/* * WavPack lossless audio decoder * Copyright (c) 2006,2011 Konstantin Shishkov * Copyright (c) 2020 David Bryant * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/channel_layout.h" #include "libavutil/mem.h" #define BITSTREAM_READER_LE #include "avcodec.h" #include "bytestream.h" #include "codec_internal.h" #include "get_bits.h" #include "libavutil/refstruct.h" #include "thread.h" #include "threadprogress.h" #include "unary.h" #include "wavpack.h" #include "dsd.h" /** * @file * WavPack lossless audio decoder */ #define DSD_BYTE_READY(low,high) (!(((low) ^ (high)) & 0xff000000)) #define PTABLE_BITS 8 #define PTABLE_BINS (1<> 8) static av_always_inline unsigned get_tail(GetBitContext *gb, unsigned k) { int p, e, res; if (k < 1) return 0; p = av_log2(k); e = (1LL << (p + 1)) - k - 1; res = get_bits_long(gb, p); if (res >= e) res = res * 2U - e + get_bits1(gb); return res; } static int update_error_limit(WavpackFrameContext *ctx) { int i, br[2], sl[2]; for (i = 0; i <= ctx->stereo_in; i++) { if (ctx->ch[i].bitrate_acc > UINT_MAX - ctx->ch[i].bitrate_delta) return AVERROR_INVALIDDATA; ctx->ch[i].bitrate_acc += ctx->ch[i].bitrate_delta; br[i] = ctx->ch[i].bitrate_acc >> 16; sl[i] = LEVEL_DECAY(ctx->ch[i].slow_level); } if (ctx->stereo_in && ctx->hybrid_bitrate) { int balance = (sl[1] - sl[0] + br[1] + 1) >> 1; if (balance > br[0]) { br[1] = br[0] * 2; br[0] = 0; } else if (-balance > br[0]) { br[0] *= 2; br[1] = 0; } else { br[1] = br[0] + balance; br[0] = br[0] - balance; } } for (i = 0; i <= ctx->stereo_in; i++) { if (ctx->hybrid_bitrate) { if (sl[i] - br[i] > -0x100) ctx->ch[i].error_limit = wp_exp2(sl[i] - br[i] + 0x100); else ctx->ch[i].error_limit = 0; } else { ctx->ch[i].error_limit = wp_exp2(br[i]); } } return 0; } static int wv_get_value(WavpackFrameContext *ctx, GetBitContext *gb, int channel, int *last) { int t, t2; int sign, base, add, ret; WvChannel *c = &ctx->ch[channel]; *last = 0; if ((ctx->ch[0].median[0] < 2U) && (ctx->ch[1].median[0] < 2U) && !ctx->zero && !ctx->one) { if (ctx->zeroes) { ctx->zeroes--; if (ctx->zeroes) { c->slow_level -= LEVEL_DECAY(c->slow_level); return 0; } } else { t = get_unary_0_33(gb); if (t >= 2) { if (t >= 32 || get_bits_left(gb) < t - 1) goto error; t = get_bits_long(gb, t - 1) | (1 << (t - 1)); } else { if (get_bits_left(gb) < 0) goto error; } ctx->zeroes = t; if (ctx->zeroes) { memset(ctx->ch[0].median, 0, sizeof(ctx->ch[0].median)); memset(ctx->ch[1].median, 0, sizeof(ctx->ch[1].median)); c->slow_level -= LEVEL_DECAY(c->slow_level); return 0; } } } if (ctx->zero) { t = 0; ctx->zero = 0; } else { t = get_unary_0_33(gb); if (get_bits_left(gb) < 0) goto error; if (t == 16) { t2 = get_unary_0_33(gb); if (t2 < 2) { if (get_bits_left(gb) < 0) goto error; t += t2; } else { if (t2 >= 32 || get_bits_left(gb) < t2 - 1) goto error; t += get_bits_long(gb, t2 - 1) | (1 << (t2 - 1)); } } if (ctx->one) { ctx->one = t & 1; t = (t >> 1) + 1; } else { ctx->one = t & 1; t >>= 1; } ctx->zero = !ctx->one; } if (ctx->hybrid && !channel) { if (update_error_limit(ctx) < 0) goto error; } if (!t) { base = 0; add = GET_MED(0) - 1; DEC_MED(0); } else if (t == 1) { base = GET_MED(0); add = GET_MED(1) - 1; INC_MED(0); DEC_MED(1); } else if (t == 2) { base = GET_MED(0) + GET_MED(1); add = GET_MED(2) - 1; INC_MED(0); INC_MED(1); DEC_MED(2); } else { base = GET_MED(0) + GET_MED(1) + GET_MED(2) * (t - 2U); add = GET_MED(2) - 1; INC_MED(0); INC_MED(1); INC_MED(2); } if (!c->error_limit) { ret = base + get_tail(gb, add); if (get_bits_left(gb) <= 0) goto error; } else { int mid = (base * 2U + add + 1) >> 1; while (add > c->error_limit) { if (get_bits_left(gb) <= 0) goto error; if (get_bits1(gb)) { add -= (mid - (unsigned)base); base = mid; } else add = mid - (unsigned)base - 1; mid = (base * 2U + add + 1) >> 1; } ret = mid; } sign = get_bits1(gb); if (ctx->hybrid_bitrate) c->slow_level += wp_log2(ret) - LEVEL_DECAY(c->slow_level); return sign ? ~ret : ret; error: ret = get_bits_left(gb); if (ret <= 0) { av_log(ctx->avctx, AV_LOG_ERROR, "Too few bits (%d) left\n", ret); } *last = 1; return 0; } static inline int wv_get_value_integer(WavpackFrameContext *s, uint32_t *crc, unsigned S) { unsigned bit; if (s->extra_bits) { S *= 1 << s->extra_bits; if (s->got_extra_bits && get_bits_left(&s->gb_extra_bits) >= s->extra_bits) { S |= get_bits_long(&s->gb_extra_bits, s->extra_bits); *crc = *crc * 9 + (S & 0xffff) * 3 + ((unsigned)S >> 16); } } bit = (S & s->and) | s->or; bit = ((S + bit) << s->shift) - bit; if (s->hybrid) bit = av_clip(bit, s->hybrid_minclip, s->hybrid_maxclip); return bit << s->post_shift; } static float wv_get_value_float(WavpackFrameContext *s, uint32_t *crc, int S) { union { float f; uint32_t u; } value; unsigned int sign; int exp = s->float_max_exp; if (s->got_extra_bits) { const int max_bits = 1 + 23 + 8 + 1; const int left_bits = get_bits_left(&s->gb_extra_bits); if (left_bits + 8 * AV_INPUT_BUFFER_PADDING_SIZE < max_bits) return 0.0; } if (S) { S *= 1U << s->float_shift; sign = S < 0; if (sign) S = -(unsigned)S; if (S >= 0x1000000U) { if (s->got_extra_bits && get_bits1(&s->gb_extra_bits)) S = get_bits(&s->gb_extra_bits, 23); else S = 0; exp = 255; } else if (exp) { int shift = 23 - av_log2(S); exp = s->float_max_exp; if (exp <= shift) shift = --exp; exp -= shift; if (shift) { S <<= shift; if ((s->float_flag & WV_FLT_SHIFT_ONES) || (s->got_extra_bits && (s->float_flag & WV_FLT_SHIFT_SAME) && get_bits1(&s->gb_extra_bits))) { S |= (1 << shift) - 1; } else if (s->got_extra_bits && (s->float_flag & WV_FLT_SHIFT_SENT)) { S |= get_bits(&s->gb_extra_bits, shift); } } } else { exp = s->float_max_exp; } S &= 0x7fffff; } else { sign = 0; exp = 0; if (s->got_extra_bits && (s->float_flag & WV_FLT_ZERO_SENT)) { if (get_bits1(&s->gb_extra_bits)) { S = get_bits(&s->gb_extra_bits, 23); if (s->float_max_exp >= 25) exp = get_bits(&s->gb_extra_bits, 8); sign = get_bits1(&s->gb_extra_bits); } else { if (s->float_flag & WV_FLT_ZERO_SIGN) sign = get_bits1(&s->gb_extra_bits); } } } *crc = *crc * 27 + S * 9 + exp * 3 + sign; value.u = (sign << 31) | (exp << 23) | S; return value.f; } static inline int wv_check_crc(WavpackFrameContext *s, uint32_t crc, uint32_t crc_extra_bits) { if (crc != s->CRC) { av_log(s->avctx, AV_LOG_ERROR, "CRC error\n"); return AVERROR_INVALIDDATA; } if (s->got_extra_bits && crc_extra_bits != s->crc_extra_bits) { av_log(s->avctx, AV_LOG_ERROR, "Extra bits CRC error\n"); return AVERROR_INVALIDDATA; } return 0; } static void init_ptable(int *table, int rate_i, int rate_s) { int value = 0x808000, rate = rate_i << 8; for (int c = (rate + 128) >> 8; c--;) value += (DOWN - value) >> DECAY; for (int i = 0; i < PTABLE_BINS/2; i++) { table[i] = value; table[PTABLE_BINS-1-i] = 0x100ffff - value; if (value > 0x010000) { rate += (rate * rate_s + 128) >> 8; for (int c = (rate + 64) >> 7; c--;) value += (DOWN - value) >> DECAY; } } } typedef struct { int32_t value, fltr0, fltr1, fltr2, fltr3, fltr4, fltr5, fltr6, factor; unsigned int byte; } DSDfilters; static int wv_unpack_dsd_high(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right) { uint32_t checksum = 0xFFFFFFFF; uint8_t *dst_l = dst_left, *dst_r = dst_right; int total_samples = s->samples, stereo = dst_r ? 1 : 0; DSDfilters filters[2], *sp = filters; int rate_i, rate_s; uint32_t low, high, value; if (bytestream2_get_bytes_left(&s->gbyte) < (stereo ? 20 : 13)) return AVERROR_INVALIDDATA; rate_i = bytestream2_get_byte(&s->gbyte); rate_s = bytestream2_get_byte(&s->gbyte); if (rate_s != RATE_S) return AVERROR_INVALIDDATA; init_ptable(s->ptable, rate_i, rate_s); for (int channel = 0; channel < stereo + 1; channel++) { DSDfilters *sp = filters + channel; sp->fltr1 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8); sp->fltr2 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8); sp->fltr3 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8); sp->fltr4 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8); sp->fltr5 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8); sp->fltr6 = 0; sp->factor = bytestream2_get_byte(&s->gbyte) & 0xff; sp->factor |= (bytestream2_get_byte(&s->gbyte) << 8) & 0xff00; sp->factor = (int32_t)((uint32_t)sp->factor << 16) >> 16; } value = bytestream2_get_be32(&s->gbyte); high = 0xffffffff; low = 0x0; while (total_samples--) { int bitcount = 8; sp[0].value = sp[0].fltr1 - sp[0].fltr5 + ((sp[0].fltr6 * sp[0].factor) >> 2); if (stereo) sp[1].value = sp[1].fltr1 - sp[1].fltr5 + ((sp[1].fltr6 * sp[1].factor) >> 2); while (bitcount--) { int32_t *pp = s->ptable + ((sp[0].value >> (PRECISION - PRECISION_USE)) & PTABLE_MASK); uint32_t split = low + ((high - low) >> 8) * (*pp >> 16); if (value <= split) { high = split; *pp += (UP - *pp) >> DECAY; sp[0].fltr0 = -1; } else { low = split + 1; *pp += (DOWN - *pp) >> DECAY; sp[0].fltr0 = 0; } if (DSD_BYTE_READY(high, low) && !bytestream2_get_bytes_left(&s->gbyte)) return AVERROR_INVALIDDATA; while (DSD_BYTE_READY(high, low) && bytestream2_get_bytes_left(&s->gbyte)) { value = (value << 8) | bytestream2_get_byte(&s->gbyte); high = (high << 8) | 0xff; low <<= 8; } sp[0].value += sp[0].fltr6 * 8; sp[0].byte = (sp[0].byte << 1) | (sp[0].fltr0 & 1); sp[0].factor += (((sp[0].value ^ sp[0].fltr0) >> 31) | 1) & ((sp[0].value ^ (sp[0].value - (sp[0].fltr6 * 16))) >> 31); sp[0].fltr1 += ((sp[0].fltr0 & VALUE_ONE) - sp[0].fltr1) >> 6; sp[0].fltr2 += ((sp[0].fltr0 & VALUE_ONE) - sp[0].fltr2) >> 4; sp[0].fltr3 += (sp[0].fltr2 - sp[0].fltr3) >> 4; sp[0].fltr4 += (sp[0].fltr3 - sp[0].fltr4) >> 4; sp[0].value = (sp[0].fltr4 - sp[0].fltr5) >> 4; sp[0].fltr5 += sp[0].value; sp[0].fltr6 += (sp[0].value - sp[0].fltr6) >> 3; sp[0].value = sp[0].fltr1 - sp[0].fltr5 + ((sp[0].fltr6 * sp[0].factor) >> 2); if (!stereo) continue; pp = s->ptable + ((sp[1].value >> (PRECISION - PRECISION_USE)) & PTABLE_MASK); split = low + ((high - low) >> 8) * (*pp >> 16); if (value <= split) { high = split; *pp += (UP - *pp) >> DECAY; sp[1].fltr0 = -1; } else { low = split + 1; *pp += (DOWN - *pp) >> DECAY; sp[1].fltr0 = 0; } if (DSD_BYTE_READY(high, low) && !bytestream2_get_bytes_left(&s->gbyte)) return AVERROR_INVALIDDATA; while (DSD_BYTE_READY(high, low) && bytestream2_get_bytes_left(&s->gbyte)) { value = (value << 8) | bytestream2_get_byte(&s->gbyte); high = (high << 8) | 0xff; low <<= 8; } sp[1].value += sp[1].fltr6 * 8; sp[1].byte = (sp[1].byte << 1) | (sp[1].fltr0 & 1); sp[1].factor += (((sp[1].value ^ sp[1].fltr0) >> 31) | 1) & ((sp[1].value ^ (sp[1].value - (sp[1].fltr6 * 16))) >> 31); sp[1].fltr1 += ((sp[1].fltr0 & VALUE_ONE) - sp[1].fltr1) >> 6; sp[1].fltr2 += ((sp[1].fltr0 & VALUE_ONE) - sp[1].fltr2) >> 4; sp[1].fltr3 += (sp[1].fltr2 - sp[1].fltr3) >> 4; sp[1].fltr4 += (sp[1].fltr3 - sp[1].fltr4) >> 4; sp[1].value = (sp[1].fltr4 - sp[1].fltr5) >> 4; sp[1].fltr5 += sp[1].value; sp[1].fltr6 += (sp[1].value - sp[1].fltr6) >> 3; sp[1].value = sp[1].fltr1 - sp[1].fltr5 + ((sp[1].fltr6 * sp[1].factor) >> 2); } checksum += (checksum << 1) + (*dst_l = sp[0].byte & 0xff); sp[0].factor -= (sp[0].factor + 512) >> 10; dst_l += 4; if (stereo) { checksum += (checksum << 1) + (*dst_r = filters[1].byte & 0xff); filters[1].factor -= (filters[1].factor + 512) >> 10; dst_r += 4; } } if (wv_check_crc(s, checksum, 0)) { if (s->avctx->err_recognition & AV_EF_CRCCHECK) return AVERROR_INVALIDDATA; memset(dst_left, 0x69, s->samples * 4); if (dst_r) memset(dst_right, 0x69, s->samples * 4); } return 0; } static int wv_unpack_dsd_fast(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right) { uint8_t *dst_l = dst_left, *dst_r = dst_right; uint8_t history_bits, max_probability; int total_summed_probabilities = 0; int total_samples = s->samples; uint8_t *vlb = s->value_lookup_buffer; int history_bins, p0, p1, chan; uint32_t checksum = 0xFFFFFFFF; uint32_t low, high, value; if (!bytestream2_get_bytes_left(&s->gbyte)) return AVERROR_INVALIDDATA; history_bits = bytestream2_get_byte(&s->gbyte); if (!bytestream2_get_bytes_left(&s->gbyte) || history_bits > MAX_HISTORY_BITS) return AVERROR_INVALIDDATA; history_bins = 1 << history_bits; max_probability = bytestream2_get_byte(&s->gbyte); if (max_probability < 0xff) { uint8_t *outptr = (uint8_t *)s->probabilities; uint8_t *outend = outptr + sizeof(*s->probabilities) * history_bins; while (outptr < outend && bytestream2_get_bytes_left(&s->gbyte)) { int code = bytestream2_get_byte(&s->gbyte); if (code > max_probability) { int zcount = code - max_probability; while (outptr < outend && zcount--) *outptr++ = 0; } else if (code) { *outptr++ = code; } else { break; } } if (outptr < outend || (bytestream2_get_bytes_left(&s->gbyte) && bytestream2_get_byte(&s->gbyte))) return AVERROR_INVALIDDATA; } else if (bytestream2_get_bytes_left(&s->gbyte) > (int)sizeof(*s->probabilities) * history_bins) { bytestream2_get_buffer(&s->gbyte, (uint8_t *)s->probabilities, sizeof(*s->probabilities) * history_bins); } else { return AVERROR_INVALIDDATA; } for (p0 = 0; p0 < history_bins; p0++) { int32_t sum_values = 0; for (int i = 0; i < 256; i++) s->summed_probabilities[p0][i] = sum_values += s->probabilities[p0][i]; if (sum_values) { total_summed_probabilities += sum_values; if (total_summed_probabilities > history_bins * MAX_BIN_BYTES) return AVERROR_INVALIDDATA; s->value_lookup[p0] = vlb; for (int i = 0; i < 256; i++) { int c = s->probabilities[p0][i]; while (c--) *vlb++ = i; } } } if (bytestream2_get_bytes_left(&s->gbyte) < 4) return AVERROR_INVALIDDATA; chan = p0 = p1 = 0; low = 0; high = 0xffffffff; value = bytestream2_get_be32(&s->gbyte); if (dst_r) total_samples *= 2; while (total_samples--) { unsigned int mult, index, code; if (!s->summed_probabilities[p0][255]) return AVERROR_INVALIDDATA; mult = (high - low) / s->summed_probabilities[p0][255]; if (!mult) { if (bytestream2_get_bytes_left(&s->gbyte) >= 4) value = bytestream2_get_be32(&s->gbyte); low = 0; high = 0xffffffff; mult = high / s->summed_probabilities[p0][255]; if (!mult) return AVERROR_INVALIDDATA; } index = (value - low) / mult; if (index >= s->summed_probabilities[p0][255]) return AVERROR_INVALIDDATA; if (!dst_r) { if ((*dst_l = code = s->value_lookup[p0][index])) low += s->summed_probabilities[p0][code-1] * mult; dst_l += 4; } else { if ((code = s->value_lookup[p0][index])) low += s->summed_probabilities[p0][code-1] * mult; if (chan) { *dst_r = code; dst_r += 4; } else { *dst_l = code; dst_l += 4; } chan ^= 1; } high = low + s->probabilities[p0][code] * mult - 1; checksum += (checksum << 1) + code; if (!dst_r) { p0 = code & (history_bins-1); } else { p0 = p1; p1 = code & (history_bins-1); } while (DSD_BYTE_READY(high, low) && bytestream2_get_bytes_left(&s->gbyte)) { value = (value << 8) | bytestream2_get_byte(&s->gbyte); high = (high << 8) | 0xff; low <<= 8; } } if (wv_check_crc(s, checksum, 0)) { if (s->avctx->err_recognition & AV_EF_CRCCHECK) return AVERROR_INVALIDDATA; memset(dst_left, 0x69, s->samples * 4); if (dst_r) memset(dst_right, 0x69, s->samples * 4); } return 0; } static int wv_unpack_dsd_copy(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right) { uint8_t *dst_l = dst_left, *dst_r = dst_right; int total_samples = s->samples; uint32_t checksum = 0xFFFFFFFF; if (bytestream2_get_bytes_left(&s->gbyte) != total_samples * (dst_r ? 2 : 1)) return AVERROR_INVALIDDATA; while (total_samples--) { checksum += (checksum << 1) + (*dst_l = bytestream2_get_byte(&s->gbyte)); dst_l += 4; if (dst_r) { checksum += (checksum << 1) + (*dst_r = bytestream2_get_byte(&s->gbyte)); dst_r += 4; } } if (wv_check_crc(s, checksum, 0)) { if (s->avctx->err_recognition & AV_EF_CRCCHECK) return AVERROR_INVALIDDATA; memset(dst_left, 0x69, s->samples * 4); if (dst_r) memset(dst_right, 0x69, s->samples * 4); } return 0; } static inline int wv_unpack_stereo(WavpackFrameContext *s, GetBitContext *gb, void *dst_l, void *dst_r, const int type) { int i, j, count = 0; int last, t; int A, B, L, L2, R, R2; int pos = 0; uint32_t crc = 0xFFFFFFFF; uint32_t crc_extra_bits = 0xFFFFFFFF; int16_t *dst16_l = dst_l; int16_t *dst16_r = dst_r; int32_t *dst32_l = dst_l; int32_t *dst32_r = dst_r; float *dstfl_l = dst_l; float *dstfl_r = dst_r; s->one = s->zero = s->zeroes = 0; do { L = wv_get_value(s, gb, 0, &last); if (last) break; R = wv_get_value(s, gb, 1, &last); if (last) break; for (i = 0; i < s->terms; i++) { Decorr *decorr = &s->decorr[i]; t = decorr->value; if (t > 0) { if (t > 8) { if (t & 1) { A = 2U * decorr->samplesA[0] - decorr->samplesA[1]; B = 2U * decorr->samplesB[0] - decorr->samplesB[1]; } else { A = (int)(3U * decorr->samplesA[0] - decorr->samplesA[1]) >> 1; B = (int)(3U * decorr->samplesB[0] - decorr->samplesB[1]) >> 1; } decorr->samplesA[1] = decorr->samplesA[0]; decorr->samplesB[1] = decorr->samplesB[0]; j = 0; } else { A = decorr->samplesA[pos]; B = decorr->samplesB[pos]; j = (pos + t) & 7; } if (type != AV_SAMPLE_FMT_S16P) { L2 = L + ((decorr->weightA * (int64_t)A + 512) >> 10); R2 = R + ((decorr->weightB * (int64_t)B + 512) >> 10); } else { L2 = L + (unsigned)((int)(decorr->weightA * (unsigned)A + 512) >> 10); R2 = R + (unsigned)((int)(decorr->weightB * (unsigned)B + 512) >> 10); } if (A && L) decorr->weightA -= ((((L ^ A) >> 30) & 2) - 1) * decorr->delta; if (B && R) decorr->weightB -= ((((R ^ B) >> 30) & 2) - 1) * decorr->delta; decorr->samplesA[j] = L = L2; decorr->samplesB[j] = R = R2; } else if (t == -1) { if (type != AV_SAMPLE_FMT_S16P) L2 = L + ((decorr->weightA * (int64_t)decorr->samplesA[0] + 512) >> 10); else L2 = L + (unsigned)((int)(decorr->weightA * (unsigned)decorr->samplesA[0] + 512) >> 10); UPDATE_WEIGHT_CLIP(decorr->weightA, decorr->delta, decorr->samplesA[0], L); L = L2; if (type != AV_SAMPLE_FMT_S16P) R2 = R + ((decorr->weightB * (int64_t)L2 + 512) >> 10); else R2 = R + (unsigned)((int)(decorr->weightB * (unsigned)L2 + 512) >> 10); UPDATE_WEIGHT_CLIP(decorr->weightB, decorr->delta, L2, R); R = R2; decorr->samplesA[0] = R; } else { if (type != AV_SAMPLE_FMT_S16P) R2 = R + ((decorr->weightB * (int64_t)decorr->samplesB[0] + 512) >> 10); else R2 = R + (unsigned)((int)(decorr->weightB * (unsigned)decorr->samplesB[0] + 512) >> 10); UPDATE_WEIGHT_CLIP(decorr->weightB, decorr->delta, decorr->samplesB[0], R); R = R2; if (t == -3) { R2 = decorr->samplesA[0]; decorr->samplesA[0] = R; } if (type != AV_SAMPLE_FMT_S16P) L2 = L + ((decorr->weightA * (int64_t)R2 + 512) >> 10); else L2 = L + (unsigned)((int)(decorr->weightA * (unsigned)R2 + 512) >> 10); UPDATE_WEIGHT_CLIP(decorr->weightA, decorr->delta, R2, L); L = L2; decorr->samplesB[0] = L; } } if (type == AV_SAMPLE_FMT_S16P) { if (FFABS((int64_t)L) + FFABS((int64_t)R) > (1<<19)) { av_log(s->avctx, AV_LOG_ERROR, "sample %d %d too large\n", L, R); return AVERROR_INVALIDDATA; } } pos = (pos + 1) & 7; if (s->joint) L += (unsigned)(R -= (unsigned)(L >> 1)); crc = (crc * 3 + L) * 3 + R; if (type == AV_SAMPLE_FMT_FLTP) { *dstfl_l++ = wv_get_value_float(s, &crc_extra_bits, L); *dstfl_r++ = wv_get_value_float(s, &crc_extra_bits, R); } else if (type == AV_SAMPLE_FMT_S32P) { *dst32_l++ = wv_get_value_integer(s, &crc_extra_bits, L); *dst32_r++ = wv_get_value_integer(s, &crc_extra_bits, R); } else { *dst16_l++ = wv_get_value_integer(s, &crc_extra_bits, L); *dst16_r++ = wv_get_value_integer(s, &crc_extra_bits, R); } count++; } while (!last && count < s->samples); if (last && count < s->samples) { int size = av_get_bytes_per_sample(type); memset((uint8_t*)dst_l + count*size, 0, (s->samples-count)*size); memset((uint8_t*)dst_r + count*size, 0, (s->samples-count)*size); } if ((s->avctx->err_recognition & AV_EF_CRCCHECK) && wv_check_crc(s, crc, crc_extra_bits)) return AVERROR_INVALIDDATA; return 0; } static inline int wv_unpack_mono(WavpackFrameContext *s, GetBitContext *gb, void *dst, const int type) { int i, j, count = 0; int last, t; int A, S, T; int pos = 0; uint32_t crc = 0xFFFFFFFF; uint32_t crc_extra_bits = 0xFFFFFFFF; int16_t *dst16 = dst; int32_t *dst32 = dst; float *dstfl = dst; s->one = s->zero = s->zeroes = 0; do { T = wv_get_value(s, gb, 0, &last); S = 0; if (last) break; for (i = 0; i < s->terms; i++) { Decorr *decorr = &s->decorr[i]; t = decorr->value; if (t > 8) { if (t & 1) A = 2U * decorr->samplesA[0] - decorr->samplesA[1]; else A = (int)(3U * decorr->samplesA[0] - decorr->samplesA[1]) >> 1; decorr->samplesA[1] = decorr->samplesA[0]; j = 0; } else { A = decorr->samplesA[pos]; j = (pos + t) & 7; } if (type != AV_SAMPLE_FMT_S16P) S = T + ((decorr->weightA * (int64_t)A + 512) >> 10); else S = T + (unsigned)((int)(decorr->weightA * (unsigned)A + 512) >> 10); if (A && T) decorr->weightA -= ((((T ^ A) >> 30) & 2) - 1) * decorr->delta; decorr->samplesA[j] = T = S; } pos = (pos + 1) & 7; crc = crc * 3 + S; if (type == AV_SAMPLE_FMT_FLTP) { *dstfl++ = wv_get_value_float(s, &crc_extra_bits, S); } else if (type == AV_SAMPLE_FMT_S32P) { *dst32++ = wv_get_value_integer(s, &crc_extra_bits, S); } else { *dst16++ = wv_get_value_integer(s, &crc_extra_bits, S); } count++; } while (!last && count < s->samples); if (last && count < s->samples) { int size = av_get_bytes_per_sample(type); memset((uint8_t*)dst + count*size, 0, (s->samples-count)*size); } if (s->avctx->err_recognition & AV_EF_CRCCHECK) { int ret = wv_check_crc(s, crc, crc_extra_bits); if (ret < 0 && s->avctx->err_recognition & AV_EF_EXPLODE) return ret; } return 0; } static av_cold int wv_alloc_frame_context(WavpackContext *c) { WavpackFrameContext **fdec = av_realloc_array(c->fdec, c->fdec_num + 1, sizeof(*c->fdec)); if (!fdec) return -1; c->fdec = fdec; c->fdec[c->fdec_num] = av_mallocz(sizeof(**c->fdec)); if (!c->fdec[c->fdec_num]) return -1; c->fdec_num++; c->fdec[c->fdec_num - 1]->avctx = c->avctx; return 0; } static int wv_dsd_reset(WavpackContext *s, int channels) { int i; s->dsd_channels = 0; av_refstruct_unref(&s->dsdctx); av_refstruct_unref(&s->curr_progress); av_refstruct_unref(&s->prev_progress); if (!channels) return 0; if (WV_MAX_CHANNELS > SIZE_MAX / sizeof(*s->dsdctx) && channels > SIZE_MAX / sizeof(*s->dsdctx)) return AVERROR(EINVAL); s->dsdctx = av_refstruct_allocz(channels * sizeof(*s->dsdctx)); if (!s->dsdctx) return AVERROR(ENOMEM); s->dsd_channels = channels; for (i = 0; i < channels; i++) memset(s->dsdctx[i].buf, 0x69, sizeof(s->dsdctx[i].buf)); ff_init_dsd_data(); return 0; } #if HAVE_THREADS static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { WavpackContext *fsrc = src->priv_data; WavpackContext *fdst = dst->priv_data; av_refstruct_replace(&fdst->curr_progress, fsrc->curr_progress); av_refstruct_replace(&fdst->dsdctx, fsrc->dsdctx); fdst->dsd_channels = fsrc->dsd_channels; return 0; } static av_cold int progress_pool_init_cb(AVRefStructOpaque opaque, void *obj) { ThreadProgress *progress = obj; return ff_thread_progress_init(progress, 1); } static void progress_pool_reset_cb(AVRefStructOpaque opaque, void *obj) { ThreadProgress *progress = obj; ff_thread_progress_reset(progress); } static av_cold void progress_pool_free_entry_cb(AVRefStructOpaque opaque, void *obj) { ThreadProgress *progress = obj; ff_thread_progress_destroy(progress); } #endif static av_cold int wavpack_decode_init(AVCodecContext *avctx) { WavpackContext *s = avctx->priv_data; s->avctx = avctx; s->fdec_num = 0; #if HAVE_THREADS if (ff_thread_sync_ref(avctx, offsetof(WavpackContext, progress_pool)) == FF_THREAD_IS_FIRST_THREAD) { s->progress_pool = av_refstruct_pool_alloc_ext(sizeof(*s->curr_progress), AV_REFSTRUCT_POOL_FLAG_FREE_ON_INIT_ERROR, NULL, progress_pool_init_cb, progress_pool_reset_cb, progress_pool_free_entry_cb, NULL); if (!s->progress_pool) return AVERROR(ENOMEM); } #endif return 0; } static av_cold int wavpack_decode_end(AVCodecContext *avctx) { WavpackContext *s = avctx->priv_data; for (int i = 0; i < s->fdec_num; i++) av_freep(&s->fdec[i]); av_freep(&s->fdec); s->fdec_num = 0; av_refstruct_pool_uninit(&s->progress_pool); wv_dsd_reset(s, 0); return 0; } static int wavpack_decode_block(AVCodecContext *avctx, AVFrame *frame, int block_no, const uint8_t *buf, int buf_size, int *new_progress) { WavpackContext *wc = avctx->priv_data; WavpackFrameContext *s; GetByteContext gb; enum AVSampleFormat sample_fmt; void *samples_l = NULL, *samples_r = NULL; int ret; int got_terms = 0, got_weights = 0, got_samples = 0, got_entropy = 0, got_pcm = 0, got_float = 0, got_hybrid = 0; int got_dsd = 0; int i, j, id, size, ssize, weights, t; int bpp, chan = 0, orig_bpp, sample_rate = 0, rate_x = 1, dsd_mode = 0; int multiblock; uint64_t chmask = 0; if (block_no >= wc->fdec_num && wv_alloc_frame_context(wc) < 0) { av_log(avctx, AV_LOG_ERROR, "Error creating frame decode context\n"); return AVERROR_INVALIDDATA; } s = wc->fdec[block_no]; memset(s->decorr, 0, MAX_TERMS * sizeof(Decorr)); memset(s->ch, 0, sizeof(s->ch)); s->extra_bits = 0; s->and = s->or = s->shift = 0; s->got_extra_bits = 0; bytestream2_init(&gb, buf, buf_size); s->samples = bytestream2_get_le32(&gb); if (s->samples != wc->samples) { av_log(avctx, AV_LOG_ERROR, "Mismatching number of samples in " "a sequence: %d and %d\n", wc->samples, s->samples); return AVERROR_INVALIDDATA; } s->frame_flags = bytestream2_get_le32(&gb); if (s->frame_flags & (WV_FLOAT_DATA | WV_DSD_DATA)) sample_fmt = AV_SAMPLE_FMT_FLTP; else if ((s->frame_flags & 0x03) <= 1) sample_fmt = AV_SAMPLE_FMT_S16P; else sample_fmt = AV_SAMPLE_FMT_S32P; if (wc->ch_offset && avctx->sample_fmt != sample_fmt) return AVERROR_INVALIDDATA; bpp = av_get_bytes_per_sample(sample_fmt); orig_bpp = ((s->frame_flags & 0x03) + 1) << 3; multiblock = (s->frame_flags & WV_SINGLE_BLOCK) != WV_SINGLE_BLOCK; s->stereo = !(s->frame_flags & WV_MONO); s->stereo_in = (s->frame_flags & WV_FALSE_STEREO) ? 0 : s->stereo; s->joint = s->frame_flags & WV_JOINT_STEREO; s->hybrid = s->frame_flags & WV_HYBRID_MODE; s->hybrid_bitrate = s->frame_flags & WV_HYBRID_BITRATE; s->post_shift = bpp * 8 - orig_bpp + ((s->frame_flags >> 13) & 0x1f); if (s->post_shift < 0 || s->post_shift > 31) { return AVERROR_INVALIDDATA; } s->hybrid_maxclip = ((1LL << (orig_bpp - 1)) - 1); s->hybrid_minclip = ((-1UL << (orig_bpp - 1))); s->CRC = bytestream2_get_le32(&gb); // parse metadata blocks while (bytestream2_get_bytes_left(&gb)) { id = bytestream2_get_byte(&gb); size = bytestream2_get_byte(&gb); if (id & WP_IDF_LONG) size |= (bytestream2_get_le16u(&gb)) << 8; size <<= 1; // size is specified in words ssize = size; if (id & WP_IDF_ODD) size--; if (size < 0) { av_log(avctx, AV_LOG_ERROR, "Got incorrect block %02X with size %i\n", id, size); break; } if (bytestream2_get_bytes_left(&gb) < ssize) { av_log(avctx, AV_LOG_ERROR, "Block size %i is out of bounds\n", size); break; } switch (id & WP_IDF_MASK) { case WP_ID_DECTERMS: if (size > MAX_TERMS) { av_log(avctx, AV_LOG_ERROR, "Too many decorrelation terms\n"); s->terms = 0; bytestream2_skip(&gb, ssize); continue; } s->terms = size; for (i = 0; i < s->terms; i++) { uint8_t val = bytestream2_get_byte(&gb); s->decorr[s->terms - i - 1].value = (val & 0x1F) - 5; s->decorr[s->terms - i - 1].delta = val >> 5; } got_terms = 1; break; case WP_ID_DECWEIGHTS: if (!got_terms) { av_log(avctx, AV_LOG_ERROR, "No decorrelation terms met\n"); continue; } weights = size >> s->stereo_in; if (weights > MAX_TERMS || weights > s->terms) { av_log(avctx, AV_LOG_ERROR, "Too many decorrelation weights\n"); bytestream2_skip(&gb, ssize); continue; } for (i = 0; i < weights; i++) { t = (int8_t)bytestream2_get_byte(&gb); s->decorr[s->terms - i - 1].weightA = t * (1 << 3); if (s->decorr[s->terms - i - 1].weightA > 0) s->decorr[s->terms - i - 1].weightA += (s->decorr[s->terms - i - 1].weightA + 64) >> 7; if (s->stereo_in) { t = (int8_t)bytestream2_get_byte(&gb); s->decorr[s->terms - i - 1].weightB = t * (1 << 3); if (s->decorr[s->terms - i - 1].weightB > 0) s->decorr[s->terms - i - 1].weightB += (s->decorr[s->terms - i - 1].weightB + 64) >> 7; } } got_weights = 1; break; case WP_ID_DECSAMPLES: if (!got_terms) { av_log(avctx, AV_LOG_ERROR, "No decorrelation terms met\n"); continue; } t = 0; for (i = s->terms - 1; (i >= 0) && (t < size); i--) { Decorr *decorr = &s->decorr[i]; if (decorr->value > 8) { decorr->samplesA[0] = wp_exp2(bytestream2_get_le16(&gb)); decorr->samplesA[1] = wp_exp2(bytestream2_get_le16(&gb)); if (s->stereo_in) { decorr->samplesB[0] = wp_exp2(bytestream2_get_le16(&gb)); decorr->samplesB[1] = wp_exp2(bytestream2_get_le16(&gb)); t += 4; } t += 4; } else if (decorr->value < 0) { decorr->samplesA[0] = wp_exp2(bytestream2_get_le16(&gb)); decorr->samplesB[0] = wp_exp2(bytestream2_get_le16(&gb)); t += 4; } else { for (j = 0; j < decorr->value; j++) { decorr->samplesA[j] = wp_exp2(bytestream2_get_le16(&gb)); if (s->stereo_in) { decorr->samplesB[j] = wp_exp2(bytestream2_get_le16(&gb)); } } t += decorr->value * 2 * (s->stereo_in + 1); } } got_samples = 1; break; case WP_ID_ENTROPY: if (size != 6 * (s->stereo_in + 1)) { av_log(avctx, AV_LOG_ERROR, "Entropy vars size should be %i, got %i.\n", 6 * (s->stereo_in + 1), size); bytestream2_skip(&gb, ssize); continue; } for (j = 0; j <= s->stereo_in; j++) for (i = 0; i < 3; i++) { s->ch[j].median[i] = wp_exp2(bytestream2_get_le16(&gb)); } got_entropy = 1; break; case WP_ID_HYBRID: if (s->hybrid_bitrate) { for (i = 0; i <= s->stereo_in; i++) { s->ch[i].slow_level = wp_exp2(bytestream2_get_le16(&gb)); size -= 2; } } for (i = 0; i < (s->stereo_in + 1); i++) { s->ch[i].bitrate_acc = bytestream2_get_le16(&gb) << 16; size -= 2; } if (size > 0) { for (i = 0; i < (s->stereo_in + 1); i++) { s->ch[i].bitrate_delta = wp_exp2((int16_t)bytestream2_get_le16(&gb)); } } else { for (i = 0; i < (s->stereo_in + 1); i++) s->ch[i].bitrate_delta = 0; } got_hybrid = 1; break; case WP_ID_INT32INFO: { uint8_t val[4]; if (size != 4) { av_log(avctx, AV_LOG_ERROR, "Invalid INT32INFO, size = %i\n", size); bytestream2_skip(&gb, ssize - 4); continue; } bytestream2_get_buffer(&gb, val, 4); if (val[0] > 30) { av_log(avctx, AV_LOG_ERROR, "Invalid INT32INFO, extra_bits = %d (> 30)\n", val[0]); continue; } else { s->extra_bits = val[0]; } if (val[1]) s->shift = val[1]; if (val[2]) { s->and = s->or = 1; s->shift = val[2]; } if (val[3]) { s->and = 1; s->shift = val[3]; } if (s->shift > 31) { av_log(avctx, AV_LOG_ERROR, "Invalid INT32INFO, shift = %d (> 31)\n", s->shift); s->and = s->or = s->shift = 0; continue; } /* original WavPack decoder forces 32-bit lossy sound to be treated * as 24-bit one in order to have proper clipping */ if (s->hybrid && bpp == 4 && s->post_shift < 8 && s->shift > 8) { s->post_shift += 8; s->shift -= 8; s->hybrid_maxclip >>= 8; s->hybrid_minclip >>= 8; } break; } case WP_ID_FLOATINFO: if (size != 4) { av_log(avctx, AV_LOG_ERROR, "Invalid FLOATINFO, size = %i\n", size); bytestream2_skip(&gb, ssize); continue; } s->float_flag = bytestream2_get_byte(&gb); s->float_shift = bytestream2_get_byte(&gb); s->float_max_exp = bytestream2_get_byte(&gb); if (s->float_shift > 31) { av_log(avctx, AV_LOG_ERROR, "Invalid FLOATINFO, shift = %d (> 31)\n", s->float_shift); s->float_shift = 0; continue; } got_float = 1; bytestream2_skip(&gb, 1); break; case WP_ID_DATA: if ((ret = init_get_bits8(&s->gb, gb.buffer, size)) < 0) return ret; bytestream2_skip(&gb, size); got_pcm = 1; break; case WP_ID_DSD_DATA: if (size < 2) { av_log(avctx, AV_LOG_ERROR, "Invalid DSD_DATA, size = %i\n", size); bytestream2_skip(&gb, ssize); continue; } rate_x = bytestream2_get_byte(&gb); if (rate_x > 30) return AVERROR_INVALIDDATA; rate_x = 1 << rate_x; dsd_mode = bytestream2_get_byte(&gb); if (dsd_mode && dsd_mode != 1 && dsd_mode != 3) { av_log(avctx, AV_LOG_ERROR, "Invalid DSD encoding mode: %d\n", dsd_mode); return AVERROR_INVALIDDATA; } bytestream2_init(&s->gbyte, gb.buffer, size-2); bytestream2_skip(&gb, size-2); got_dsd = 1; break; case WP_ID_EXTRABITS: if (size <= 4) { av_log(avctx, AV_LOG_ERROR, "Invalid EXTRABITS, size = %i\n", size); bytestream2_skip(&gb, size); continue; } if ((ret = init_get_bits8(&s->gb_extra_bits, gb.buffer, size)) < 0) return ret; s->crc_extra_bits = get_bits_long(&s->gb_extra_bits, 32); bytestream2_skip(&gb, size); s->got_extra_bits = 1; break; case WP_ID_CHANINFO: if (size <= 1) { av_log(avctx, AV_LOG_ERROR, "Insufficient channel information\n"); return AVERROR_INVALIDDATA; } chan = bytestream2_get_byte(&gb); switch (size - 2) { case 0: chmask = bytestream2_get_byte(&gb); break; case 1: chmask = bytestream2_get_le16(&gb); break; case 2: chmask = bytestream2_get_le24(&gb); break; case 3: chmask = bytestream2_get_le32(&gb); break; case 4: bytestream2_get_byte(&gb); chan |= (bytestream2_get_byte(&gb) & 0xF) << 8; chan += 1; chmask = bytestream2_get_le24(&gb); break; case 5: bytestream2_get_byte(&gb); chan |= (bytestream2_get_byte(&gb) & 0xF) << 8; chan += 1; chmask = bytestream2_get_le32(&gb); break; default: av_log(avctx, AV_LOG_ERROR, "Invalid channel info size %d\n", size); } av_assert1(chan <= WV_MAX_CHANNELS); break; case WP_ID_SAMPLE_RATE: if (size != 3) { av_log(avctx, AV_LOG_ERROR, "Invalid custom sample rate.\n"); return AVERROR_INVALIDDATA; } sample_rate = bytestream2_get_le24(&gb); break; default: bytestream2_skip(&gb, size); } if (id & WP_IDF_ODD) bytestream2_skip(&gb, 1); } if (got_pcm) { if (!got_terms) { av_log(avctx, AV_LOG_ERROR, "No block with decorrelation terms\n"); return AVERROR_INVALIDDATA; } if (!got_weights) { av_log(avctx, AV_LOG_ERROR, "No block with decorrelation weights\n"); return AVERROR_INVALIDDATA; } if (!got_samples) { av_log(avctx, AV_LOG_ERROR, "No block with decorrelation samples\n"); return AVERROR_INVALIDDATA; } if (!got_entropy) { av_log(avctx, AV_LOG_ERROR, "No block with entropy info\n"); return AVERROR_INVALIDDATA; } if (s->hybrid && !got_hybrid) { av_log(avctx, AV_LOG_ERROR, "Hybrid config not found\n"); return AVERROR_INVALIDDATA; } if (!got_float && sample_fmt == AV_SAMPLE_FMT_FLTP) { av_log(avctx, AV_LOG_ERROR, "Float information not found\n"); return AVERROR_INVALIDDATA; } if (s->got_extra_bits && sample_fmt != AV_SAMPLE_FMT_FLTP) { const int size = get_bits_left(&s->gb_extra_bits); const int wanted = s->samples * s->extra_bits << s->stereo_in; if (size < wanted) { av_log(avctx, AV_LOG_ERROR, "Too small EXTRABITS\n"); s->got_extra_bits = 0; } } } if (!got_pcm && !got_dsd) { av_log(avctx, AV_LOG_ERROR, "Packed samples not found\n"); return AVERROR_INVALIDDATA; } if ((got_pcm && wc->modulation != MODULATION_PCM) || (got_dsd && wc->modulation != MODULATION_DSD)) { av_log(avctx, AV_LOG_ERROR, "Invalid PCM/DSD mix encountered\n"); return AVERROR_INVALIDDATA; } if (!wc->ch_offset) { AVChannelLayout new_ch_layout = { 0 }; int new_samplerate; int sr = (s->frame_flags >> 23) & 0xf; if (sr == 0xf) { if (!sample_rate) { av_log(avctx, AV_LOG_ERROR, "Custom sample rate missing.