/* * ClearVideo decoder * Copyright (c) 2012-2018 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * ClearVideo decoder */ #include "avcodec.h" #include "bytestream.h" #include "get_bits.h" #include "idctdsp.h" #include "internal.h" #include "mathops.h" #include "clearvideodata.h" typedef struct LevelCodes { uint16_t mv_esc; uint16_t bias_esc; VLC flags_cb; VLC mv_cb; VLC bias_cb; } LevelCodes; typedef struct MV { int16_t x, y; } MV; static const MV zero_mv = { 0 }; typedef struct MVInfo { int mb_w; int mb_h; int mb_size; int mb_stride; int top; MV *mv; } MVInfo; typedef struct TileInfo { uint16_t flags; int16_t bias; MV mv; struct TileInfo *child[4]; } TileInfo; typedef struct CLVContext { AVCodecContext *avctx; IDCTDSPContext idsp; AVFrame *pic; AVFrame *prev; GetBitContext gb; int mb_width, mb_height; int pmb_width, pmb_height; MVInfo mvi; int tile_size; int tile_shift; VLC dc_vlc, ac_vlc; LevelCodes lev[4 + 3 + 3]; // 0..3: Y, 4..6: U, 7..9: V int luma_dc_quant, chroma_dc_quant, ac_quant; DECLARE_ALIGNED(16, int16_t, block)[64]; int top_dc[3], left_dc[4]; } CLVContext; static inline int decode_block(CLVContext *ctx, int16_t *blk, int has_ac, int ac_quant) { GetBitContext *gb = &ctx->gb; int idx = 1, last = 0, val, skip; memset(blk, 0, sizeof(*blk) * 64); blk[0] = get_vlc2(gb, ctx->dc_vlc.table, 9, 3); blk[0] -= 63; if (!has_ac) return 0; while (idx < 64 && !last) { val = get_vlc2(gb, ctx->ac_vlc.table, 9, 2); if (val < 0) return AVERROR_INVALIDDATA; if (val != 0x1BFF) { last = val >> 12; skip = (val >> 4) & 0xFF; val &= 0xF; if (get_bits1(gb)) val = -val; } else { last = get_bits1(gb); skip = get_bits(gb, 6); val = get_sbits(gb, 8); } if (val) { int aval = FFABS(val), sign = val < 0; val = ac_quant * (2 * aval + 1); if (!(ac_quant & 1)) val--; if (sign) val = -val; } idx += skip; if (idx >= 64) return AVERROR_INVALIDDATA; blk[ff_zigzag_direct[idx++]] = val; } return (idx <= 64 && last) ? 0 : -1; } #define DCT_TEMPLATE(blk, step, bias, shift, dshift, OP) \ const int t0 = OP(2841 * blk[1 * step] + 565 * blk[7 * step]); \ const int t1 = OP( 565 * blk[1 * step] - 2841 * blk[7 * step]); \ const int t2 = OP(1609 * blk[5 * step] + 2408 * blk[3 * step]); \ const int t3 = OP(2408 * blk[5 * step] - 1609 * blk[3 * step]); \ const int t4 = OP(1108 * blk[2 * step] - 2676 * blk[6 * step]); \ const int t5 = OP(2676 * blk[2 * step] + 1108 * blk[6 * step]); \ const int t6 = ((blk[0 * step] + blk[4 * step]) * (1 << dshift)) + bias; \ const int t7 = ((blk[0 * step] - blk[4 * step]) * (1 << dshift)) + bias; \ const int t8 = t0 + t2; \ const int t9 = t0 - t2; \ const int tA = (int)(181U * (t9 + (t1 - t3)) + 0x80) >> 8; \ const int tB = (int)(181U * (t9 - (t1 - t3)) + 0x80) >> 8; \ const int tC = t1 + t3; \ \ blk[0 * step] = (t6 + t5 + t8) >> shift; \ blk[1 * step] = (t7 + t4 + tA) >> shift; \ blk[2 * step] = (t7 - t4 + tB) >> shift; \ blk[3 * step] = (t6 - t5 + tC) >> shift; \ blk[4 * step] = (t6 - t5 - tC) >> shift; \ blk[5 * step] = (t7 - t4 - tB) >> shift; \ blk[6 * step] = (t7 + t4 - tA) >> shift; \ blk[7 * step] = (t6 + t5 - t8) >> shift; \ #define ROP(x) x #define COP(x) (((x) + 4) >> 3) static void clv_dct(int16_t *block) { int i; int16_t *ptr; ptr = block; for (i = 0; i < 8; i++) { DCT_TEMPLATE(ptr, 1, 0x80, 8, 11, ROP); ptr += 8; } ptr = block; for (i = 0; i < 8; i++) { DCT_TEMPLATE(ptr, 8, 0x2000, 14, 8, COP); ptr++; } } static int decode_mb(CLVContext *c, int x, int y) { int i, has_ac[6], off; for (i = 0; i < 6; i++) has_ac[i] = get_bits1(&c->gb); off = x * 16 + y * 16 * c->pic->linesize[0]; for (i = 0; i < 4; i++) { if (decode_block(c, c->block, has_ac[i], c->ac_quant) < 0) return AVERROR_INVALIDDATA; if (!x && !(i & 1)) { c->block[0] += c->top_dc[0]; c->top_dc[0] = c->block[0]; } else { c->block[0] += c->left_dc[(i & 2) >> 1]; } c->left_dc[(i & 2) >> 1] = c->block[0]; c->block[0] *= c->luma_dc_quant; clv_dct(c->block); if (i == 2) off += c->pic->linesize[0] * 8; c->idsp.put_pixels_clamped(c->block, c->pic->data[0] + off + (i & 1) * 8, c->pic->linesize[0]); } off = x * 8 + y * 8 * c->pic->linesize[1]; for (i = 1; i < 3; i++) { if (decode_block(c, c->block, has_ac[i + 3], c->ac_quant) < 0) return AVERROR_INVALIDDATA; if (!x) { c->block[0] += c->top_dc[i]; c->top_dc[i] = c->block[0]; } else { c->block[0] += c->left_dc[i + 1]; } c->left_dc[i + 1] = c->block[0]; c->block[0] *= c->chroma_dc_quant; clv_dct(c->block); c->idsp.put_pixels_clamped(c->block, c->pic->data[i] + off, c->pic->linesize[i]); } return 0; } static int copy_block(AVCodecContext *avctx, AVFrame *dst, AVFrame *src, int plane, int x, int y, int dx, int dy, int size) { int shift = plane > 0; int sx = x + dx; int sy = y + dy; int sstride, dstride, soff, doff; uint8_t *sbuf, *dbuf; int i; if (x < 0 || sx < 0 || y < 0 || sy < 0 || x + size > avctx->coded_width >> shift || y + size > avctx->coded_height >> shift || sx + size > avctx->coded_width >> shift || sy + size > avctx->coded_height >> shift) return AVERROR_INVALIDDATA; sstride = src->linesize[plane]; dstride = dst->linesize[plane]; soff = sx + sy * sstride; sbuf = src->data[plane]; doff = x + y * dstride; dbuf = dst->data[plane]; for (i = 0; i < size; i++) { uint8_t *dptr = &dbuf[doff]; uint8_t *sptr = &sbuf[soff]; memcpy(dptr, sptr, size); doff += dstride; soff += sstride; } return 0; } static int copyadd_block(AVCodecContext *avctx, AVFrame *dst, AVFrame *src, int plane, int x, int y, int dx, int dy, int size, int bias) { int shift = plane > 0; int sx = x + dx; int sy = y + dy; int sstride = src->linesize[plane]; int dstride = dst->linesize[plane]; int soff = sx + sy * sstride; uint8_t *sbuf = src->data[plane]; int doff = x + y * dstride; uint8_t *dbuf = dst->data[plane]; int i, j; if (x < 0 || sx < 0 || y < 0 || sy < 0 || x + size > avctx->coded_width >> shift || y + size > avctx->coded_height >> shift || sx + size > avctx->coded_width >> shift || sy + size > avctx->coded_height >> shift) return AVERROR_INVALIDDATA; for (j = 0; j < size; j++) { uint8_t *dptr = &dbuf[doff]; uint8_t *sptr = &sbuf[soff]; for (i = 0; i < size; i++) { int val = sptr[i] + bias; dptr[i] = av_clip_uint8(val); } doff += dstride; soff += sstride; } return 0; } static MV mvi_predict(MVInfo *mvi, int mb_x, int mb_y, MV diff) { MV res, pred_mv; int left_mv, right_mv, top_mv, bot_mv; if (mvi->top) { if (mb_x > 0) { pred_mv = mvi->mv[mvi->mb_stride + mb_x - 1]; } else { pred_mv = zero_mv; } } else if ((mb_x == 0) || (mb_x == mvi->mb_w - 1)) { pred_mv = mvi->mv[mb_x]; } else { MV A = mvi->mv[mvi->mb_stride + mb_x - 1]; MV B = mvi->mv[ mb_x ]; MV C = mvi->mv[ mb_x + 1]; pred_mv.x = mid_pred(A.x, B.x, C.x); pred_mv.y = mid_pred(A.y, B.y, C.y); } res = pred_mv; left_mv = -((mb_x * mvi->mb_size)); right_mv = ((mvi->mb_w - mb_x - 1) * mvi->mb_size); if (res.x < left_mv) { res.x = left_mv; } if (res.x > right_mv) { res.x = right_mv; } top_mv = -((mb_y * mvi->mb_size)); bot_mv = ((mvi->mb_h - mb_y - 1) * mvi->mb_size); if (res.y < top_mv) { res.y = top_mv; } if (res.y > bot_mv) { res.y = bot_mv; } mvi->mv[mvi->mb_stride + mb_x].x = res.x + diff.x; mvi->mv[mvi->mb_stride + mb_x].y = res.y + diff.y; return res; } static void mvi_reset(MVInfo *mvi, int mb_w, int mb_h, int mb_size) { mvi->top = 1; mvi->mb_w = mb_w; mvi->mb_h = mb_h; mvi->mb_size = mb_size; mvi->mb_stride = mb_w; memset(mvi->mv, 0, sizeof(MV) * mvi->mb_stride * 2); } static void mvi_update_row(MVInfo *mvi) { int i; mvi->top = 0; for (i = 0 ; i < mvi->mb_stride; i++) { mvi->mv[i] = mvi->mv[mvi->mb_stride + i]; } } static TileInfo* decode_tile_info(GetBitContext *gb, LevelCodes *lc, int level) { TileInfo *ti; int i, flags = 0; int16_t bias = 0; MV mv = { 0 }; if (lc[level].flags_cb.table) { flags = get_vlc2(gb, lc[level].flags_cb.table, lc[level].flags_cb.bits, 2); } if (lc[level].mv_cb.table) { uint16_t mv_code = get_vlc2(gb, lc[level].mv_cb.table, lc[level].mv_cb.bits, 3); if (mv_code != lc[level].mv_esc) { mv.x = (int8_t)(mv_code & 0xff); mv.y = (int8_t)(mv_code >> 8); } else { mv.x = get_sbits(gb, 8); mv.y = get_sbits(gb, 8); } } if (lc[level].bias_cb.table) { uint16_t bias_val = get_vlc2(gb, lc[level].bias_cb.table, lc[level].bias_cb.bits, 2); if (bias_val != lc[level].bias_esc) { bias = (int16_t)(bias_val); } else { bias = get_sbits(gb, 16); } } ti = av_calloc(1, sizeof(*ti)); if (!ti) return NULL; ti->flags = flags; ti->mv = mv; ti->bias = bias; if (ti->flags) { for (i = 0; i < 4; i++) { if (ti->flags & (1 << i)) { TileInfo *subti = decode_tile_info(gb, lc, level + 1); ti->child[i] = subti; } } } return ti; } static int tile_do_block(AVCodecContext *avctx, AVFrame *dst, AVFrame *src, int plane, int x, int y, int dx, int dy, int size, int bias) { int ret; if (!bias) { ret = copy_block(avctx, dst, src, plane, x, y, dx, dy, size); } else { ret = copyadd_block(avctx, dst, src, plane, x, y, dx, dy, size, bias); } return ret; } static int restore_tree(AVCodecContext *avctx, AVFrame *dst, AVFrame *src, int plane, int x, int y, int size, TileInfo *tile, MV root_mv) { int ret; MV mv; mv.x = root_mv.x + tile->mv.x; mv.y = root_mv.y + tile->mv.y; if (!tile->flags) { ret = tile_do_block(avctx, dst, src, plane, x, y, mv.x, mv.y, size, tile->bias); } else { int i, hsize = size >> 1; for (i = 0; i < 4; i++) { int xoff = (i & 2) == 0 ? 0 : hsize; int yoff = (i & 1) == 0 ? 0 : hsize; if (tile->child[i]) { ret = restore_tree(avctx, dst, src, plane, x + xoff, y + yoff, hsize, tile->child[i], root_mv); av_freep(&tile->child[i]); } else { ret = tile_do_block(avctx, dst, src, plane, x + xoff, y + yoff, mv.x, mv.y, hsize, tile->bias); } } } return ret; } static void extend_edges(AVFrame *buf, int tile_size) { int comp, i, j; for (comp = 0; comp < 3; comp++) { int shift = comp > 0; int w = buf->width >> shift; int h = buf->height >> shift; int size = comp == 0 ? tile_size : tile_size >> 1; int stride = buf->linesize[comp]; uint8_t *framebuf = buf->data[comp]; int right = size - (w & (size - 1)); int bottom = size - (h & (size - 1)); if ((right == size) && (bottom == size)) { return; } if (right != size) { int off = w; for (j = 0; j < h; j++) { for (i = 0; i < right; i++) { framebuf[off + i] = 0x80; } off += stride; } } if (bottom != size) { int off = h * stride; for (j = 0; j < bottom; j++) { for (i = 0; i < stride; i++) { framebuf[off + i] = 0x80; } off += stride; } } } } static int clv_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; CLVContext *c = avctx->priv_data; GetByteContext gb; uint32_t frame_type; int i, j, ret; int mb_ret = 0; bytestream2_init(&gb, buf, buf_size); if (avctx->codec_tag == MKTAG('C', 'L', 'V', '1')) { int skip = bytestream2_get_byte(&gb); bytestream2_skip(&gb, (skip + 1) * 8); } frame_type = bytestream2_get_byte(&gb); if ((frame_type & 0x7f) == 0x30) { *got_frame = 0; return buf_size; } else if (frame_type & 0x2) { if (buf_size < c->mb_width * c->mb_height) { av_log(avctx, AV_LOG_ERROR, "Packet too small\n"); return AVERROR_INVALIDDATA; } if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0) return ret; c->pic->key_frame = 1; c->pic->pict_type = AV_PICTURE_TYPE_I; bytestream2_get_be32(&gb); // frame size; c->ac_quant = bytestream2_get_byte(&gb); c->luma_dc_quant = 32; c->chroma_dc_quant = 32; if ((ret = init_get_bits8(&c->gb, buf + bytestream2_tell(&gb), buf_size - bytestream2_tell(&gb))) < 0) return ret; for (i = 0; i < 3; i++) c->top_dc[i] = 32; for (i = 0; i < 4; i++) c->left_dc[i] = 32; for (j = 0; j < c->mb_height; j++) { for (i = 0; i < c->mb_width; i++) { ret = decode_mb(c, i, j); if (ret < 0) mb_ret = ret; } } extend_edges(c->pic, c->tile_size); } else { int plane; if (c->pmb_width * c->pmb_height > 8LL*(buf_size - bytestream2_tell(&gb))) return AVERROR_INVALIDDATA; if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0) return ret; ret = av_frame_copy(c->pic, c->prev); if (ret < 0) return ret; if ((ret = init_get_bits8(&c->gb, buf + bytestream2_tell(&gb), buf_size - bytestream2_tell(&gb))) < 0) return ret; mvi_reset(&c->mvi, c->pmb_width, c->pmb_height, 1 << c->tile_shift); for (j = 0; j < c->pmb_height; j++) { for (i = 0; i < c->pmb_width; i++) { if (get_bits_left(&c->gb) <= 0) return AVERROR_INVALIDDATA; if (get_bits1(&c->gb)) { MV mv = mvi_predict(&c->mvi, i, j, zero_mv); for (plane = 0; plane < 3; plane++) { int16_t x = plane == 0 ? i << c->tile_shift : i << (c->tile_shift - 1); int16_t y = plane == 0 ? j << c->tile_shift : j << (c->tile_shift - 1); int16_t size = plane == 0 ? 1 << c->tile_shift : 1 << (c->tile_shift - 1); int16_t mx = plane == 0 ? mv.x : mv.x / 2; int16_t my = plane == 0 ? mv.y : mv.y / 2; ret = copy_block(avctx, c->pic, c->prev, plane, x, y, mx, my, size); if (ret < 0) mb_ret = ret; } } else { int x = i << c->tile_shift; int y = j << c->tile_shift; int size = 1 << c->tile_shift; TileInfo *tile; MV mv, cmv; tile = decode_tile_info(&c->gb, &c->lev[0], 0); // Y if (!tile) return AVERROR(ENOMEM); mv = mvi_predict(&c->mvi, i, j, tile->mv); ret = restore_tree(avctx, c->pic, c->prev, 0, x, y, size, tile, mv); if (ret < 0) mb_ret = ret; x = i << (c->tile_shift - 1); y = j << (c->tile_shift - 1); size = 1 << (c->tile_shift - 1); cmv.x = mv.x + tile->mv.x; cmv.y = mv.y + tile->mv.y; cmv.x /= 2; cmv.y /= 2; av_freep(&tile); tile = decode_tile_info(&c->gb, &c->lev[4], 0); // U if (!tile) return AVERROR(ENOMEM); ret = restore_tree(avctx, c->pic, c->prev, 1, x, y, size, tile, cmv); if (ret < 0) mb_ret = ret; av_freep(&tile); tile = decode_tile_info(&c->gb, &c->lev[7], 0); // V if (!tile) return AVERROR(ENOMEM); ret = restore_tree(avctx, c->pic, c->prev, 2, x, y, size, tile, cmv); if (ret < 0) mb_ret = ret; av_freep(&tile); } } mvi_update_row(&c->mvi); } extend_edges(c->pic, c->tile_size); c->pic->key_frame = 0; c->pic->pict_type = AV_PICTURE_TYPE_P; } if ((ret = av_frame_ref(data, c->pic)) < 0) return ret; FFSWAP(AVFrame *, c->pic, c->prev); *got_frame = 1; if (get_bits_left(&c->gb) < 0) av_log(c->avctx, AV_LOG_WARNING, "overread %d\n", -get_bits_left(&c->gb)); return mb_ret < 0 ? mb_ret : buf_size; } static av_cold int build_vlc(VLC *vlc, const uint8_t counts[16], const uint16_t **syms) { uint8_t lens[MAX_VLC_ENTRIES]; unsigned num = 0; int ret; for (int i = 0; i < 16; i++) { unsigned count = counts[i]; if (count == 255) /* Special case for Y_3 table */ count = 303; for (count += num; num < count; num++) lens[num] = i + 1; } ret = ff_init_vlc_from_lengths(vlc, 9, num, lens, 1, *syms, 2, 2, 0, 0, NULL); if (ret < 0) return ret; *syms += num; return 0; } static av_cold int clv_decode_init(AVCodecContext *avctx) { CLVContext *const c = avctx->priv_data; const uint16_t *mv_syms = clv_mv_syms, *bias_syms = clv_bias_syms; int ret, w, h; if (avctx->extradata_size == 110) { c->tile_size = AV_RL32(&avctx->extradata[94]); } else if (avctx->extradata_size == 150) { c->tile_size = AV_RB32(&avctx->extradata[134]); } else if (!avctx->extradata_size) { c->tile_size = 16; } else { av_log(avctx, AV_LOG_ERROR, "Unsupported extradata size: %d\n", avctx->extradata_size); return AVERROR_INVALIDDATA; } c->tile_shift = av_log2(c->tile_size); if (1U << c->tile_shift != c->tile_size) { av_log(avctx, AV_LOG_ERROR, "Tile size: %d, is not power of 2.\n", c->tile_size); return AVERROR_INVALIDDATA; } avctx->pix_fmt = AV_PIX_FMT_YUV420P; w = avctx->width; h = avctx->height; ret = ff_set_dimensions(avctx, FFALIGN(w, 1 << c->tile_shift), FFALIGN(h, 1 << c->tile_shift)); if (ret < 0) return ret; avctx->width = w; avctx->height = h; c->avctx = avctx; c->mb_width = FFALIGN(avctx->width, 16) >> 4; c->mb_height = FFALIGN(avctx->height, 16) >> 4; c->pmb_width = (w + c->tile_size - 1) >> c->tile_shift; c->pmb_height = (h + c->tile_size - 1) >> c->tile_shift; c->pic = av_frame_alloc(); c->prev = av_frame_alloc(); c->mvi.mv = av_calloc(c->pmb_width * 2, sizeof(*c->mvi.mv)); if (!c->pic || !c->prev || !c->mvi.mv) return AVERROR(ENOMEM); ff_idctdsp_init(&c->idsp, avctx); ret = init_vlc(&c->dc_vlc, 9, NUM_DC_CODES, clv_dc_bits, 1, 1, clv_dc_codes, 1, 1, 0); if (ret) { av_log(avctx, AV_LOG_ERROR, "Error initialising DC VLC\n"); return ret; } ret = ff_init_vlc_from_lengths(&c->ac_vlc, 9, NUM_AC_CODES, clv_ac_bits, 1, clv_ac_syms, 2, 2, 0, 0, avctx); if (ret) { av_log(avctx, AV_LOG_ERROR, "Error initialising AC VLC\n"); return ret; } for (int i = 0, j = 0, k = 0;; i++) { if (0x36F & (1 << i)) { c->lev[i].mv_esc = clv_mv_escape[i]; ret = build_vlc(&c->lev[i].mv_cb, clv_mv_len_counts[k], &mv_syms); if (ret < 0) return ret; k++; } if (i == FF_ARRAY_ELEMS(c->lev) - 1) break; if (0x1B7 & (1 << i)) { ret = ff_init_vlc_from_lengths(&c->lev[i].flags_cb, 9, 16, clv_flags_bits[j], 1, clv_flags_syms[j], 1, 1, 0, 0, avctx); if (ret < 0) return ret; c->lev[i + 1].bias_esc = 0x100; ret = build_vlc(&c->lev[i + 1].bias_cb, clv_bias_len_counts[j], &bias_syms); if (ret < 0) return ret; j++; } } return 0; } static av_cold int clv_decode_end(AVCodecContext *avctx) { CLVContext *const c = avctx->priv_data; av_frame_free(&c->prev); av_frame_free(&c->pic); av_freep(&c->mvi.mv); ff_free_vlc(&c->dc_vlc); ff_free_vlc(&c->ac_vlc); for (int i = 0; i < FF_ARRAY_ELEMS(c->lev); i++) { ff_free_vlc(&c->lev[i].mv_cb); ff_free_vlc(&c->lev[i].flags_cb); ff_free_vlc(&c->lev[i].bias_cb); } return 0; } AVCodec ff_clearvideo_decoder = { .name = "clearvideo", .long_name = NULL_IF_CONFIG_SMALL("Iterated Systems ClearVideo"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_CLEARVIDEO, .priv_data_size = sizeof(CLVContext), .init = clv_decode_init, .close = clv_decode_end, .decode = clv_decode_frame, .capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, };