/* * FLAC audio encoder * Copyright (c) 2006 Justin Ruggles * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/crc.h" #include "libavutil/intmath.h" #include "libavutil/md5.h" #include "libavutil/opt.h" #include "avcodec.h" #include "bswapdsp.h" #include "codec_internal.h" #include "encode.h" #include "put_bits.h" #include "lpc.h" #include "flac.h" #include "flacdata.h" #include "flacencdsp.h" #define FLAC_SUBFRAME_CONSTANT 0 #define FLAC_SUBFRAME_VERBATIM 1 #define FLAC_SUBFRAME_FIXED 8 #define FLAC_SUBFRAME_LPC 32 #define MAX_FIXED_ORDER 4 #define MAX_PARTITION_ORDER 8 #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) #define MAX_LPC_PRECISION 15 #define MIN_LPC_SHIFT 0 #define MAX_LPC_SHIFT 15 enum CodingMode { CODING_MODE_RICE = 4, CODING_MODE_RICE2 = 5, }; typedef struct CompressionOptions { int compression_level; int block_time_ms; enum FFLPCType lpc_type; int lpc_passes; int lpc_coeff_precision; int min_prediction_order; int max_prediction_order; int prediction_order_method; int min_partition_order; int max_partition_order; int ch_mode; int exact_rice_parameters; int multi_dim_quant; } CompressionOptions; typedef struct RiceContext { enum CodingMode coding_mode; int porder; int params[MAX_PARTITIONS]; } RiceContext; typedef struct FlacSubframe { int type; int type_code; int obits; int wasted; int order; int32_t coefs[MAX_LPC_ORDER]; int shift; RiceContext rc; uint32_t rc_udata[FLAC_MAX_BLOCKSIZE]; uint64_t rc_sums[32][MAX_PARTITIONS]; int32_t samples[FLAC_MAX_BLOCKSIZE]; int32_t residual[FLAC_MAX_BLOCKSIZE+11]; } FlacSubframe; typedef struct FlacFrame { FlacSubframe subframes[FLAC_MAX_CHANNELS]; int64_t samples_33bps[FLAC_MAX_BLOCKSIZE]; int blocksize; int bs_code[2]; uint8_t crc8; int ch_mode; int verbatim_only; } FlacFrame; typedef struct FlacEncodeContext { AVClass *class; PutBitContext pb; int channels; int samplerate; int sr_code[2]; int bps_code; int max_blocksize; int min_framesize; int max_framesize; int max_encoded_framesize; uint32_t frame_count; uint64_t sample_count; uint8_t md5sum[16]; FlacFrame frame; CompressionOptions options; AVCodecContext *avctx; LPCContext lpc_ctx; struct AVMD5 *md5ctx; uint8_t *md5_buffer; unsigned int md5_buffer_size; BswapDSPContext bdsp; FLACEncDSPContext flac_dsp; int flushed; int64_t next_pts; } FlacEncodeContext; /** * Write streaminfo metadata block to byte array. */ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) { PutBitContext pb; memset(header, 0, FLAC_STREAMINFO_SIZE); init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE); /* streaminfo metadata block */ put_bits(&pb, 16, s->max_blocksize); put_bits(&pb, 16, s->max_blocksize); put_bits(&pb, 24, s->min_framesize); put_bits(&pb, 24, s->max_framesize); put_bits(&pb, 20, s->samplerate); put_bits(&pb, 3, s->channels-1); put_bits(&pb, 5, s->avctx->bits_per_raw_sample - 1); /* write 36-bit sample count in 2 put_bits() calls */ put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12); put_bits(&pb, 12, s->sample_count & 0x000000FFFLL); flush_put_bits(&pb); memcpy(&header[18], s->md5sum, 16); } /** * Calculate an estimate for the maximum frame size based on verbatim mode. * @param blocksize block size, in samples * @param ch number of channels * @param bps bits-per-sample */ static int flac_get_max_frame_size(int blocksize, int ch, int bps) { /* Technically, there is no limit to FLAC frame size, but an encoder should not write a frame that is larger than if verbatim encoding mode were to be used. */ int count; count = 16; /* frame header */ count += ch * ((7+bps+7)/8); /* subframe headers */ if (ch == 2) { /* for stereo, need to account for using decorrelation */ count += (( 2*bps+1) * blocksize + 7) / 8; } else { count += ( ch*bps * blocksize + 7) / 8; } count += 2; /* frame footer */ return count; } /** * Set blocksize based on samplerate. * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds. */ static int select_blocksize(int samplerate, int block_time_ms) { int i; int target; int blocksize; av_assert0(samplerate > 0); blocksize = ff_flac_blocksize_table[1]; target = (samplerate * block_time_ms) / 1000; for (i = 0; i < 16; i++) { if (target >= ff_flac_blocksize_table[i] && ff_flac_blocksize_table[i] > blocksize) { blocksize = ff_flac_blocksize_table[i]; } } return blocksize; } static av_cold void dprint_compression_options(FlacEncodeContext *s) { AVCodecContext *avctx = s->avctx; CompressionOptions *opt = &s->options; av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level); switch (opt->lpc_type) { case FF_LPC_TYPE_NONE: av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n"); break; case FF_LPC_TYPE_FIXED: av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n"); break; case FF_LPC_TYPE_LEVINSON: av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n"); break; case FF_LPC_TYPE_CHOLESKY: av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n", opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es"); break; } av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", opt->min_prediction_order, opt->max_prediction_order); switch (opt->prediction_order_method) { case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate"); break; case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level"); break; case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level"); break; case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level"); break; case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search"); break; case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search"); break; } av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", opt->min_partition_order, opt->max_partition_order); av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size); av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", opt->lpc_coeff_precision); } static av_cold int flac_encode_init(AVCodecContext *avctx) { int freq = avctx->sample_rate; int channels = avctx->ch_layout.nb_channels; FlacEncodeContext *s = avctx->priv_data; int i, level, ret; uint8_t *streaminfo; s->avctx = avctx; switch (avctx->sample_fmt) { case AV_SAMPLE_FMT_S16: avctx->bits_per_raw_sample = 16; s->bps_code = 4; break; case AV_SAMPLE_FMT_S32: if (avctx->bits_per_raw_sample <= 24) { if (avctx->bits_per_raw_sample < 24) av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n"); avctx->bits_per_raw_sample = 24; s->bps_code = 6; } else if (avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) { av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample, more is considered " "experimental. Add -strict experimental if you want " "to encode more than 24 bits-per-sample\n"); avctx->bits_per_raw_sample = 24; s->bps_code = 6; } else { avctx->bits_per_raw_sample = 32; s->bps_code = 7; } break; } if (channels < 1 || channels > FLAC_MAX_CHANNELS) { av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n", channels, FLAC_MAX_CHANNELS); return AVERROR(EINVAL); } s->channels = channels; /* find samplerate in table */ if (freq < 1) return AVERROR(EINVAL); for (i = 1; i < 12; i++) { if (freq == ff_flac_sample_rate_table[i]) { s->samplerate = ff_flac_sample_rate_table[i]; s->sr_code[0] = i; s->sr_code[1] = 0; break; } } /* if not in table, samplerate is non-standard */ if (i == 12) { if (freq % 1000 == 0 && freq < 255000) { s->sr_code[0] = 12; s->sr_code[1] = freq / 1000; } else if (freq % 10 == 0 && freq < 655350) { s->sr_code[0] = 14; s->sr_code[1] = freq / 10; } else if (freq < 65535) { s->sr_code[0] = 13; s->sr_code[1] = freq; } else if (freq < 1048576) { s->sr_code[0] = 0; s->sr_code[1] = 0; } else { av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq); return AVERROR(EINVAL); } s->samplerate = freq; } /* set compression option defaults based on avctx->compression_level */ if (avctx->compression_level < 0) s->options.compression_level = 5; else s->options.compression_level = avctx->compression_level; level = s->options.compression_level; if (level > 12) { av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n", s->options.compression_level); return AVERROR(EINVAL); } s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT) s->options.lpc_type = ((int[]){ FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON})[level]; if (s->options.min_prediction_order < 0) s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; if (s->options.max_prediction_order < 0) s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; if (s->options.prediction_order_method < 0) s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, ORDER_METHOD_SEARCH})[level]; if (s->options.min_partition_order > s->options.max_partition_order) { av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", s->options.min_partition_order, s->options.max_partition_order); return AVERROR(EINVAL); } if (s->options.min_partition_order < 0) s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; if (s->options.max_partition_order < 0) s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; if (s->options.lpc_type == FF_LPC_TYPE_NONE) { s->options.min_prediction_order = 0; s->options.max_prediction_order = 0; } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) { if (s->options.min_prediction_order > MAX_FIXED_ORDER) { av_log(avctx, AV_LOG_WARNING, "invalid min prediction order %d, clamped to %d\n", s->options.min_prediction_order, MAX_FIXED_ORDER); s->options.min_prediction_order = MAX_FIXED_ORDER; } if (s->options.max_prediction_order > MAX_FIXED_ORDER) { av_log(avctx, AV_LOG_WARNING, "invalid max prediction order %d, clamped to %d\n", s->options.max_prediction_order, MAX_FIXED_ORDER); s->options.max_prediction_order = MAX_FIXED_ORDER; } } if (s->options.max_prediction_order < s->options.min_prediction_order) { av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", s->options.min_prediction_order, s->options.max_prediction_order); return AVERROR(EINVAL); } if (avctx->frame_size > 0) { if (avctx->frame_size < FLAC_MIN_BLOCKSIZE || avctx->frame_size > FLAC_MAX_BLOCKSIZE) { av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", avctx->frame_size); return AVERROR(EINVAL); } } else { s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms); } s->max_blocksize = s->avctx->frame_size; /* set maximum encoded frame size in verbatim mode */ s->max_framesize = flac_get_max_frame_size(s->avctx->frame_size, s->channels, s->avctx->bits_per_raw_sample); /* initialize MD5 context */ s->md5ctx = av_md5_alloc(); if (!s->md5ctx) return AVERROR(ENOMEM); av_md5_init(s->md5ctx); streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); if (!streaminfo) return AVERROR(ENOMEM); write_streaminfo(s, streaminfo); avctx->extradata = streaminfo; avctx->extradata_size = FLAC_STREAMINFO_SIZE; s->frame_count = 0; s->min_framesize = s->max_framesize; if ((channels == 3 && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_SURROUND)) || (channels == 4 && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_2_2) && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_QUAD)) || (channels == 5 && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0) && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0_BACK)) || (channels == 6 && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1) && av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1_BACK))) { if (avctx->ch_layout.order != AV_CHANNEL_ORDER_UNSPEC) { av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, " "output stream will have incorrect " "channel layout.\n"); } else { av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder " "will use Flac channel layout for " "%d channels.\n", channels); } } ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON); ff_bswapdsp_init(&s->bdsp); ff_flacencdsp_init(&s->flac_dsp); dprint_compression_options(s); return ret; } static void init_frame(FlacEncodeContext *s, int nb_samples) { int i, ch; FlacFrame *frame; frame = &s->frame; for (i = 0; i < 16; i++) { if (nb_samples == ff_flac_blocksize_table[i]) { frame->blocksize = ff_flac_blocksize_table[i]; frame->bs_code[0] = i; frame->bs_code[1] = 0; break; } } if (i == 16) { frame->blocksize = nb_samples; if (frame->blocksize <= 256) { frame->bs_code[0] = 6; frame->bs_code[1] = frame->blocksize-1; } else { frame->bs_code[0] = 7; frame->bs_code[1] = frame->blocksize-1; } } for (ch = 0; ch < s->channels; ch++) { FlacSubframe *sub = &frame->subframes[ch]; sub->wasted = 0; sub->obits = s->avctx->bits_per_raw_sample; if (sub->obits > 16) sub->rc.coding_mode = CODING_MODE_RICE2; else sub->rc.coding_mode = CODING_MODE_RICE; } frame->verbatim_only = 0; } /** * Copy channel-interleaved input samples into separate subframes. */ static void copy_samples(FlacEncodeContext *s, const void *samples) { int i, j, ch; FlacFrame *frame; int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 - s->avctx->bits_per_raw_sample; #define COPY_SAMPLES(bits) do { \ const int ## bits ## _t *samples0 = samples; \ frame = &s->frame; \ for (i = 0, j = 0; i < frame->blocksize; i++) \ for (ch = 0; ch < s->channels; ch++, j++) \ frame->subframes[ch].samples[i] = samples0[j] >> shift; \ } while (0) if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16) COPY_SAMPLES(16); else COPY_SAMPLES(32); } static uint64_t rice_count_exact(const int32_t *res, int n, int k) { int i; uint64_t count = 0; for (i = 0; i < n; i++) { unsigned v = ((unsigned)(res[i]) << 1) ^ (res[i] >> 31); count += (v >> k) + 1 + k; } return count; } static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, int pred_order) { int p, porder, psize; int i, part_end; uint64_t count = 0; /* subframe header */ count += 8; if (sub->wasted) count += sub->wasted; /* subframe */ if (sub->type == FLAC_SUBFRAME_CONSTANT) { count += sub->obits; } else if (sub->type == FLAC_SUBFRAME_VERBATIM) { count += s->frame.blocksize * sub->obits; } else { /* warm-up samples */ count += pred_order * sub->obits; /* LPC coefficients */ if (sub->type == FLAC_SUBFRAME_LPC) count += 4 + 5 + pred_order * s->options.lpc_coeff_precision; /* rice-encoded block */ count += 2; /* partition order */ porder = sub->rc.porder; psize = s->frame.blocksize >> porder; count += 4; /* residual */ i = pred_order; part_end = psize; for (p = 0; p < 1 << porder; p++) { int k = sub->rc.params[p]; count += sub->rc.coding_mode; count += rice_count_exact(&sub->residual[i], part_end - i, k); i = part_end; part_end = FFMIN(s->frame.blocksize, part_end + psize); } } return count; } #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) /** * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0. */ static int find_optimal_param(uint64_t sum, int n, int max_param) { int k; uint64_t sum2; if (sum <= n >> 1) return 0; sum2 = sum - (n >> 1); k = av_log2(av_clipl_int32(sum2 / n)); return FFMIN(k, max_param); } static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param) { int bestk = 0; int64_t bestbits = INT64_MAX; int k; for (k = 0; k <= max_param; k++) { int64_t bits = sums[k][i]; if (bits < bestbits) { bestbits = bits; bestk = k; } } return bestk; } static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, uint64_t sums[32][MAX_PARTITIONS], int n, int pred_order, int max_param, int exact) { int i; int k, cnt, part; uint64_t all_bits; part = (1 << porder); all_bits = 4 * part; cnt = (n >> porder) - pred_order; for (i = 0; i < part; i++) { if (exact) { k = find_optimal_param_exact(sums, i, max_param); all_bits += sums[k][i]; } else { k = find_optimal_param(sums[0][i], cnt, max_param); all_bits += rice_encode_count(sums[0][i], cnt, k); } rc->params[i] = k; cnt = n >> porder; } rc->porder = porder; return all_bits; } static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, uint64_t