\n"); return AVERROR_INVALIDDATA; } new_samplerate = sample_rate; } else new_samplerate = wv_rates[sr]; if (new_samplerate * (uint64_t)rate_x > INT_MAX) return AVERROR_INVALIDDATA; new_samplerate *= rate_x; if (multiblock) { if (chmask) { av_channel_layout_from_mask(&new_ch_layout, chmask); if (chan && new_ch_layout.nb_channels != chan) { av_log(avctx, AV_LOG_ERROR, "Channel mask does not match the channel count\n"); return AVERROR_INVALIDDATA; } } else { av_channel_layout_default(&new_ch_layout, chan); } } else { av_channel_layout_default(&new_ch_layout, s->stereo + 1); } av_assert1(new_ch_layout.nb_channels <= WV_MAX_CHANNELS); /* clear DSD state if stream properties change */ if ((wc->dsdctx && !got_dsd) || got_dsd && (new_ch_layout.nb_channels != wc->dsd_channels || av_channel_layout_compare(&new_ch_layout, &avctx->ch_layout) || new_samplerate != avctx->sample_rate)) { ret = wv_dsd_reset(wc, got_dsd ? new_ch_layout.nb_channels : 0); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error reinitializing the DSD context\n"); return ret; } } av_channel_layout_copy(&avctx->ch_layout, &new_ch_layout); avctx->sample_rate = new_samplerate; avctx->sample_fmt = sample_fmt; avctx->bits_per_raw_sample = orig_bpp; /* get output buffer */ frame->nb_samples = s->samples; ret = ff_thread_get_buffer(avctx, frame, 0); if (ret < 0) return ret; av_assert1(!!wc->progress_pool == !!(avctx->active_thread_type & FF_THREAD_FRAME)); if (wc->progress_pool) { if (wc->dsdctx) { av_refstruct_unref(&wc->prev_progress); wc->prev_progress = av_refstruct_pool_get(wc->progress_pool); if (!wc->prev_progress) return AVERROR(ENOMEM); FFSWAP(ThreadProgress*, wc->prev_progress, wc->curr_progress); *new_progress = 1; } av_assert1(!!wc->dsdctx == !!wc->curr_progress); ff_thread_finish_setup(avctx); } } if (wc->ch_offset + s->stereo >= avctx->ch_layout.nb_channels) { av_log(avctx, AV_LOG_WARNING, "Too many channels coded in a packet.\n"); return ((avctx->err_recognition & AV_EF_EXPLODE) || !wc->ch_offset) ? AVERROR_INVALIDDATA : 0; } samples_l = frame->extended_data[wc->ch_offset]; if (s->stereo) samples_r = frame->extended_data[wc->ch_offset + 1]; wc->ch_offset += 1 + s->stereo; if (s->stereo_in) { if (got_dsd) { if (dsd_mode == 3) { ret = wv_unpack_dsd_high(s, samples_l, samples_r); } else if (dsd_mode == 1) { ret = wv_unpack_dsd_fast(s, samples_l, samples_r); } else { ret = wv_unpack_dsd_copy(s, samples_l, samples_r); } } else { ret = wv_unpack_stereo(s, &s->gb, samples_l, samples_r, avctx->sample_fmt); } if (ret < 0) return ret; } else { if (got_dsd) { if (dsd_mode == 3) { ret = wv_unpack_dsd_high(s, samples_l, NULL); } else if (dsd_mode == 1) { ret = wv_unpack_dsd_fast(s, samples_l, NULL); } else { ret = wv_unpack_dsd_copy(s, samples_l, NULL); } } else { ret = wv_unpack_mono(s, &s->gb, samples_l, avctx->sample_fmt); } if (ret < 0) return ret; if (s->stereo) memcpy(samples_r, samples_l, bpp * s->samples); } return 0; } static void wavpack_decode_flush(AVCodecContext *avctx) { WavpackContext *s = avctx->priv_data; wv_dsd_reset(s, 0); } static int dsd_channel(AVCodecContext *avctx, void *frmptr, int jobnr, int threadnr) { const WavpackContext *s = avctx->priv_data; AVFrame *frame = frmptr; ff_dsd2pcm_translate(&s->dsdctx[jobnr], s->samples, 0, (uint8_t *)frame->extended_data[jobnr], 4, (float *)frame->extended_data[jobnr], 1); return 0; } static int wavpack_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt) { WavpackContext *s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int frame_size, ret, frame_flags; int block = 0, new_progress = 0; av_assert1(!s->curr_progress || s->dsdctx); if (avpkt->size <= WV_HEADER_SIZE) return AVERROR_INVALIDDATA; s->ch_offset = 0; /* determine number of samples */ s->samples = AV_RL32(buf + 20); frame_flags = AV_RL32(buf + 24); if (s->samples <= 0 || s->samples > WV_MAX_SAMPLES) { av_log(avctx, AV_LOG_ERROR, "Invalid number of samples: %d\n", s->samples); return AVERROR_INVALIDDATA; } s->modulation = (frame_flags & WV_DSD_DATA) ? MODULATION_DSD : MODULATION_PCM; while (buf_size > WV_HEADER_SIZE) { frame_size = AV_RL32(buf + 4) - 12; buf += 20; buf_size -= 20; if (frame_size <= 0 || frame_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "Block %d has invalid size (size %d vs. %d bytes left)\n", block, frame_size, buf_size); ret = AVERROR_INVALIDDATA; goto error; } ret = wavpack_decode_block(avctx, frame, block, buf, frame_size, &new_progress); if (ret < 0) goto error; block++; buf += frame_size; buf_size -= frame_size; } if (s->ch_offset != avctx->ch_layout.nb_channels) { av_log(avctx, AV_LOG_ERROR, "Not enough channels coded in a packet.\n"); ret = AVERROR_INVALIDDATA; goto error; } if (s->dsdctx) { if (s->prev_progress) ff_thread_progress_await(s->prev_progress, INT_MAX); avctx->execute2(avctx, dsd_channel, frame, NULL, avctx->ch_layout.nb_channels); if (s->curr_progress) ff_thread_progress_report(s->curr_progress, INT_MAX); } *got_frame_ptr = 1; return avpkt->size; error: if (new_progress) { if (s->prev_progress) ff_thread_progress_await(s->prev_progress, INT_MAX); ff_thread_progress_report(s->curr_progress, INT_MAX); } return ret; } const FFCodec ff_wavpack_decoder = { .p.name = "wavpack", CODEC_LONG_NAME("WavPack"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_WAVPACK, .priv_data_size = sizeof(WavpackContext), .init = wavpack_decode_init, .close = wavpack_decode_end, FF_CODEC_DECODE_CB(wavpack_decode_frame), .flush = wavpack_decode_flush, UPDATE_THREAD_CONTEXT(update_thread_context), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_CHANNEL_CONF, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };