &matroska->index; index = index_list->elem; if (index_list->nb_elem < 2) return; if (index[1].time > 1E14 / matroska->time_scale) { av_log(matroska->ctx, AV_LOG_WARNING, "Dropping apparently-broken index.\n"); return; } for (i = 0; i < index_list->nb_elem; i++) { EbmlList *pos_list = &index[i].pos; MatroskaIndexPos *pos = pos_list->elem; for (j = 0; j < pos_list->nb_elem; j++) { MatroskaTrack *track = matroska_find_track_by_num(matroska, pos[j].track); if (track && track->stream) av_add_index_entry(track->stream, pos[j].pos + matroska->segment_start, index[i].time / index_scale, 0, 0, AVINDEX_KEYFRAME); } } } static void matroska_parse_cues(MatroskaDemuxContext *matroska) { int i; if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX) return; for (i = 0; i < matroska->num_level1_elems; i++) { MatroskaLevel1Element *elem = &matroska->level1_elems[i]; if (elem->id == MATROSKA_ID_CUES && !elem->parsed) { if (matroska_parse_seekhead_entry(matroska, elem->pos) < 0) matroska->cues_parsing_deferred = -1; elem->parsed = 1; break; } } matroska_add_index_entries(matroska); } static int matroska_aac_profile(char *codec_id) { static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" }; int profile; for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++) if (strstr(codec_id, aac_profiles[profile])) break; return profile + 1; } static int matroska_aac_sri(int samplerate) { int sri; for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++) if (avpriv_mpeg4audio_sample_rates[sri] == samplerate) break; return sri; } static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc) { /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */ avpriv_dict_set_timestamp(metadata, "creation_time", date_utc / 1000 + 978307200000000LL); } static int matroska_parse_flac(AVFormatContext *s, MatroskaTrack *track, int *offset) { AVStream *st = track->stream; uint8_t *p = track->codec_priv.data; int size = track->codec_priv.size; if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) { av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n"); track->codec_priv.size = 0; return 0; } *offset = 8; track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE; p += track->codec_priv.size; size -= track->codec_priv.size; /* parse the remaining metadata blocks if present */ while (size >= 4) { int block_last, block_type, block_size; flac_parse_block_header(p, &block_last, &block_type, &block_size); p += 4; size -= 4; if (block_size > size) return 0; /* check for the channel mask */ if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) { AVDictionary *dict = NULL; AVDictionaryEntry *chmask; ff_vorbis_comment(s, &dict, p, block_size, 0); chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0); if (chmask) { uint64_t mask = strtol(chmask->value, NULL, 0); if (!mask || mask & ~0x3ffffULL) { av_log(s, AV_LOG_WARNING, "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n"); } else st->codecpar->channel_layout = mask; } av_dict_free(&dict); } p += block_size; size -= block_size; } return 0; } static int mkv_field_order(MatroskaDemuxContext *matroska, int64_t field_order) { int major, minor, micro, bttb = 0; /* workaround a bug in our Matroska muxer, introduced in version 57.36 alongside * this function, and fixed in 57.52 */ if (matroska->muxingapp && sscanf(matroska->muxingapp, "Lavf%d.%d.%d", &major, &minor, µ) == 3) bttb = (major == 57 && minor >= 36 && minor <= 51 && micro >= 100); switch (field_order) { case MATROSKA_VIDEO_FIELDORDER_PROGRESSIVE: return AV_FIELD_PROGRESSIVE; case MATROSKA_VIDEO_FIELDORDER_UNDETERMINED: return AV_FIELD_UNKNOWN; case MATROSKA_VIDEO_FIELDORDER_TT: return AV_FIELD_TT; case MATROSKA_VIDEO_FIELDORDER_BB: return AV_FIELD_BB; case MATROSKA_VIDEO_FIELDORDER_BT: return bttb ? AV_FIELD_TB : AV_FIELD_BT; case MATROSKA_VIDEO_FIELDORDER_TB: return bttb ? AV_FIELD_BT : AV_FIELD_TB; default: return AV_FIELD_UNKNOWN; } } static void mkv_stereo_mode_display_mul(int stereo_mode, int *h_width, int *h_height) { switch (stereo_mode) { case MATROSKA_VIDEO_STEREOMODE_TYPE_MONO: case MATROSKA_VIDEO_STEREOMODE_TYPE_CHECKERBOARD_RL: case MATROSKA_VIDEO_STEREOMODE_TYPE_CHECKERBOARD_LR: case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTH_EYES_BLOCK_RL: case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTH_EYES_BLOCK_LR: break; case MATROSKA_VIDEO_STEREOMODE_TYPE_RIGHT_LEFT: case MATROSKA_VIDEO_STEREOMODE_TYPE_LEFT_RIGHT: case MATROSKA_VIDEO_STEREOMODE_TYPE_COL_INTERLEAVED_RL: case MATROSKA_VIDEO_STEREOMODE_TYPE_COL_INTERLEAVED_LR: *h_width = 2; break; case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTTOM_TOP: case MATROSKA_VIDEO_STEREOMODE_TYPE_TOP_BOTTOM: case MATROSKA_VIDEO_STEREOMODE_TYPE_ROW_INTERLEAVED_RL: case MATROSKA_VIDEO_STEREOMODE_TYPE_ROW_INTERLEAVED_LR: *h_height = 2; break; } } static int mkv_parse_video_color(AVStream *st, const MatroskaTrack *track) { const MatroskaTrackVideoColor *color = track->video.color.elem; const MatroskaMasteringMeta *mastering_meta; int has_mastering_primaries, has_mastering_luminance; if (!track->video.color.nb_elem) return 0; mastering_meta = &color->mastering_meta; // Mastering primaries are CIE 1931 coords, and must be > 0. has_mastering_primaries = mastering_meta->r_x > 0 && mastering_meta->r_y > 0 && mastering_meta->g_x > 0 && mastering_meta->g_y > 0 && mastering_meta->b_x > 0 && mastering_meta->b_y > 0 && mastering_meta->white_x > 0 && mastering_meta->white_y > 0; has_mastering_luminance = mastering_meta->max_luminance > 0; if (color->matrix_coefficients != AVCOL_SPC_RESERVED) st->codecpar->color_space = color->matrix_coefficients; if (color->primaries != AVCOL_PRI_RESERVED && color->primaries != AVCOL_PRI_RESERVED0) st->codecpar->color_primaries = color->primaries; if (color->transfer_characteristics != AVCOL_TRC_RESERVED && color->transfer_characteristics != AVCOL_TRC_RESERVED0) st->codecpar->color_trc = color->transfer_characteristics; if (color->range != AVCOL_RANGE_UNSPECIFIED && color->range <= AVCOL_RANGE_JPEG) st->codecpar->color_range = color->range; if (color->chroma_siting_horz != MATROSKA_COLOUR_CHROMASITINGHORZ_UNDETERMINED && color->chroma_siting_vert != MATROSKA_COLOUR_CHROMASITINGVERT_UNDETERMINED && color->chroma_siting_horz < MATROSKA_COLOUR_CHROMASITINGHORZ_NB && color->chroma_siting_vert < MATROSKA_COLOUR_CHROMASITINGVERT_NB) { st->codecpar->chroma_location = avcodec_chroma_pos_to_enum((color->chroma_siting_horz - 1) << 7, (color->chroma_siting_vert - 1) << 7); } if (color->max_cll && color->max_fall) { size_t size = 0; int ret; AVContentLightMetadata *metadata = av_content_light_metadata_alloc(&size); if (!metadata) return AVERROR(ENOMEM); ret = av_stream_add_side_data(st, AV_PKT_DATA_CONTENT_LIGHT_LEVEL, (uint8_t *)metadata, size); if (ret < 0) { av_freep(&metadata); return ret; } metadata->MaxCLL = color->max_cll; metadata->MaxFALL = color->max_fall; } if (has_mastering_primaries || has_mastering_luminance) { // Use similar rationals as other standards. const int chroma_den = 50000; const int luma_den = 10000; AVMasteringDisplayMetadata *metadata = (AVMasteringDisplayMetadata*) av_stream_new_side_data( st, AV_PKT_DATA_MASTERING_DISPLAY_METADATA, sizeof(AVMasteringDisplayMetadata)); if (!metadata) { return AVERROR(ENOMEM); } memset(metadata, 0, sizeof(AVMasteringDisplayMetadata)); if (has_mastering_primaries) { metadata->display_primaries[0][0] = av_make_q( round(mastering_meta->r_x * chroma_den), chroma_den); metadata->display_primaries[0][1] = av_make_q( round(mastering_meta->r_y * chroma_den), chroma_den); metadata->display_primaries[1][0] = av_make_q( round(mastering_meta->g_x * chroma_den), chroma_den); metadata->display_primaries[1][1] = av_make_q( round(mastering_meta->g_y * chroma_den), chroma_den); metadata->display_primaries[2][0] = av_make_q( round(mastering_meta->b_x * chroma_den), chroma_den); metadata->display_primaries[2][1] = av_make_q( round(mastering_meta->b_y * chroma_den), chroma_den); metadata->white_point[0] = av_make_q( round(mastering_meta->white_x * chroma_den), chroma_den); metadata->white_point[1] = av_make_q( round(mastering_meta->white_y * chroma_den), chroma_den); metadata->has_primaries = 1; } if (has_mastering_luminance) { metadata->max_luminance = av_make_q( round(mastering_meta->max_luminance * luma_den), luma_den); metadata->min_luminance = av_make_q( round(mastering_meta->min_luminance * luma_den), luma_den); metadata->has_luminance = 1; } } return 0; } static int mkv_parse_video_projection(AVStream *st, const MatroskaTrack *track) { AVSphericalMapping *spherical; enum AVSphericalProjection projection; size_t spherical_size; uint32_t l = 0, t = 0, r = 0, b = 0; uint32_t padding = 0; int ret; GetByteContext gb; bytestream2_init(&gb, track->video.projection.private.data, track->video.projection.private.size); if (bytestream2_get_byte(&gb) != 0) { av_log(NULL, AV_LOG_WARNING, "Unknown spherical metadata\n"); return 0; } bytestream2_skip(&gb, 3); // flags switch (track->video.projection.type) { case MATROSKA_VIDEO_PROJECTION_TYPE_EQUIRECTANGULAR: if (track->video.projection.private.size == 20) { t = bytestream2_get_be32(&gb); b = bytestream2_get_be32(&gb); l = bytestream2_get_be32(&gb); r = bytestream2_get_be32(&gb); if (b >= UINT_MAX - t || r >= UINT_MAX - l) { av_log(NULL, AV_LOG_ERROR, "Invalid bounding rectangle coordinates " "%"PRIu32",%"PRIu32",%"PRIu32",%"PRIu32"\n", l, t, r, b); return AVERROR_INVALIDDATA; } } else if (track->video.projection.private.size != 0) { av_log(NULL, AV_LOG_ERROR, "Unknown spherical metadata\n"); return AVERROR_INVALIDDATA; } if (l || t || r || b) projection = AV_SPHERICAL_EQUIRECTANGULAR_TILE; else projection = AV_SPHERICAL_EQUIRECTANGULAR; break; case MATROSKA_VIDEO_PROJECTION_TYPE_CUBEMAP: if (track->video.projection.private.size < 4) { av_log(NULL, AV_LOG_ERROR, "Missing projection private properties\n"); return AVERROR_INVALIDDATA; } else if (track->video.projection.private.size == 12) { uint32_t layout = bytestream2_get_be32(&gb); if (layout) { av_log(NULL, AV_LOG_WARNING, "Unknown spherical cubemap layout %"PRIu32"\n", layout); return 0; } projection = AV_SPHERICAL_CUBEMAP; padding = bytestream2_get_be32(&gb); } else { av_log(NULL, AV_LOG_ERROR, "Unknown spherical metadata\n"); return AVERROR_INVALIDDATA; } break; case MATROSKA_VIDEO_PROJECTION_TYPE_RECTANGULAR: /* No Spherical metadata */ return 0; default: av_log(NULL, AV_LOG_WARNING, "Unknown spherical metadata type %"PRIu64"\n", track->video.projection.type); return 0; } spherical = av_spherical_alloc(&spherical_size); if (!spherical) return AVERROR(ENOMEM); spherical->projection = projection; spherical->yaw = (int32_t) (track->video.projection.yaw * (1 << 16)); spherical->pitch = (int32_t) (track->video.projection.pitch * (1 << 16)); spherical->roll = (int32_t) (track->video.projection.roll * (1 << 16)); spherical->padding = padding; spherical->bound_left = l; spherical->bound_top = t; spherical->bound_right = r; spherical->bound_bottom = b; ret = av_stream_add_side_data(st, AV_PKT_DATA_SPHERICAL, (uint8_t *)spherical, spherical_size); if (ret < 0) { av_freep(&spherical); return ret; } return 0; } static int get_qt_codec(MatroskaTrack *track, uint32_t *fourcc, enum AVCodecID *codec_id) { const AVCodecTag *codec_tags; codec_tags = track->type == MATROSKA_TRACK_TYPE_VIDEO ? ff_codec_movvideo_tags : ff_codec_movaudio_tags; /* Normalize noncompliant private data that starts with the fourcc * by expanding/shifting the data by 4 bytes and storing the data * size at the start. */ if (ff_codec_get_id(codec_tags, AV_RL32(track->codec_priv.data))) { int ret = av_buffer_realloc(&track->codec_priv.buf, track->codec_priv.size + 4 + AV_INPUT_BUFFER_PADDING_SIZE); if (ret < 0) return ret; track->codec_priv.data = track->codec_priv.buf->data; memmove(track->codec_priv.data + 4, track->codec_priv.data, track->codec_priv.size); track->codec_priv.size += 4; AV_WB32(track->codec_priv.data, track->codec_priv.size); } *fourcc = AV_RL32(track->codec_priv.data + 4); *codec_id = ff_codec_get_id(codec_tags, *fourcc); return 0; } static int matroska_parse_tracks(AVFormatContext *s) { MatroskaDemuxContext *matroska = s->priv_data; MatroskaTrack *tracks = matroska->tracks.elem; AVStream *st; int i, j, ret; int k; for (i = 0; i < matroska->tracks.nb_elem; i++) { MatroskaTrack *track = &tracks[i]; enum AVCodecID codec_id = AV_CODEC_ID_NONE; EbmlList *encodings_list = &track->encodings; MatroskaTrackEncoding *encodings = encodings_list->elem; uint8_t *extradata = NULL; int extradata_size = 0; int extradata_offset = 0; uint32_t fourcc = 0; AVIOContext b; char* key_id_base64 = NULL; int bit_depth = -1; /* Apply some sanity checks. */ if (track->type != MATROSKA_TRACK_TYPE_VIDEO && track->type != MATROSKA_TRACK_TYPE_AUDIO && track->type != MATROSKA_TRACK_TYPE_SUBTITLE && track->type != MATROSKA_TRACK_TYPE_METADATA) { av_log(matroska->ctx, AV_LOG_INFO, "Unknown or unsupported track type %"PRIu64"\n", track->type); continue; } if (!track->codec_id) continue; if (track->audio.samplerate < 0 || track->audio.samplerate > INT_MAX || isnan(track->audio.samplerate)) { av_log(matroska->ctx, AV_LOG_WARNING, "Invalid sample rate %f, defaulting to 8000 instead.\n", track->audio.samplerate); track->audio.samplerate = 8000; } if (track->type == MATROSKA_TRACK_TYPE_VIDEO) { if (!track->default_duration && track->video.frame_rate > 0) { double default_duration = 1000000000 / track->video.frame_rate; if (default_duration > UINT64_MAX || default_duration < 0) { av_log(matroska->ctx, AV_LOG_WARNING, "Invalid frame rate %e. Cannot calculate default duration.\n", track->video.frame_rate); } else { track->default_duration = default_duration; } } if (track->video.display_width == -1) track->video.display_width = track->video.pixel_width; if (track->video.display_height == -1) track->video.display_height = track->video.pixel_height; if (track->video.color_space.size == 4) fourcc = AV_RL32(track->video.color_space.data); } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) { if (!track->audio.out_samplerate) track->audio.out_samplerate = track->audio.samplerate; } if (encodings_list->nb_elem > 1) { av_log(matroska->ctx, AV_LOG_ERROR, "Multiple combined encodings not supported"); } else if (encodings_list->nb_elem == 1) { if (encodings[0].type) { if (encodings[0].encryption.key_id.size > 0) { /* Save the encryption key id to be stored later as a metadata tag. */ const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size); key_id_base64 = av_malloc(b64_size); if (key_id_base64 == NULL) return AVERROR(ENOMEM); av_base64_encode(key_id_base64, b64_size, encodings[0].encryption.key_id.data, encodings[0].encryption.key_id.size); } else { encodings[0].scope = 0; av_log(matroska->ctx, AV_LOG_ERROR, "Unsupported encoding type"); } } else if ( #if CONFIG_ZLIB encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB && #endif #if CONFIG_BZLIB encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_BZLIB && #endif #if CONFIG_LZO encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_LZO && #endif encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP) { encodings[0].scope = 0; av_log(matroska->ctx, AV_LOG_ERROR, "Unsupported encoding type"); } else if (track->codec_priv.size && encodings[0].scope & 2) { uint8_t *codec_priv = track->codec_priv.data; int ret = matroska_decode_buffer(&track->codec_priv.data, &track->codec_priv.size, track); if (ret < 0) { track->codec_priv.data = NULL; track->codec_priv.size = 0; av_log(matroska->ctx, AV_LOG_ERROR, "Failed to decode codec private data\n"); } if (codec_priv != track->codec_priv.data) { av_buffer_unref(&track->codec_priv.buf); if (track->codec_priv.data) { track->codec_priv.buf = av_buffer_create(track->codec_priv.data, track->codec_priv.size + AV_INPUT_BUFFER_PADDING_SIZE, NULL, NULL, 0); if (!track->codec_priv.buf) { av_freep(&track->codec_priv.data); track->codec_priv.size = 0; return AVERROR(ENOMEM); } } } } } for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) { if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id, strlen(ff_mkv_codec_tags[j].str))) { codec_id = ff_mkv_codec_tags[j].id; break; } } st = track->stream = avformat_new_stream(s, NULL); if (!st) { av_free(key_id_base64); return AVERROR(ENOMEM); } if (key_id_base64) { /* export encryption key id as base64 metadata tag */ av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0); av_freep(&key_id_base64); } if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") && track->codec_priv.size >= 40 && track->codec_priv.data) { track->ms_compat = 1; bit_depth = AV_RL16(track->codec_priv.data + 14); fourcc = AV_RL32(track->codec_priv.data + 16); codec_id = ff_codec_get_id(ff_codec_bmp_tags, fourcc); if (!codec_id) codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc); extradata_offset = 40; } else if (!strcmp(track->codec_id, "A_MS/ACM") && track->codec_priv.size >= 14 && track->codec_priv.data) { int ret; ffio_init_context(&b, track->codec_priv.data, track->codec_priv.size, 0, NULL, NULL, NULL, NULL); ret = ff_get_wav_header(s, &b, st->codecpar, track->codec_priv.size, 0); if (ret < 0) return ret; codec_id = st->codecpar->codec_id; fourcc = st->codecpar->codec_tag; extradata_offset = FFMIN(track->codec_priv.size, 18); } else if (!strcmp(track->codec_id, "A_QUICKTIME") /* Normally 36, but allow noncompliant private data */ && (track->codec_priv.size >= 32) && (track->codec_priv.data)) { uint16_t sample_size; int ret = get_qt_codec(track, &fourcc, &codec_id); if (ret < 0) return ret; sample_size = AV_RB16(track->codec_priv.data + 26); if (fourcc == 0) { if (sample_size == 8) { fourcc = MKTAG('r','a','w',' '); codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc); } else if (sample_size == 16) { fourcc = MKTAG('t','w','o','s'); codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc); } } if ((fourcc == MKTAG('t','w','o','s') || fourcc == MKTAG('s','o','w','t')) && sample_size == 8) codec_id = AV_CODEC_ID_PCM_S8; } else if (!strcmp(track->codec_id, "V_QUICKTIME") && (track->codec_priv.size >= 21) && (track->codec_priv.data)) { int ret = get_qt_codec(track, &fourcc, &codec_id); if (ret < 0) return ret; if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI ")) { fourcc = MKTAG('S','V','Q','3'); codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc); } if (codec_id == AV_CODEC_ID_NONE) av_log(matroska->ctx, AV_LOG_ERROR, "mov FourCC not found %s.\n", av_fourcc2str(fourcc)); if (track->codec_priv.size >= 86) { bit_depth = AV_RB16(track->codec_priv.data + 82); ffio_init_context(&b, track->codec_priv.data, track->codec_priv.size, 0, NULL, NULL, NULL, NULL); if (ff_get_qtpalette(codec_id, &b, track->palette)) { bit_depth &= 0x1F; track->has_palette = 1; } } } else if (codec_id == AV_CODEC_ID_PCM_S16BE) { switch (track->audio.bitdepth) { case 8: codec_id = AV_CODEC_ID_PCM_U8; break; case 24: codec_id = AV_CODEC_ID_PCM_S24BE; break; case 32: codec_id = AV_CODEC_ID_PCM_S32BE; break; } } else if (codec_id == AV_CODEC_ID_PCM_S16LE) { switch (track->audio.bitdepth) { case 8: codec_id = AV_CODEC_ID_PCM_U8; break; case 24: codec_id = AV_CODEC_ID_PCM_S24LE; break; case 32: codec_id = AV_CODEC_ID_PCM_S32LE; break; } } else if (codec_id == AV_CODEC_ID_PCM_F32LE && track->audio.bitdepth == 64) { codec_id = AV_CODEC_ID_PCM_F64LE; } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) { int profile = matroska_aac_profile(track->codec_id); int sri = matroska_aac_sri(track->audio.samplerate); extradata = av_mallocz(5 + AV_INPUT_BUFFER_PADDING_SIZE); if (!extradata) return AVERROR(ENOMEM); extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1); extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3); if (strstr(track->codec_id, "SBR")) { sri = matroska_aac_sri(track->audio.out_samplerate); extradata[2] = 0x56; extradata[3] = 0xE5; extradata[4] = 0x80 | (sri << 3); extradata_size = 5; } else extradata_size = 2; } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - AV_INPUT_BUFFER_PADDING_SIZE) { /* Only ALAC's magic cookie is stored in Matroska's track headers. * Create the "atom size", "tag", and "tag version" fields the * decoder expects manually. */ extradata_size = 12 + track->codec_priv.size; extradata = av_mallocz(extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!extradata) return AVERROR(ENOMEM); AV_WB32(extradata, extradata_size); memcpy(&extradata[4], "alac", 4); AV_WB32(&extradata[8], 0); memcpy(&extradata[12], track->codec_priv.data, track->codec_priv.size); } else if (codec_id == AV_CODEC_ID_TTA) { extradata_size = 30; extradata = av_mallocz(extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!extradata) return AVERROR(ENOMEM); ffio_init_context(&b, extradata, extradata_size, 1, NULL, NULL, NULL, NULL); avio_write(&b, "TTA1", 4); avio_wl16(&b, 1); if (track->audio.channels > UINT16_MAX || track->audio.bitdepth > UINT16_MAX) { av_log(matroska->ctx, AV_LOG_WARNING, "Too large audio channel number %"PRIu64 " or bitdepth %"PRIu64". Skipping track.\n", track->audio.channels, track->audio.bitdepth); av_freep(&extradata); if (matroska->ctx->error_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; else continue; } avio_wl16(&b, track->audio.channels); avio_wl16(&b, track->audio.bitdepth); if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX) return AVERROR_INVALIDDATA; avio_wl32(&b, track->audio.out_samplerate); avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale), track->audio.out_samplerate, AV_TIME_BASE * 1000)); } else if (codec_id == AV_CODEC_ID_RV10 || codec_id == AV_CODEC_ID_RV20 || codec_id == AV_CODEC_ID_RV30 || codec_id == AV_CODEC_ID_RV40) { extradata_offset = 26; } else if (codec_id == AV_CODEC_ID_RA_144) { track->audio.out_samplerate = 8000; track->audio.channels = 1; } else if ((codec_id == AV_CODEC_ID_RA_288 || codec_id == AV_CODEC_ID_COOK || codec_id == AV_CODEC_ID_ATRAC3 || codec_id == AV_CODEC_ID_SIPR) && track->codec_priv.data) { int flavor; ffio_init_context(&b, track->codec_priv.data, track->codec_priv.size, 0, NULL, NULL, NULL, NULL); avio_skip(&b, 22); flavor = avio_rb16(&b); track->audio.coded_framesize = avio_rb32(&b); avio_skip(&b, 12); track->audio.sub_packet_h = avio_rb16(&b); track->audio.frame_size = avio_rb16(&b); track->audio.sub_packet_size = avio_rb16(&b); if (flavor < 0 || track->audio.coded_framesize <= 0 || track->audio.sub_packet_h <= 0 || track->audio.frame_size <= 0 || track->audio.sub_packet_size <= 0 && codec_id != AV_CODEC_ID_SIPR) return AVERROR_INVALIDDATA; track->audio.buf = av_malloc_array(track->audio.sub_packet_h, track->audio.frame_size); if (!track->audio.buf) return AVERROR(ENOMEM); if (codec_id == AV_CODEC_ID_RA_288) { st->codecpar->block_align = track->audio.coded_framesize; track->codec_priv.size = 0; } else { if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) { static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 }; track->audio.sub_packet_size = ff_sipr_subpk_size[flavor]; st->codecpar->bit_rate = sipr_bit_rate[flavor]; } st->codecpar->block_align = track->audio.sub_packet_size; extradata_offset = 78; } } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) { ret = matroska_parse_flac(s, track, &extradata_offset); if (ret < 0) return ret; } else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) { fourcc = AV_RL32(track->codec_priv.data); } else if (codec_id == AV_CODEC_ID_VP9 && track->codec_priv.size) { /* we don't need any value stored in CodecPrivate. make sure that it's not exported as extradata. */ track->codec_priv.size = 0; } else if (codec_id == AV_CODEC_ID_AV1 && track->codec_priv.size) { /* For now, propagate only the OBUs, if any. Once libavcodec is updated to handle isobmff style extradata this can be removed. */ extradata_offset = 4; } track->codec_priv.size -= extradata_offset; if (codec_id == AV_CODEC_ID_NONE) av_log(matroska->ctx, AV_LOG_INFO, "Unknown/unsupported AVCodecID %s.\n", track->codec_id); if (track->time_scale < 0.01) track->time_scale = 1.0; avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale, 1000 * 1000 * 1000); /* 64 bit pts in ns */ /* convert the delay from ns to the track timebase */ track->codec_delay_in_track_tb = av_rescale_q(track->codec_delay, (AVRational){ 1, 1000000000 }, st->time_base); st->codecpar->codec_id = codec_id; if (strcmp(track->language, "und")) av_dict_set(&st->metadata, "language", track->language, 0); av_dict_set(&st->metadata, "title", track->name, 0); if (track->flag_default) st->disposition |= AV_DISPOSITION_DEFAULT; if (track->flag_forced) st->disposition |= AV_DISPOSITION_FORCED; if (!st->codecpar->extradata) { if (extradata) { st->codecpar->extradata = extradata; st->codecpar->extradata_size = extradata_size; } else if (track->codec_priv.data && track->codec_priv.size > 0) { if (ff_alloc_extradata(st->codecpar, track->codec_priv.size)) return AVERROR(ENOMEM); memcpy(st->codecpar->extradata, track->codec_priv.data + extradata_offset, track->codec_priv.size); } } if (track->type == MATROSKA_TRACK_TYPE_VIDEO) { MatroskaTrackPlane *planes = track->operation.combine_planes.elem; int display_width_mul = 1; int display_height_mul = 1; st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; st->codecpar->codec_tag = fourcc; if (bit_depth >= 0) st->codecpar->bits_per_coded_sample = bit_depth; st->codecpar->width = track->video.pixel_width; st->codecpar->height = track->video.pixel_height; if (track->video.interlaced == MATROSKA_VIDEO_INTERLACE_FLAG_INTERLACED) st->codecpar->field_order = mkv_field_order(matroska, track->video.field_order); else if (track->video.interlaced == MATROSKA_VIDEO_INTERLACE_FLAG_PROGRESSIVE) st->codecpar->field_order = AV_FIELD_PROGRESSIVE; if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB) mkv_stereo_mode_display_mul(track->video.stereo_mode, &display_width_mul, &display_height_mul); if (track->video.display_unit < MATROSKA_VIDEO_DISPLAYUNIT_UNKNOWN) { av_reduce(&st->sample_aspect_ratio.num, &st->sample_aspect_ratio.den, st->codecpar->height * track->video.display_width * display_width_mul, st->codecpar->width * track->video.display_height * display_height_mul, 255); } if (st->codecpar->codec_id != AV_CODEC_ID_HEVC) st->need_parsing = AVSTREAM_PARSE_HEADERS; if (track->default_duration) { av_reduce(&st->avg_frame_rate.num, &st->avg_frame_rate.den, 1000000000, track->default_duration, 30000); #if FF_API_R_FRAME_RATE if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000LL && st->avg_frame_rate.num > st->avg_frame_rate.den * 5LL) st->r_frame_rate = st->avg_frame_rate; #endif } /* export stereo mode flag as metadata tag */ if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB) av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0); /* export alpha mode flag as metadata tag */ if (track->video.alpha_mode) av_dict_set(&st->metadata, "alpha_mode", "1", 0); /* if we have virtual track, mark the real tracks */ for (j=0; j < track->operation.combine_planes.nb_elem; j++) { char buf[32]; if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT) continue; snprintf(buf, sizeof(buf), "%s_%d", ff_matroska_video_stereo_plane[planes[j].type], i); for (k=0; k < matroska->tracks.nb_elem; k++) if (planes[j].uid == tracks[k].uid && tracks[k].stream) { av_dict_set(&tracks[k].stream->metadata, "stereo_mode", buf, 0); break; } } // add stream level stereo3d side data if it is a supported format if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB && track->video.stereo_mode != 10 && track->video.stereo_mode != 12) { int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode); if (ret < 0) return ret; } ret = mkv_parse_video_color(st, track); if (ret < 0) return ret; ret = mkv_parse_video_projection(st, track); if (ret < 0) return ret; } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) { st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; st->codecpar->codec_tag = fourcc; st->codecpar->sample_rate = track->audio.out_samplerate; st->codecpar->channels = track->audio.channels; if (!st->codecpar->bits_per_coded_sample) st->codecpar->bits_per_coded_sample = track->audio.bitdepth; if (st->codecpar->codec_id == AV_CODEC_ID_MP3 || st->codecpar->codec_id == AV_CODEC_ID_MLP || st->codecpar->codec_id == AV_CODEC_ID_TRUEHD) st->need_parsing = AVSTREAM_PARSE_FULL; else if (st->codecpar->codec_id != AV_CODEC_ID_AAC) st->need_parsing = AVSTREAM_PARSE_HEADERS; if (track->codec_delay > 0) { st->codecpar->initial_padding = av_rescale_q(track->codec_delay, (AVRational){1, 1000000000}, (AVRational){1, st->codecpar->codec_id == AV_CODEC_ID_OPUS ? 48000 : st->codecpar->sample_rate}); } if (track->seek_preroll > 0) { st->codecpar->seek_preroll = av_rescale_q(track->seek_preroll, (AVRational){1, 1000000000}, (AVRational){1, st->codecpar->sample_rate}); } } else if (codec_id == AV_CODEC_ID_WEBVTT) { st->codecpar->codec_type = AVMEDIA_TYPE_SUBTITLE; if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) { st->disposition |= AV_DISPOSITION_CAPTIONS; } else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) { st->disposition |= AV_DISPOSITION_DESCRIPTIONS; } else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) { st->disposition |= AV_DISPOSITION_METADATA; } } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) { st->codecpar->codec_type = AVMEDIA_TYPE_SUBTITLE; } } return 0; } static int matroska_read_header(AVFormatContext *s) { MatroskaDemuxContext *matroska = s->priv_data; EbmlList *attachments_list = &matroska->attachments; EbmlList *chapters_list = &matroska->chapters; MatroskaAttachment *attachments; MatroskaChapter *chapters; uint64_t max_start = 0; int64_t pos; Ebml ebml = { 0 }; int i, j, res; matroska->ctx = s; matroska->cues_parsing_deferred = 1; /* First read the EBML header. */ if (ebml_parse(matroska, ebml_syntax, &ebml) || !ebml.doctype) { av_log(matroska->ctx, AV_LOG_ERROR, "EBML header parsing failed\n"); ebml_free(ebml_syntax, &ebml); return AVERROR_INVALIDDATA; } if (ebml.version > EBML_VERSION || ebml.max_size > sizeof(uint64_t) || ebml.id_length > sizeof(uint32_t) || ebml.doctype_version > 3) { avpriv_report_missing_feature(matroska->ctx, "EBML version %"PRIu64", doctype %s, doc version %"PRIu64, ebml.version, ebml.doctype, ebml.doctype_version); ebml_free(ebml_syntax, &ebml); return AVERROR_PATCHWELCOME; } else if (ebml.doctype_version == 3) { av_log(matroska->ctx, AV_LOG_WARNING, "EBML header using unsupported features\n" "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n", ebml.version, ebml.doctype, ebml.doctype_version); } for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) if (!strcmp(ebml.doctype, matroska_doctypes[i])) break; if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) { av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype); if (matroska->ctx->error_recognition & AV_EF_EXPLODE) { ebml_free(ebml_syntax, &ebml); return AVERROR_INVALIDDATA; } } ebml_free(ebml_syntax, &ebml); /* The next thing is a segment. */ pos = avio_tell(matroska->ctx->pb); res = ebml_parse(matroska, matroska_segments, matroska); // Try resyncing until we find an EBML_STOP type element. while (res != 1) { res = matroska_resync(matroska, pos); if (res < 0) goto fail; pos = avio_tell(matroska->ctx->pb); res = ebml_parse(matroska, matroska_segment, matroska); } /* Set data_offset as it might be needed later by seek_frame_generic. */ if (matroska->current_id == MATROSKA_ID_CLUSTER) s->internal->data_offset = avio_tell(matroska->ctx->pb) - 4; matroska_execute_seekhead(matroska); if (!matroska->time_scale) matroska->time_scale = 1000000; if (matroska->duration) matroska->ctx->duration = matroska->duration * matroska->time_scale * 1000 / AV_TIME_BASE; av_dict_set(&s->metadata, "title", matroska->title, 0); av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0); if (matroska->date_utc.size == 8) matroska_metadata_creation_time(&s->metadata, AV_RB64(matroska->date_utc.data)); res = matroska_parse_tracks(s); if (res < 0) goto fail; attachments = attachments_list->elem; for (j = 0; j < attachments_list->nb_elem; j++) { if (!(attachments[j].filename && attachments[j].mime && attachments[j].bin.data && attachments[j].bin.size > 0)) { av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n"); } else { AVStream *st = avformat_new_stream(s, NULL); if (!st) break; av_dict_set(&st->metadata, "filename", attachments[j].filename, 0); av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0); st->codecpar->codec_id = AV_CODEC_ID_NONE; for (i = 0; ff_mkv_image_mime_tags[i].id != AV_CODEC_ID_NONE; i++) { if (!strncmp(ff_mkv_image_mime_tags[i].str, attachments[j].mime, strlen(ff_mkv_image_mime_tags[i].str))) { st->codecpar->codec_id = ff_mkv_image_mime_tags[i].id; break; } } attachments[j].stream = st; if (st->codecpar->codec_id != AV_CODEC_ID_NONE) { AVPacket *pkt = &st->attached_pic; st->disposition |= AV_DISPOSITION_ATTACHED_PIC; st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; av_init_packet(pkt); pkt->buf = av_buffer_ref(attachments[j].bin.buf); if (!pkt->buf) return AVERROR(ENOMEM); pkt->data = attachments[j].bin.data; pkt->size = attachments[j].bin.size; pkt->stream_index = st->index; pkt->flags |= AV_PKT_FLAG_KEY; } else { st->codecpar->codec_type = AVMEDIA_TYPE_ATTACHMENT; if (ff_alloc_extradata(st->codecpar, attachments[j].bin.size)) break; memcpy(st->codecpar->extradata, attachments[j].bin.data, attachments[j].bin.size); for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) { if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime, strlen(ff_mkv_mime_tags[i].str))) { st->codecpar->codec_id = ff_mkv_mime_tags[i].id; break; } } } } } chapters = chapters_list->elem; for (i = 0; i < chapters_list->nb_elem; i++) if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid && (max_start == 0 || chapters[i].start > max_start)) { chapters[i].chapter = avpriv_new_chapter(s, chapters[i].uid, (AVRational) { 1, 1000000000 }, chapters[i].start, chapters[i].end, chapters[i].title); if (chapters[i].chapter) { av_dict_set(&chapters[i].chapter->metadata, "title", chapters[i].title, 0); } max_start = chapters[i].start; } matroska_add_index_entries(matroska); matroska_convert_tags(s); return 0; fail: matroska_read_close(s); return res; } /* * Put one packet in an application-supplied AVPacket struct. * Returns 0 on success or -1 on failure. */ static int matroska_deliver_packet(MatroskaDemuxContext *matroska, AVPacket *pkt) { if (matroska->queue) { MatroskaTrack *tracks = matroska->tracks.elem; MatroskaTrack *track; ff_packet_list_get(&matroska->queue, &matroska->queue_end, pkt); track = &tracks[pkt->stream_index]; if (track->has_palette) { uint8_t *pal = av_packet_new_side_data(pkt, AV_PKT_DATA_PALETTE, AVPALETTE_SIZE); if (!pal) { av_log(matroska->ctx, AV_LOG_ERROR, "Cannot append palette to packet\n"); } else { memcpy(pal, track->palette, AVPALETTE_SIZE); } track->has_palette = 0; } return 0; } return -1; } /* * Free all packets in our internal queue. */ static void matroska_clear_queue(MatroskaDemuxContext *matroska) { ff_packet_list_free(&matroska->queue, &matroska->queue_end); } static int matroska_parse_laces(MatroskaDemuxContext *matroska, uint8_t **buf, int *buf_size, int type, uint32_t **lace_buf, int *laces) { int res = 0, n, size = *buf_size; uint8_t *data = *buf; uint32_t *lace_size; if (!type) { *laces = 1; *lace_buf = av_malloc(sizeof(**lace_buf)); if (!*lace_buf) return AVERROR(ENOMEM); *lace_buf[0] = size; return 0; } av_assert0(size > 0); *laces = *data + 1; data += 1; size -= 1; lace_size = av_malloc_array(*laces, sizeof(*lace_size)); if (!lace_size) return AVERROR(ENOMEM); switch (type) { case 0x1: /* Xiph lacing */ { uint8_t temp; uint32_t total = 0; for (n = 0; res == 0 && n < *laces - 1; n++) { lace_size[n] = 0; while (1) { if (size <= total) { res = AVERROR_INVALIDDATA; break; } temp = *data; total += temp; lace_size[n] += temp; data += 1; size -= 1; if (temp != 0xff) break; } } if (size <= total) { res = AVERROR_INVALIDDATA; break; } lace_size[n] = size - total; break; } case 0x2: /* fixed-size lacing */ if (size % (*laces)) { res = AVERROR_INVALIDDATA; break; } for (n = 0; n < *laces; n++) lace_size[n] = size / *laces; break; case 0x3: /* EBML lacing */ { uint64_t num; uint64_t total; n = matroska_ebmlnum_uint(matroska, data, size, &num); if (n < 0 || num > INT_MAX) { av_log(matroska->ctx, AV_LOG_INFO, "EBML block data error\n"); res = n<0 ? n : AVERROR_INVALIDDATA; break; } data += n; size -= n; total = lace_size[0] = num; for (n = 1; res == 0 && n < *laces - 1; n++) { int64_t snum; int r; r = matroska_ebmlnum_sint(matroska, data, size, &snum); if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) { av_log(matroska->ctx, AV_LOG_INFO, "EBML block data error\n"); res = r<0 ? r : AVERROR_INVALIDDATA; break; } data += r; size -= r; lace_size[n] = lace_size[n - 1] + snum; total += lace_size[n]; } if (size <= total) { res = AVERROR_INVALIDDATA; break; } lace_size[*laces - 1] = size - total; break; } } *buf = data; *lace_buf = lace_size; *buf_size = size; return res; } static int matroska_parse_rm_audio(MatroskaDemuxContext *matroska, MatroskaTrack *track, AVStream *st, uint8_t *data, int size, uint64_t timecode, int64_t pos) { int a = st->codecpar->block_align; int sps = track->audio.sub_packet_size; int cfs = track->audio.coded_framesize; int h = track->audio.sub_packet_h; int y = track->audio.sub_packet_cnt; int w = track->audio.frame_size; int x; if (!track->audio.pkt_cnt) { if (track->audio.sub_packet_cnt == 0) track->audio.buf_timecode = timecode; if (st->codecpar->codec_id == AV_CODEC_ID_RA_288) { if (size < cfs * h / 2) { av_log(matroska->ctx, AV_LOG_ERROR, "Corrupt int4 RM-style audio packet size\n"); return AVERROR_INVALIDDATA; } for (x = 0; x < h / 2; x++) memcpy(track->audio.buf + x * 2 * w + y * cfs, data + x * cfs, cfs); } else if (st->codecpar->codec_id == AV_CODEC_ID_SIPR) { if (size < w) { av_log(matroska->ctx, AV_LOG_ERROR, "Corrupt sipr RM-style audio packet size\n"); return AVERROR_INVALIDDATA; } memcpy(track->audio.buf + y * w, data, w); } else { if (size < sps * w / sps || h<=0 || w%sps) { av_log(matroska->ctx, AV_LOG_ERROR, "Corrupt generic RM-style audio packet size\n"); return AVERROR_INVALIDDATA; } for (x = 0; x < w / sps; x++) memcpy(track->audio.buf + sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)), data + x * sps, sps); } if (++track->audio.sub_packet_cnt >= h) { if (st->codecpar->codec_id == AV_CODEC_ID_SIPR) ff_rm_reorder_sipr_data(track->audio.buf, h, w); track->audio.sub_packet_cnt = 0; track->audio.pkt_cnt = h * w / a; } } while (track->audio.pkt_cnt) { int ret; AVPacket pktl, *pkt = &pktl; ret = av_new_packet(pkt, a); if (ret < 0) { return ret; } memcpy(pkt->data, track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--), a); pkt->pts = track->audio.buf_timecode; track->audio.buf_timecode = AV_NOPTS_VALUE; pkt->pos = pos; pkt->stream_index = st->index; ret = ff_packet_list_put(&matroska->queue, &matroska->queue_end, pkt, 0); if (ret < 0) { av_packet_unref(pkt); return AVERROR(ENOMEM); } } return 0; } /* reconstruct full wavpack blocks from mangled matroska ones */ static int matroska_parse_wavpack(MatroskaTrack *track, uint8_t *src, uint8_t **pdst, int *size) { uint8_t *dst = NULL; int dstlen = 0; int srclen = *size; uint32_t samples; uint16_t ver; int ret, offset = 0; if (srclen < 12 || track->stream->codecpar->extradata_size < 2) return AVERROR_INVALIDDATA; ver = AV_RL16(track->stream->codecpar->extradata); samples = AV_RL32(src); src += 4; srclen -= 4; while (srclen >= 8) { int multiblock; uint32_t blocksize; uint8_t *tmp; uint32_t flags = AV_RL32(src); uint32_t crc = AV_RL32(src + 4); src += 8; srclen -= 8; multiblock = (flags & 0x1800) != 0x1800; if (multiblock) { if (srclen < 4) { ret = AVERROR_INVALIDDATA; goto fail; } blocksize = AV_RL32(src); src += 4; srclen -= 4; } else blocksize = srclen; if (blocksize > srclen) { ret = AVERROR_INVALIDDATA; goto fail; } tmp = av_realloc(dst, dstlen + blocksize + 32 + AV_INPUT_BUFFER_PADDING_SIZE); if (!tmp) { ret = AVERROR(ENOMEM); goto fail; } dst = tmp; dstlen += blocksize + 32; AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8 AV_WL16(dst + offset + 8, ver); // version AV_WL16(dst + offset + 10, 0); // track/index_no AV_WL32(dst + offset + 12, 0); // total samples AV_WL32(dst + offset + 16, 0); // block index AV_WL32(dst + offset + 20, samples); // number of samples AV_WL32(dst + offset + 24, flags); // flags AV_WL32(dst + offset + 28, crc); // crc memcpy(dst + offset + 32, src, blocksize); // block data src += blocksize; srclen -= blocksize; offset += blocksize + 32; } memset(dst + dstlen, 0, AV_INPUT_BUFFER_PADDING_SIZE); *pdst = dst; *size = dstlen; return 0; fail: av_freep(&dst); return ret; } static int matroska_parse_prores(MatroskaTrack *track, uint8_t *src, uint8_t **pdst, int *size) { uint8_t *dst = src; int dstlen = *size; if (AV_RB32(&src[4]) != MKBETAG('i', 'c', 'p', 'f')) { dst = av_malloc(dstlen + 8 + AV_INPUT_BUFFER_PADDING_SIZE); if (!dst) return AVERROR(ENOMEM); AV_WB32(dst, dstlen); AV_WB32(dst + 4, MKBETAG('i', 'c', 'p', 'f')); memcpy(dst + 8, src, dstlen); memset(dst + 8 + dstlen, 0, AV_INPUT_BUFFER_PADDING_SIZE); dstlen += 8; } *pdst = dst; *size = dstlen; return 0; } static int matroska_parse_webvtt(MatroskaDemuxContext *matroska, MatroskaTrack *track, AVStream *st, uint8_t *data, int data_len, uint64_t timecode, uint64_t duration, int64_t pos) { AVPacket pktl, *pkt = &pktl; uint8_t *id, *settings, *text, *buf; int id_len, settings_len, text_len; uint8_t *p, *q; int err; if (data_len <= 0) return AVERROR_INVALIDDATA; p = data; q = data + data_len; id = p; id_len = -1; while (p < q) { if (*p == '\r' || *p == '\n') { id_len = p - id; if (*p == '\r') p++; break; } p++; } if (p >= q || *p != '\n') return AVERROR_INVALIDDATA; p++; settings = p; settings_len = -1; while (p < q) { if (*p == '\r' || *p == '\n') { settings_len = p - settings; if (*p == '\r') p++; break; } p++; } if (p >= q || *p != '\n') return AVERROR_INVALIDDATA; p++; text = p; text_len = q - p; while (text_len > 0) { const int len = text_len - 1; const uint8_t c = p[len]; if (c != '\r' && c != '\n') break; text_len = len; } if (text_len <= 0) return AVERROR_INVALIDDATA; err = av_new_packet(pkt, text_len); if (err < 0) { return err; } memcpy(pkt->data, text, text_len); if (id_len > 0) { buf = av_packet_new_side_data(pkt, AV_PKT_DATA_WEBVTT_IDENTIFIER, id_len); if (!buf) { av_packet_unref(pkt); return AVERROR(ENOMEM); } memcpy(buf, id, id_len); } if (settings_len > 0) { buf = av_packet_new_side_data(pkt, AV_PKT_DATA_WEBVTT_SETTINGS, settings_len); if (!buf) { av_packet_unref(pkt); return AVERROR(ENOMEM); } memcpy(buf, settings, settings_len); } // Do we need this for subtitles? // pkt->flags = AV_PKT_FLAG_KEY; pkt->stream_index = st->index; pkt->pts = timecode; // Do we need this for subtitles? // pkt->dts = timecode; pkt->duration = duration; pkt->pos = pos; err = ff_packet_list_put(&matroska->queue, &matroska->queue_end, pkt, 0); if (err < 0) { av_packet_unref(pkt); return AVERROR(ENOMEM); } return 0; } static int matroska_parse_frame(MatroskaDemuxContext *matroska, MatroskaTrack *track, AVStream *st, AVBufferRef *buf, uint8_t *data, int pkt_size, uint64_t timecode, uint64_t lace_duration, int64_t pos, int is_keyframe, uint8_t *additional, uint64_t additional_id, int additional_size, int64_t discard_padding) { MatroskaTrackEncoding *encodings = track->encodings.elem; uint8_t *pkt_data = data; int res; AVPacket pktl, *pkt = &pktl; if (encodings && !encodings->type && encodings->scope & 1) { res = matroska_decode_buffer(&pkt_data, &pkt_size, track); if (res < 0) return res; } if (st->codecpar->codec_id == AV_CODEC_ID_WAVPACK) { uint8_t *wv_data; res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size); if (res < 0) { av_log(matroska->ctx, AV_LOG_ERROR, "Error parsing a wavpack block.\n"); goto fail; } if (pkt_data != data) av_freep(&pkt_data); pkt_data = wv_data; } if (st->codecpar->codec_id == AV_CODEC_ID_PRORES) { uint8_t *pr_data; res = matroska_parse_prores(track, pkt_data, &pr_data, &pkt_size); if (res < 0) { av_log(matroska->ctx, AV_LOG_ERROR, "Error parsing a prores block.\n"); goto fail; } if (pkt_data != data) av_freep(&pkt_data); pkt_data = pr_data; } av_init_packet(pkt); if (pkt_data != data) pkt->buf = av_buffer_create(pkt_data, pkt_size + AV_INPUT_BUFFER_PADDING_SIZE, NULL, NULL, 0); else pkt->buf = av_buffer_ref(buf); if (!pkt->buf) { res = AVERROR(ENOMEM); goto fail; } pkt->data = pkt_data; pkt->size = pkt_size; pkt->flags = is_keyframe; pkt->stream_index = st->index; if (additional_size > 0) { uint8_t *side_data = av_packet_new_side_data(pkt, AV_PKT_DATA_MATROSKA_BLOCKADDITIONAL, additional_size + 8); if (!side_data) { av_packet_unref(pkt); return AVERROR(ENOMEM); } AV_WB64(side_data, additional_id); memcpy(side_data + 8, additional, additional_size); } if (discard_padding) { uint8_t *side_data = av_packet_new_side_data(pkt, AV_PKT_DATA_SKIP_SAMPLES, 10); if (!side_data) { av_packet_unref(pkt); return AVERROR(ENOMEM); } discard_padding = av_rescale_q(discard_padding, (AVRational){1, 1000000000}, (AVRational){1, st->codecpar->sample_rate}); if (discard_padding > 0) { AV_WL32(side_data + 4, discard_padding); } else { AV_WL32(side_data, -discard_padding); } } if (track->ms_compat) pkt->dts = timecode; else pkt->pts = timecode; pkt->pos = pos; pkt->duration = lace_duration; #if FF_API_CONVERGENCE_DURATION FF_DISABLE_DEPRECATION_WARNINGS if (st->codecpar->codec_id == AV_CODEC_ID_SUBRIP) { pkt->convergence_duration = lace_duration; } FF_ENABLE_DEPRECATION_WARNINGS #endif res = ff_packet_list_put(&matroska->queue, &matroska->queue_end, pkt, 0); if (res < 0) { av_packet_unref(pkt); return AVERROR(ENOMEM); } return 0; fail: if (pkt_data != data) av_freep(&pkt_data); return res; } static int matroska_parse_block(MatroskaDemuxContext *matroska, AVBufferRef *buf, uint8_t *data, int size, int64_t pos, uint64_t cluster_time, uint64_t block_duration, int is_keyframe, uint8_t *additional, uint64_t additional_id, int additional_size, int64_t cluster_pos, int64_t discard_padding) { uint64_t timecode = AV_NOPTS_VALUE; MatroskaTrack *track; int res = 0; AVStream *st; int16_t block_time; uint32_t *lace_size = NULL; int n, flags, laces = 0; uint64_t num; int trust_default_duration = 1; if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) { return n; } data += n; size -= n; track = matroska_find_track_by_num(matroska, num); if (!track || !track->stream) { av_log(matroska->ctx, AV_LOG_INFO, "Invalid stream %"PRIu64"\n", num); return AVERROR_INVALIDDATA; } else if (size <= 3) return 0; st = track->stream; if (st->discard >= AVDISCARD_ALL) return res; av_assert1(block_duration != AV_NOPTS_VALUE); block_time = sign_extend(AV_RB16(data), 16); data += 2; flags = *data++; size -= 3; if (is_keyframe == -1) is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0; if (cluster_time != (uint64_t) -1 && (block_time >= 0 || cluster_time >= -block_time)) { timecode = cluster_time + block_time - track->codec_delay_in_track_tb; if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE && timecode < track->end_timecode) is_keyframe = 0; /* overlapping subtitles are not key frame */ if (is_keyframe) { ff_reduce_index(matroska->ctx, st->index); av_add_index_entry(st, cluster_pos, timecode, 0, 0, AVINDEX_KEYFRAME); } } if (matroska->skip_to_keyframe && track->type != MATROSKA_TRACK_TYPE_SUBTITLE) { // Compare signed timecodes. Timecode may be negative due to codec delay // offset. We don't support timestamps greater than int64_t anyway - see // AVPacket's pts. if ((int64_t)timecode < (int64_t)matroska->skip_to_timecode) return res; if (is_keyframe) matroska->skip_to_keyframe = 0; else if (!st->skip_to_keyframe) { av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n"); matroska->skip_to_keyframe = 0; } } res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1, &lace_size, &laces); if (res) goto end; if (track->audio.samplerate == 8000) { // If this is needed for more codecs, then add them here if (st->codecpar->codec_id == AV_CODEC_ID_AC3) { if (track->audio.samplerate != st->codecpar->sample_rate || !st->codecpar->frame_size) trust_default_duration = 0; } } if (!block_duration && trust_default_duration) block_duration = track->default_duration * laces / matroska->time_scale; if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time)) track->end_timecode = FFMAX(track->end_timecode, timecode + block_duration); for (n = 0; n < laces; n++) { int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces; if (lace_size[n] > size) { av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n"); break; } if ((st->codecpar->codec_id == AV_CODEC_ID_RA_288 || st->codecpar->codec_id == AV_CODEC_ID_COOK || st->codecpar->codec_id == AV_CODEC_ID_SIPR || st->codecpar->codec_id == AV_CODEC_ID_ATRAC3) && st->codecpar->block_align && track->audio.sub_packet_size) { res = matroska_parse_rm_audio(matroska, track, st, data, lace_size[n], timecode, pos); if (res) goto end; } else if (st->codecpar->codec_id == AV_CODEC_ID_WEBVTT) { res = matroska_parse_webvtt(matroska, track, st, data, lace_size[n], timecode, lace_duration, pos); if (res) goto end; } else { res = matroska_parse_frame(matroska, track, st, buf, data, lace_size[n], timecode, lace_duration, pos, !n ? is_keyframe : 0, additional, additional_id, additional_size, discard_padding); if (res) goto end; } if (timecode != AV_NOPTS_VALUE) timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE; data += lace_size[n]; size -= lace_size[n]; } end: av_free(lace_size); return res; } static int matroska_parse_cluster(MatroskaDemuxContext *matroska) { MatroskaCluster *cluster = &matroska->current_cluster; MatroskaBlock *block = &cluster->block; int res; av_assert0(matroska->num_levels <= 2); if (matroska->num_levels == 1) { res = ebml_parse(matroska, matroska_segment, NULL); if (res == 1) { /* Found a cluster: subtract the size of the ID already read. */ cluster->pos = avio_tell(matroska->ctx->pb) - 4; res = ebml_parse(matroska, matroska_cluster_enter, cluster); if (res < 0) return res; } } if (matroska->num_levels == 2) { /* We are inside a cluster. */ res = ebml_parse(matroska, matroska_cluster_parsing, cluster); if (res >= 0 && block->bin.size > 0) { int is_keyframe = block->non_simple ? block->reference == INT64_MIN : -1; uint8_t* additional = block->additional.size > 0 ? block->additional.data : NULL; res = matroska_parse_block(matroska, block->bin.buf, block->bin.data, block->bin.size, block->bin.pos, cluster->timecode, block->duration, is_keyframe, additional, block->additional_id, block->additional.size, cluster->pos, block->discard_padding); } ebml_free(matroska_blockgroup, block); memset(block, 0, sizeof(*block)); } else if (!matroska->num_levels) { if (!avio_feof(matroska->ctx->pb)) { avio_r8(matroska->ctx->pb); if (!avio_feof(matroska->ctx->pb)) { av_log(matroska->ctx, AV_LOG_WARNING, "File extends beyond " "end of segment.\n"); return AVERROR_INVALIDDATA; } } matroska->done = 1; return AVERROR_EOF; } return res; } static int matroska_read_packet(AVFormatContext *s, AVPacket *pkt) { MatroskaDemuxContext *matroska = s->priv_data; int ret = 0; if (matroska->resync_pos == -1) { // This can only happen if generic seeking has been used. matroska->resync_pos = avio_tell(s->pb); } while (matroska_deliver_packet(matroska, pkt)) { if (matroska->done) return (ret < 0) ? ret : AVERROR_EOF; if (matroska_parse_cluster(matroska) < 0 && !matroska->done) ret = matroska_resync(matroska, matroska->resync_pos); } return 0; } static int matroska_read_seek(AVFormatContext *s, int stream_index, int64_t timestamp, int flags) { MatroskaDemuxContext *matroska = s->priv_data; MatroskaTrack *tracks = NULL; AVStream *st = s->streams[stream_index]; int i, index; /* Parse the CUES now since we need the index data to seek. */ if (matroska->cues_parsing_deferred > 0) { matroska->cues_parsing_deferred = 0; matroska_parse_cues(matroska); } if (!st->nb_index_entries) goto err; timestamp = FFMAX(timestamp, st->index_entries[0].timestamp); if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) { matroska_reset_status(matroska, 0, st->index_entries[st->nb_index_entries - 1].pos); while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) { matroska_clear_queue(matroska); if (matroska_parse_cluster(matroska) < 0) break; } } matroska_clear_queue(matroska); if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1)) goto err; tracks = matroska->tracks.elem; for (i = 0; i < matroska->tracks.nb_elem; i++) { tracks[i].audio.pkt_cnt = 0; tracks[i].audio.sub_packet_cnt = 0; tracks[i].audio.buf_timecode = AV_NOPTS_VALUE; tracks[i].end_timecode = 0; } /* We seek to a level 1 element, so set the appropriate status. */ matroska_reset_status(matroska, 0, st->index_entries[index].pos); if (flags & AVSEEK_FLAG_ANY) { st->skip_to_keyframe = 0; matroska->skip_to_timecode = timestamp; } else { st->skip_to_keyframe = 1; matroska->skip_to_timecode = st->index_entries[index].timestamp; } matroska->skip_to_keyframe = 1; matroska->done = 0; ff_update_cur_dts(s, st, st->index_entries[index].timestamp); return 0; err: // slightly hackish but allows proper fallback to // the generic seeking code. matroska_reset_status(matroska, 0, -1); matroska->resync_pos = -1; matroska_clear_queue(matroska); st->skip_to_keyframe = matroska->skip_to_keyframe = 0; matroska->done = 0; return -1; } static int matroska_read_close(AVFormatContext *s) { MatroskaDemuxContext *matroska = s->priv_data; MatroskaTrack *tracks = matroska->tracks.elem; int n; matroska_clear_queue(matroska); for (n = 0; n < matroska->tracks.nb_elem; n++) if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO) av_freep(&tracks[n].audio.buf); ebml_free(matroska_segment, matroska); return 0; } typedef struct { int64_t start_time_ns; int64_t end_time_ns; int64_t start_offset; int64_t end_offset; } CueDesc; /* This function searches all the Cues and returns the CueDesc corresponding to * the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts < * end_time_ns. All 4 fields will be set to -1 if ts >= file's duration. */ static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) { MatroskaDemuxContext *matroska = s->priv_data; CueDesc cue_desc; int i; int nb_index_entries = s->streams[0]->nb_index_entries; AVIndexEntry *index_entries = s->streams[0]->index_entries; if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1}; for (i = 1; i < nb_index_entries; i++) { if (index_entries[i - 1].timestamp * matroska->time_scale <= ts && index_entries[i].timestamp * matroska->time_scale > ts) { break; } } --i; cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale; cue_desc.start_offset = index_entries[i].pos - matroska->segment_start; if (i != nb_index_entries - 1) { cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale; cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start; } else { cue_desc.end_time_ns = matroska->duration * matroska->time_scale; // FIXME: this needs special handling for files where Cues appear // before Clusters. the current logic assumes Cues appear after // Clusters. cue_desc.end_offset = cues_start - matroska->segment_start; } return cue_desc; } static int webm_clusters_start_with_keyframe(AVFormatContext *s) { MatroskaDemuxContext *matroska = s->priv_data; uint32_t id = matroska->current_id; int64_t cluster_pos, before_pos; int index, rv = 1; if (s->streams[0]->nb_index_entries <= 0) return 0; // seek to the first cluster using cues. index = av_index_search_timestamp(s->streams[0], 0, 0); if (index < 0) return 0; cluster_pos = s->streams[0]->index_entries[index].pos; before_pos = avio_tell(s->pb); while (1) { uint64_t cluster_id, cluster_length; int read; AVPacket *pkt; avio_seek(s->pb, cluster_pos, SEEK_SET); // read cluster id and length read = ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id, 1); if (read < 0 || cluster_id != 0xF43B675) // done with all clusters break; read = ebml_read_length(matroska, matroska->ctx->pb, &cluster_length); if (read < 0) break; matroska_reset_status(matroska, 0, cluster_pos); matroska_clear_queue(matroska); if (matroska_parse_cluster(matroska) < 0 || !matroska->queue) { break; } pkt = &matroska->queue->pkt; // 4 + read is the length of the cluster id and the cluster length field. cluster_pos += 4 + read + cluster_length; if (!(pkt->flags & AV_PKT_FLAG_KEY)) { rv = 0; break; } } /* Restore the status after matroska_read_header: */ matroska_reset_status(matroska, id, before_pos); return rv; } static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps, double min_buffer, double* buffer, double* sec_to_download, AVFormatContext *s, int64_t cues_start) { double nano_seconds_per_second = 1000000000.0; double time_sec = time_ns / nano_seconds_per_second; int rv = 0; int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second); int64_t end_time_ns = time_ns + time_to_search_ns; double sec_downloaded = 0.0; CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start); if (desc_curr.start_time_ns == -1) return -1; *sec_to_download = 0.0; // Check for non cue start time. if (time_ns > desc_curr.start_time_ns) { int64_t cue_nano = desc_curr.end_time_ns - time_ns; double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns); double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent; double timeToDownload = (cueBytes * 8.0) / bps; sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload; *sec_to_download += timeToDownload; // Check if the search ends within the first cue. if (desc_curr.end_time_ns >= end_time_ns) { double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second; double percent_to_sub = search_sec / (desc_end_time_sec - time_sec); sec_downloaded = percent_to_sub * sec_downloaded; *sec_to_download = percent_to_sub * *sec_to_download; } if ((sec_downloaded + *buffer) <= min_buffer) { return 1; } // Get the next Cue. desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start); } while (desc_curr.start_time_ns != -1) { int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset; int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns; double desc_sec = desc_ns / nano_seconds_per_second; double bits = (desc_bytes * 8.0); double time_to_download = bits / bps; sec_downloaded += desc_sec - time_to_download; *sec_to_download += time_to_download; if (desc_curr.end_time_ns >= end_time_ns) { double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second; double percent_to_sub = search_sec / (desc_end_time_sec - time_sec); sec_downloaded = percent_to_sub * sec_downloaded; *sec_to_download = percent_to_sub * *sec_to_download; if ((sec_downloaded + *buffer) <= min_buffer) rv = 1; break; } if ((sec_downloaded + *buffer) <= min_buffer) { rv = 1; break; } desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start); } *buffer = *buffer + sec_downloaded; return rv; } /* This function computes the bandwidth of the WebM file with the help of * buffer_size_after_time_downloaded() function. Both of these functions are * adapted from WebM Tools project and are adapted to work with FFmpeg's * Matroska parsing mechanism. * * Returns the bandwidth of the file on success; -1 on error. * */ static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start) { MatroskaDemuxContext *matroska = s->priv_data; AVStream *st = s->streams[0]; double bandwidth = 0.0; int i; for (i = 0; i < st->nb_index_entries; i++) { int64_t prebuffer_ns = 1000000000; int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale; double nano_seconds_per_second = 1000000000.0; int64_t prebuffered_ns = time_ns + prebuffer_ns; double prebuffer_bytes = 0.0; int64_t temp_prebuffer_ns = prebuffer_ns; int64_t pre_bytes, pre_ns; double pre_sec, prebuffer, bits_per_second; CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start); // Start with the first Cue. CueDesc desc_end = desc_beg; // Figure out how much data we have downloaded for the prebuffer. This will // be used later to adjust the bits per sample to try. while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) { // Prebuffered the entire Cue. prebuffer_bytes += desc_end.end_offset - desc_end.start_offset; temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns; desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start); } if (desc_end.start_time_ns == -1) { // The prebuffer is larger than the duration. if (matroska->duration * matroska->time_scale >= prebuffered_ns) return -1; bits_per_second = 0.0; } else { // The prebuffer ends in the last Cue. Estimate how much data was // prebuffered. pre_bytes = desc_end.end_offset - desc_end.start_offset; pre_ns = desc_end.end_time_ns - desc_end.start_time_ns; pre_sec = pre_ns / nano_seconds_per_second; prebuffer_bytes += pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec); prebuffer = prebuffer_ns / nano_seconds_per_second; // Set this to 0.0 in case our prebuffer buffers the entire video. bits_per_second = 0.0; do { int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset; int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns; double desc_sec = desc_ns / nano_seconds_per_second; double calc_bits_per_second = (desc_bytes * 8) / desc_sec; // Drop the bps by the percentage of bytes buffered. double percent = (desc_bytes - prebuffer_bytes) / desc_bytes; double mod_bits_per_second = calc_bits_per_second * percent; if (prebuffer < desc_sec) { double search_sec = (double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second; // Add 1 so the bits per second should be a little bit greater than file // datarate. int64_t bps = (int64_t)(mod_bits_per_second) + 1; const double min_buffer = 0.0; double buffer = prebuffer; double sec_to_download = 0.0; int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps, min_buffer, &buffer, &sec_to_download, s, cues_start); if (rv < 0) { return -1; } else if (rv == 0) { bits_per_second = (double)(bps); break; } } desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start); } while (desc_end.start_time_ns != -1); } if (bandwidth < bits_per_second) bandwidth = bits_per_second; } return (int64_t)bandwidth; } static int webm_dash_manifest_cues(AVFormatContext *s, int64_t init_range) { MatroskaDemuxContext *matroska = s->priv_data; EbmlList *seekhead_list = &matroska->seekhead; MatroskaSeekhead *seekhead = seekhead_list->elem; char *buf; int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth; int i; int end = 0; // determine cues start and end positions for (i = 0; i < seekhead_list->nb_elem; i++) if (seekhead[i].id == MATROSKA_ID_CUES) break; if (i >= seekhead_list->nb_elem) return -1; before_pos = avio_tell(matroska->ctx->pb); cues_start = seekhead[i].pos + matroska->segment_start; if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) { // cues_end is computed as cues_start + cues_length + length of the // Cues element ID (i.e. 4) + EBML length of the Cues element. // cues_end is inclusive and the above sum is reduced by 1. uint64_t cues_length, cues_id; int bytes_read; bytes_read = ebml_read_num (matroska, matroska->ctx->pb, 4, &cues_id, 1); if (bytes_read < 0 || cues_id != (MATROSKA_ID_CUES & 0xfffffff)) return bytes_read < 0 ? bytes_read : AVERROR_INVALIDDATA; bytes_read = ebml_read_length(matroska, matroska->ctx->pb, &cues_length); if (bytes_read < 0) return bytes_read; cues_end = cues_start + 4 + bytes_read + cues_length - 1; } avio_seek(matroska->ctx->pb, before_pos, SEEK_SET); if (cues_start == -1 || cues_end == -1) return -1; // parse the cues matroska_parse_cues(matroska); // cues start av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0); // cues end av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0); // if the file has cues at the start, fix up the init range so that // it does not include it if (cues_start <= init_range) av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, cues_start - 1, 0); // bandwidth bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start); if (bandwidth < 0) return -1; av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0); // check if all clusters start with key frames av_dict_set_int(&s->streams[0]->metadata, CLUSTER_KEYFRAME, webm_clusters_start_with_keyframe(s), 0); // store cue point timestamps as a comma separated list for checking subsegment alignment in // the muxer. assumes that each timestamp cannot be more than 20 characters long. buf = av_malloc_array(s->streams[0]->nb_index_entries, 20); if (!buf) return -1; strcpy(buf, ""); for (i = 0; i < s->streams[0]->nb_index_entries; i++) { int ret = snprintf(buf + end, 20, "%" PRId64"%s", s->streams[0]->index_entries[i].timestamp, i != s->streams[0]->nb_index_entries - 1 ? "," : ""); if (ret <= 0 || (ret == 20 && i == s->streams[0]->nb_index_entries - 1)) { av_log(s, AV_LOG_ERROR, "timestamp too long.\n"); av_free(buf); return AVERROR_INVALIDDATA; } end += ret; } av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0); av_free(buf); return 0; } static int webm_dash_manifest_read_header(AVFormatContext *s) { char *buf; int ret = matroska_read_header(s); int64_t init_range; MatroskaTrack *tracks; MatroskaDemuxContext *matroska = s->priv_data; if (ret) { av_log(s, AV_LOG_ERROR, "Failed to read file headers\n"); return -1; } if (!s->nb_streams) { matroska_read_close(s); av_log(s, AV_LOG_ERROR, "No streams found\n"); return AVERROR_INVALIDDATA; } if (!matroska->is_live) { buf = av_asprintf("%g", matroska->duration); if (!buf) return AVERROR(ENOMEM); av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0); av_free(buf); // initialization range // 5 is the offset of Cluster ID. init_range = avio_tell(s->pb) - 5; av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, init_range, 0); } // basename of the file buf = strrchr(s->url, '/'); av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->url, 0); // track number tracks = matroska->tracks.elem; av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0); // parse the cues and populate Cue related fields if (!matroska->is_live) { ret = webm_dash_manifest_cues(s, init_range); if (ret < 0) { av_log(s, AV_LOG_ERROR, "Error parsing Cues\n"); return ret; } } // use the bandwidth from the command line if it was provided if (matroska->bandwidth > 0) { av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, matroska->bandwidth, 0); } return 0; } static int webm_dash_manifest_read_packet(AVFormatContext *s, AVPacket *pkt) { return AVERROR_EOF; } #define OFFSET(x) offsetof(MatroskaDemuxContext, x) static const AVOption options[] = { { "live", "flag indicating that the input is a live file that only has the headers.", OFFSET(is_live), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, AV_OPT_FLAG_DECODING_PARAM }, { "bandwidth", "bandwidth of this stream to be specified in the DASH manifest.", OFFSET(bandwidth), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, AV_OPT_FLAG_DECODING_PARAM }, { NULL }, }; static const AVClass webm_dash_class = { .class_name = "WebM DASH Manifest demuxer", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVInputFormat ff_matroska_demuxer = { .name = "matroska,webm", .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"), .extensions = "mkv,mk3d,mka,mks", .priv_data_size = sizeof(MatroskaDemuxContext), .read_probe = matroska_probe, .read_header = matroska_read_header, .read_packet = matroska_read_packet, .read_close = matroska_read_close, .read_seek = matroska_read_seek, .mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska" }; AVInputFormat ff_webm_dash_manifest_demuxer = { .name = "webm_dash_manifest", .long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"), .priv_data_size = sizeof(MatroskaDemuxContext), .read_header = webm_dash_manifest_read_header, .read_packet = webm_dash_manifest_read_packet, .read_close = matroska_read_close, .priv_class = &webm_dash_class, };