sums[32][MAX_PARTITIONS]) { int i, k; int parts; const uint32_t *res, *res_end; /* sums for highest level */ parts = (1 << pmax); for (k = 0; k <= kmax; k++) { res = &data[pred_order]; res_end = &data[n >> pmax]; for (i = 0; i < parts; i++) { if (kmax) { uint64_t sum = (1LL + k) * (res_end - res); while (res < res_end) sum += *(res++) >> k; sums[k][i] = sum; } else { uint64_t sum = 0; while (res < res_end) sum += *(res++); sums[k][i] = sum; } res_end += n >> pmax; } } } static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax) { int i, k; int parts = (1 << level); for (i = 0; i < parts; i++) { for (k=0; k<=kmax; k++) sums[k][i] = sums[k][2*i] + sums[k][2*i+1]; } } static uint64_t calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact) { int i; uint64_t bits[MAX_PARTITION_ORDER+1]; int opt_porder; RiceContext tmp_rc; int kmax = (1 << rc->coding_mode) - 2; av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); av_assert1(pmin <= pmax); tmp_rc.coding_mode = rc->coding_mode; for (i = pred_order; i < n; i++) udata[i] = ((unsigned)(data[i]) << 1) ^ (data[i] >> 31); calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums); opt_porder = pmin; bits[pmin] = UINT32_MAX; for (i = pmax; ; ) { bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact); if (bits[i] < bits[opt_porder] || pmax == pmin) { opt_porder = i; *rc = tmp_rc; } if (i == pmin) break; calc_sum_next(--i, sums, exact ? kmax : 0); } return bits[opt_porder]; } static int get_max_p_order(int max_porder, int n, int order) { int porder = FFMIN(max_porder, av_log2(n^(n-1))); if (order > 0) porder = FFMIN(porder, av_log2(n/order)); return porder; } static uint64_t find_subframe_rice_params(FlacEncodeContext *s, FlacSubframe *sub, int pred_order) { int pmin = get_max_p_order(s->options.min_partition_order, s->frame.blocksize, pred_order); int pmax = get_max_p_order(s->options.max_partition_order, s->frame.blocksize, pred_order); uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode; if (sub->type == FLAC_SUBFRAME_LPC) bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision; bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual, s->frame.blocksize, pred_order, s->options.exact_rice_parameters); return bits; } static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order) { int i; for (i = 0; i < order; i++) res[i] = smp[i]; if (order == 0) { for (i = order; i < n; i++) res[i] = smp[i]; } else if (order == 1) { for (i = order; i < n; i++) res[i] = smp[i] - smp[i-1]; } else if (order == 2) { int a = smp[order-1] - smp[order-2]; for (i = order; i < n; i += 2) { int b = smp[i ] - smp[i-1]; res[i] = b - a; a = smp[i+1] - smp[i ]; res[i+1] = a - b; } } else if (order == 3) { int a = smp[order-1] - smp[order-2]; int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; for (i = order; i < n; i += 2) { int b = smp[i ] - smp[i-1]; int d = b - a; res[i] = d - c; a = smp[i+1] - smp[i ]; c = a - b; res[i+1] = c - d; } } else { int a = smp[order-1] - smp[order-2]; int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4]; for (i = order; i < n; i += 2) { int b = smp[i ] - smp[i-1]; int d = b - a; int f = d - c; res[i ] = f - e; a = smp[i+1] - smp[i ]; c = a - b; e = c - d; res[i+1] = e - f; } } } /* These four functions check for every residual whether it can be * contained in INT32_MAX) \ return 1; \ res[i] = res64; \ } \ } else if (order == 2) { \ for (int i = order; i < n; i++) { \ int64_t res64 = (int64_t)smp[i] - 2*(int64_t)smp[i-1] + smp[i-2]; \ if (res64 <= INT32_MIN || res64 > INT32_MAX) \ return 1; \ res[i] = res64; \ } \ } else if (order == 3) { \ for (int i = order; i < n; i++) { \ int64_t res64 = (int64_t)smp[i] - 3*(int64_t)smp[i-1] + 3*(int64_t)smp[i-2] - smp[i-3]; \ if (res64 <= INT32_MIN || res64 > INT32_MAX) \ return 1; \ res[i] = res64; \ } \ } else { \ for (int i = order; i < n; i++) { \ int64_t res64 = (int64_t)smp[i] - 4*(int64_t)smp[i-1] + 6*(int64_t)smp[i-2] - 4*(int64_t)smp[i-3] + smp[i-4]; \ if (res64 <= INT32_MIN || res64 > INT32_MAX) \ return 1; \ res[i] = res64; \ } \ } \ return 0; \ } static int encode_residual_fixed_with_residual_limit(int32_t *res, const int32_t *smp, int n, int order) { ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT(); } static int encode_residual_fixed_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int n, int order) { ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT(); } #define LPC_ENCODE_WITH_RESIDUAL_LIMIT() \ { \ for (int i = 0; i < order; i++) \ res[i] = smp[i]; \ for (int i = order; i < len; i++) { \ int64_t p = 0, tmp; \ for (int j = 0; j < order; j++) \ p += (int64_t)coefs[j]*smp[(i-1)-j]; \ p >>= shift; \ tmp = smp[i] - p; \ if (tmp <= INT32_MIN || tmp > INT32_MAX) \ return 1; \ res[i] = tmp; \ } \ return 0; \ } static int lpc_encode_with_residual_limit(int32_t *res, const int32_t *smp, int len, int order, int32_t *coefs, int shift) { LPC_ENCODE_WITH_RESIDUAL_LIMIT(); } static int lpc_encode_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int len, int order, int32_t *coefs, int shift) { LPC_ENCODE_WITH_RESIDUAL_LIMIT(); } static int lpc_encode_choose_datapath(FlacEncodeContext *s, int32_t bps, int32_t *res, const int32_t *smp, const int64_t *smp_33bps, int len, int order, int32_t *coefs, int shift) { uint64_t max_residual_value = 0; int64_t max_sample_value = ((int64_t)(1) << (bps-1)); /* This calculates the max size of any residual with the current * predictor, so we know whether we need to check the residual */ for (int i = 0; i < order; i++) max_residual_value += FFABS(max_sample_value * coefs[i]); max_residual_value >>= shift; max_residual_value += max_sample_value; if (bps > 32) { if (lpc_encode_with_residual_limit_33bps(res, smp_33bps, len, order, coefs, shift)) return 1; } else if (max_residual_value > INT32_MAX) { if (lpc_encode_with_residual_limit(res, smp, len, order, coefs, shift)) return 1; } else if (bps + s->options.lpc_coeff_precision + av_log2(order) <= 32) { s->flac_dsp.lpc16_encode(res, smp, len, order, coefs, shift); } else { s->flac_dsp.lpc32_encode(res, smp, len, order, coefs, shift); } return 0; } #define DEFAULT_TO_VERBATIM() \ { \ sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; \ if (sub->obits <= 32) \ memcpy(res, smp, n * sizeof(int32_t)); \ return subframe_count_exact(s, sub, 0); \ } static int encode_residual_ch(FlacEncodeContext *s, int ch) { int i, n; int min_order, max_order, opt_order, omethod; FlacFrame *frame; FlacSubframe *sub; int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; int shift[MAX_LPC_ORDER]; int32_t *res, *smp; int64_t *smp_33bps; frame = &s->frame; sub = &frame->subframes[ch]; res = sub->residual; smp = sub->samples; smp_33bps = frame->samples_33bps; n = frame->blocksize; /* CONSTANT */ if (sub->obits > 32) { for (i = 1; i < n; i++) if(smp_33bps[i] != smp_33bps[0]) break; if (i == n) { sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; return subframe_count_exact(s, sub, 0); } } else { for (i = 1; i < n; i++) if(smp[i] != smp[0]) break; if (i == n) { sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; res[0] = smp[0]; return subframe_count_exact(s, sub, 0); } } /* VERBATIM */ if (frame->verbatim_only || n < 5) { DEFAULT_TO_VERBATIM(); } min_order = s->options.min_prediction_order; max_order = s->options.max_prediction_order; omethod = s->options.prediction_order_method; /* FIXED */ sub->type = FLAC_SUBFRAME_FIXED; if (s->options.lpc_type == FF_LPC_TYPE_NONE || s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) { uint64_t bits[MAX_FIXED_ORDER+1]; if (max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER; opt_order = 0; bits[0] = UINT32_MAX; for (i = min_order; i <= max_order; i++) { if (sub->obits == 33) { if (encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, i)) continue; } else if (sub->obits + i >= 32) { if (encode_residual_fixed_with_residual_limit(res, smp, n, i)) continue; } else encode_residual_fixed(res, smp, n, i); bits[i] = find_subframe_rice_params(s, sub, i); if (bits[i] < bits[opt_order]) opt_order = i; } if (opt_order == 0 && bits[0] == UINT32_MAX) { /* No predictor found with residuals within order = opt_order; sub->type_code = sub->type | sub->order; if (sub->order != max_order) { if (sub->obits == 33) encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, sub->order); else if (sub->obits + i >= 32) encode_residual_fixed_with_residual_limit(res, smp, n, sub->order); else encode_residual_fixed(res, smp, n, sub->order); find_subframe_rice_params(s, sub, sub->order); } return subframe_count_exact(s, sub, sub->order); } /* LPC */ sub->type = FLAC_SUBFRAME_LPC; if (sub->obits == 33) /* As ff_lpc_calc_coefs is shared with other codecs and the LSB * probably isn't predictable anyway, throw away LSB for analysis * so it fits 32 bit int and existing function can be used * unmodified */ for (i = 0; i < n; i++) smp[i] = smp_33bps[i] >> 1; opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order, s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type, s->options.lpc_passes, omethod, MIN_LPC_SHIFT, MAX_LPC_SHIFT, 0); if (omethod == ORDER_METHOD_2LEVEL || omethod == ORDER_METHOD_4LEVEL || omethod == ORDER_METHOD_8LEVEL) { int levels = 1 << omethod; uint64_t bits[1 << ORDER_METHOD_8LEVEL]; int order = -1; int opt_index = levels-1; opt_order = max_order-1; bits[opt_index] = UINT32_MAX; for (i = levels-1; i >= 0; i--) { int last_order = order; order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; order = av_clip(order, min_order - 1, max_order - 1); if (order == last_order) continue; if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, order+1, coefs[order], shift[order])) continue; bits[i] = find_subframe_rice_params(s, sub, order+1); if (bits[i] < bits[opt_index]) { opt_index = i; opt_order = order; } } opt_order++; } else if (omethod == ORDER_METHOD_SEARCH) { // brute-force optimal order search uint64_t bits[MAX_LPC_ORDER]; opt_order = 0; bits[0] = UINT32_MAX; for (i = min_order-1; i < max_order; i++) { if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i])) continue; bits[i] = find_subframe_rice_params(s, sub, i+1); if (bits[i] < bits[opt_order]) opt_order = i; } opt_order++; } else if (omethod == ORDER_METHOD_LOG) { uint64_t bits[MAX_LPC_ORDER]; int step; opt_order = min_order - 1 + (max_order-min_order)/3; memset(bits, -1, sizeof(bits)); for (step = 16; step; step >>= 1) { int last = opt_order; for (i = last-step; i <= last+step; i += step) { if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX) continue; if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i])) continue; bits[i] = find_subframe_rice_params(s, sub, i+1); if (bits[i] < bits[opt_order]) opt_order = i; } } opt_order++; } if (s->options.multi_dim_quant) { int allsteps = 1; int i, step, improved; int64_t best_score = INT64_MAX; int32_t qmax; qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1; for (i=0; i8) continue; if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, opt_order, lpc_try, shift[opt_order-1])) continue; score = find_subframe_rice_params(s, sub, opt_order); if (score < best_score) { best_score = score; memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs)); improved=1; } } } while(improved); } sub->order = opt_order; sub->type_code = sub->type | (sub->order-1); sub->shift = shift[sub->order-1]; for (i = 0; i < sub->order; i++) sub->coefs[i] = coefs[sub->order-1][i]; if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, sub->order, sub->coefs, sub->shift)) { /* No predictor found with residuals within order); return subframe_count_exact(s, sub, sub->order); } static int count_frame_header(FlacEncodeContext *s) { uint8_t av_unused tmp; int count; /* <14> Sync code <1> Reserved <1> Blocking strategy <4> Block size in inter-channel samples <4> Sample rate <4> Channel assignment <3> Sample size in bits <1> Reserved */ count = 32; /* coded frame number */ PUT_UTF8(s->frame_count, tmp, count += 8;) /* explicit block size */ if (s->frame.bs_code[0] == 6) count += 8; else if (s->frame.bs_code[0] == 7) count += 16; /* explicit sample rate */ count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8; /* frame header CRC-8 */ count += 8; return count; } static int encode_frame(FlacEncodeContext *s) { int ch; uint64_t count; count = count_frame_header(s); for (ch = 0; ch < s->channels; ch++) count += encode_residual_ch(s, ch); count += (8 - (count & 7)) & 7; // byte alignment count += 16; // CRC-16 count >>= 3; if (count > INT_MAX) return AVERROR_BUG; return count; } static void remove_wasted_bits(FlacEncodeContext *s) { int ch, i, wasted_bits; for (ch = 0; ch < s->channels; ch++) { FlacSubframe *sub = &s->frame.subframes[ch]; if (sub->obits > 32) { int64_t v = 0; for (i = 0; i < s->frame.blocksize; i++) { v |= s->frame.samples_33bps[i]; if (v & 1) break; } if (!v || (v & 1)) return; v = ff_ctzll(v); /* If any wasted bits are found, samples are moved * from frame.samples_33bps to frame.subframes[ch] */ for (i = 0; i < s->frame.blocksize; i++) sub->samples[i] = s->frame.samples_33bps[i] >> v; wasted_bits = v; } else { int32_t v = 0; for (i = 0; i < s->frame.blocksize; i++) { v |= sub->samples[i]; if (v & 1) break; } if (!v || (v & 1)) return; v = ff_ctz(v); for (i = 0; i < s->frame.blocksize; i++) sub->samples[i] >>= v; wasted_bits = v; } sub->wasted = wasted_bits; sub->obits -= wasted_bits; /* for 24-bit, check if removing wasted bits makes the range better * suited for using RICE instead of RICE2 for entropy coding */ if (sub->obits <= 17) sub->rc.coding_mode = CODING_MODE_RICE; } } static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, int max_rice_param, int bps) { int best; uint64_t sum[4]; uint64_t score[4]; int k; /* calculate sum of 2nd order residual for each channel */ sum[0] = sum[1] = sum[2] = sum[3] = 0; if(bps < 30) { int32_t lt, rt; for (int i = 2; i < n; i++) { lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; sum[2] += FFABS((lt + rt) >> 1); sum[3] += FFABS(lt - rt); sum[0] += FFABS(lt); sum[1] += FFABS(rt); } } else { int64_t lt, rt; for (int i = 2; i < n; i++) { lt = (int64_t)left_ch[i] - 2*(int64_t)left_ch[i-1] + left_ch[i-2]; rt = (int64_t)right_ch[i] - 2*(int64_t)right_ch[i-1] + right_ch[i-2]; sum[2] += FFABS((lt + rt) >> 1); sum[3] += FFABS(lt - rt); sum[0] += FFABS(lt); sum[1] += FFABS(rt); } } /* estimate bit counts */ for (int i = 0; i < 4; i++) { k = find_optimal_param(2 * sum[i], n, max_rice_param); sum[i] = rice_encode_count( 2 * sum[i], n, k); } /* calculate score for each mode */ score[0] = sum[0] + sum[1]; score[1] = sum[0] + sum[3]; score[2] = sum[1] + sum[3]; score[3] = sum[2] + sum[3]; /* return mode with lowest score */ best = 0; for (int i = 1; i < 4; i++) if (score[i] < score[best]) best = i; return best; } /** * Perform stereo channel decorrelation. */ static void channel_decorrelation(FlacEncodeContext *s) { FlacFrame *frame; int32_t *left, *right; int64_t *side_33bps; int n; frame = &s->frame; n = frame->blocksize; left = frame->subframes[0].samples; right = frame->subframes[1].samples; side_33bps = frame->samples_33bps; if (s->channels != 2) { frame->ch_mode = FLAC_CHMODE_INDEPENDENT; return; } if (s->options.ch_mode < 0) { int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2; frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param, s->avctx->bits_per_raw_sample); } else frame->ch_mode = s->options.ch_mode; /* perform decorrelation and adjust bits-per-sample */ if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) return; if(s->avctx->bits_per_raw_sample == 32) { if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) { int64_t tmp; for (int i = 0; i < n; i++) { tmp = left[i]; left[i] = (tmp + right[i]) >> 1; side_33bps[i] = tmp - right[i]; } frame->subframes[1].obits++; } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { for (int i = 0; i < n; i++) side_33bps[i] = (int64_t)left[i] - right[i]; frame->subframes[1].obits++; } else { for (int i = 0; i < n; i++) side_33bps[i] = (int64_t)left[i] - right[i]; frame->subframes[0].obits++; } } else { if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) { int32_t tmp; for (int i = 0; i < n; i++) { tmp = left[i]; left[i] = (tmp + right[i]) >> 1; right[i] = tmp - right[i]; } frame->subframes[1].obits++; } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { for (int i = 0; i < n; i++) right[i] = left[i] - right[i]; frame->subframes[1].obits++; } else { for (int i = 0; i < n; i++) left[i] -= right[i]; frame->subframes[0].obits++; } } } static void write_utf8(PutBitContext *pb, uint32_t val) { uint8_t tmp; PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);) } static void write_frame_header(FlacEncodeContext *s) { FlacFrame *frame; int crc; frame = &s->frame; put_bits(&s->pb, 16, 0xFFF8); put_bits(&s->pb, 4, frame->bs_code[0]); put_bits(&s->pb, 4, s->sr_code[0]); if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) put_bits(&s->pb, 4, s->channels-1); else put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1); put_bits(&s->pb, 3, s->bps_code); put_bits(&s->pb, 1, 0); write_utf8(&s->pb, s->frame_count); if (frame->bs_code[0] == 6) put_bits(&s->pb, 8, frame->bs_code[1]); else if (frame->bs_code[0] == 7) put_bits(&s->pb, 16, frame->bs_code[1]); if (s->sr_code[0] == 12) put_bits(&s->pb, 8, s->sr_code[1]); else if (s->sr_code[0] > 12) put_bits(&s->pb, 16, s->sr_code[1]); flush_put_bits(&s->pb); crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf, put_bytes_output(&s->pb)); put_bits(&s->pb, 8, crc); } static inline void set_sr_golomb_flac(PutBitContext *pb, int i, int k) { unsigned v, e; v = ((unsigned)(i) << 1) ^ (i >> 31); e = (v >> k) + 1; while (e > 31) { put_bits(pb, 31, 0); e -= 31; } put_bits(pb, e, 1); if (k) { unsigned mask = UINT32_MAX >> (32-k); put_bits(pb, k, v & mask); } } static void write_subframes(FlacEncodeContext *s) { int ch; for (ch = 0; ch < s->channels; ch++) { FlacSubframe *sub = &s->frame.subframes[ch]; int p, porder, psize; int32_t *part_end; int32_t *res = sub->residual; int32_t *frame_end = &sub->residual[s->frame.blocksize]; /* subframe header */ put_bits(&s->pb, 1, 0); put_bits(&s->pb, 6, sub->type_code); put_bits(&s->pb, 1, !!sub->wasted); if (sub->wasted) put_bits(&s->pb, sub->wasted, 1); /* subframe */ if (sub->type == FLAC_SUBFRAME_CONSTANT) { if(sub->obits == 33) put_sbits63(&s->pb, 33, s->frame.samples_33bps[0]); else if(sub->obits == 32) put_bits32(&s->pb, res[0]); else put_sbits(&s->pb, sub->obits, res[0]); } else if (sub->type == FLAC_SUBFRAME_VERBATIM) { if (sub->obits == 33) { int64_t *res64 = s->frame.samples_33bps; int64_t *frame_end64 = &s->frame.samples_33bps[s->frame.blocksize]; while (res64 < frame_end64) put_sbits63(&s->pb, 33, (*res64++)); } else if (sub->obits == 32) { while (res < frame_end) put_bits32(&s->pb, *res++); } else { while (res < frame_end) put_sbits(&s->pb, sub->obits, *res++); } } else { /* warm-up samples */ if (sub->obits == 33) { for (int i = 0; i < sub->order; i++) put_sbits63(&s->pb, 33, s->frame.samples_33bps[i]); res += sub->order; } else if (sub->obits == 32) { for (int i = 0; i < sub->order; i++) put_bits32(&s->pb, *res++); } else { for (int i = 0; i < sub->order; i++) put_sbits(&s->pb, sub->obits, *res++); } /* LPC coefficients */ if (sub->type == FLAC_SUBFRAME_LPC) { int cbits = s->options.lpc_coeff_precision; put_bits( &s->pb, 4, cbits-1); put_sbits(&s->pb, 5, sub->shift); for (int i = 0; i < sub->order; i++) put_sbits(&s->pb, cbits, sub->coefs[i]); } /* rice-encoded block */ put_bits(&s->pb, 2, sub->rc.coding_mode - 4); /* partition order */ porder = sub->rc.porder; psize = s->frame.blocksize >> porder; put_bits(&s->pb, 4, porder); /* residual */ part_end = &sub->residual[psize]; for (p = 0; p < 1 << porder; p++) { int k = sub->rc.params[p]; put_bits(&s->pb, sub->rc.coding_mode, k); while (res < part_end) set_sr_golomb_flac(&s->pb, *res++, k); part_end = FFMIN(frame_end, part_end + psize); } } } } static void write_frame_footer(FlacEncodeContext *s) { int crc; flush_put_bits(&s->pb); crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf, put_bytes_output(&s->pb))); put_bits(&s->pb, 16, crc); flush_put_bits(&s->pb); } static int write_frame(FlacEncodeContext *s, AVPacket *avpkt) { init_put_bits(&s->pb, avpkt->data, avpkt->size); write_frame_header(s); write_subframes(s); write_frame_footer(s); return put_bytes_output(&s->pb); } static int update_md5_sum(FlacEncodeContext *s, const void *samples) { const uint8_t *buf; int buf_size = s->frame.blocksize * s->channels * ((s->avctx->bits_per_raw_sample + 7) / 8); if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) { av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size); if (!s->md5_buffer) return AVERROR(ENOMEM); } if (s->avctx->bits_per_raw_sample <= 16) { buf = (const uint8_t *)samples; #if HAVE_BIGENDIAN s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer, (const uint16_t *) samples, buf_size / 2); buf = s->md5_buffer; #endif } else if (s->avctx->bits_per_raw_sample <= 24) { int i; const int32_t *samples0 = samples; uint8_t *tmp = s->md5_buffer; for (i = 0; i < s->frame.blocksize * s->channels; i++) { int32_t v = samples0[i] >> 8; AV_WL24(tmp + 3*i, v); } buf = s->md5_buffer; } else { /* s->avctx->bits_per_raw_sample <= 32 */ int i; const int32_t *samples0 = samples; uint8_t *tmp = s->md5_buffer; for (i = 0; i < s->frame.blocksize * s->channels; i++) AV_WL32(tmp + 4*i, samples0[i]); buf = s->md5_buffer; } av_md5_update(s->md5ctx, buf, buf_size); return 0; } static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr) { FlacEncodeContext *s; int frame_bytes, out_bytes, ret; s = avctx->priv_data; /* when the last block is reached, update the header in extradata */ if (!frame) { s->max_framesize = s->max_encoded_framesize; av_md5_final(s->md5ctx, s->md5sum); write_streaminfo(s, avctx->extradata); if (!s->flushed) { uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, avctx->extradata_size); if (!side_data) return AVERROR(ENOMEM); memcpy(side_data, avctx->extradata, avctx->extradata_size); avpkt->pts = s->next_pts; *got_packet_ptr = 1; s->flushed = 1; } return 0; } /* change max_framesize for small final frame */ if (frame->nb_samples < s->frame.blocksize) { s->max_framesize = flac_get_max_frame_size(frame->nb_samples, s->channels, avctx->bits_per_raw_sample); } init_frame(s, frame->nb_samples); copy_samples(s, frame->data[0]); channel_decorrelation(s); remove_wasted_bits(s); frame_bytes = encode_frame(s); /* Fall back on verbatim mode if the compressed frame is larger than it would be if encoded uncompressed. */ if (frame_bytes < 0 || frame_bytes > s->max_framesize) { s->frame.verbatim_only = 1; frame_bytes = encode_frame(s); if (frame_bytes < 0) { av_log(avctx, AV_LOG_ERROR, "Bad frame count\n"); return frame_bytes; } } if ((ret = ff_get_encode_buffer(avctx, avpkt, frame_bytes, 0)) < 0) return ret; out_bytes = write_frame(s, avpkt); s->frame_count++; s->sample_count += frame->nb_samples; if ((ret = update_md5_sum(s, frame->data[0])) < 0) { av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n"); return ret; } if (out_bytes > s->max_encoded_framesize) s->max_encoded_framesize = out_bytes; if (out_bytes < s->min_framesize) s->min_framesize = out_bytes; avpkt->pts = frame->pts; avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); s->next_pts = avpkt->pts + avpkt->duration; av_shrink_packet(avpkt, out_bytes); *got_packet_ptr = 1; return 0; } static av_cold int flac_encode_close(AVCodecContext *avctx) { FlacEncodeContext *s = avctx->priv_data; av_freep(&s->md5ctx); av_freep(&s->md5_buffer); ff_lpc_end(&s->lpc_ctx); return 0; } #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM static const AVOption options[] = { { "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS }, { "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" }, { "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, { "fixed", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes), AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS }, { "min_partition_order", NULL, offsetof(FlacEncodeContext, options.min_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS }, { "max_partition_order", NULL, offsetof(FlacEncodeContext, options.max_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS }, { "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" }, { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, INT_MIN, INT_MAX, FLAGS, "predm" }, { "2level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, { "4level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, { "8level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, { "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" }, { "log", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG }, INT_MIN, INT_MAX, FLAGS, "predm" }, { "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" }, { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, { "indep", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, { "left_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, { "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, { "mid_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, { "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "multi_dim_quant", "Multi-dimensional quantization", offsetof(FlacEncodeContext, options.multi_dim_quant), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS }, { "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS }, { NULL }, }; static const AVClass flac_encoder_class = { .class_name = "FLAC encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_flac_encoder = { .p.name = "flac", CODEC_LONG_NAME("FLAC (Free Lossless Audio Codec)"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_FLAC, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SMALL_LAST_FRAME, .priv_data_size = sizeof(FlacEncodeContext), .init = flac_encode_init, FF_CODEC_ENCODE_CB(flac_encode_frame), .close = flac_encode_close, .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_NONE }, .p.priv_class = &flac_encoder_class, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };