/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG-4 part10 codec. * @author Michael Niedermayer */ #define UNCHECKED_BITSTREAM_READER 1 #include "config_components.h" #include "libavutil/avassert.h" #include "libavutil/emms.h" #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/thread.h" #include "libavutil/video_enc_params.h" #include "codec_internal.h" #include "internal.h" #include "error_resilience.h" #include "avcodec.h" #include "h264.h" #include "h264dec.h" #include "h2645_parse.h" #include "h264data.h" #include "h264_ps.h" #include "golomb.h" #include "hwaccel_internal.h" #include "hwconfig.h" #include "mpegutils.h" #include "profiles.h" #include "rectangle.h" #include "refstruct.h" #include "thread.h" #include "threadframe.h" const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; return h && h->ps.sps ? h->ps.sps->num_reorder_frames : 0; } static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, int (*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped) { const H264Context *h = opaque; H264SliceContext *sl = &h->slice_ctx[0]; sl->mb_x = mb_x; sl->mb_y = mb_y; sl->mb_xy = mb_x + mb_y * h->mb_stride; memset(sl->non_zero_count_cache, 0, sizeof(sl->non_zero_count_cache)); av_assert1(ref >= 0); /* FIXME: It is possible albeit uncommon that slice references * differ between slices. We take the easy approach and ignore * it for now. If this turns out to have any relevance in * practice then correct remapping should be added. */ if (ref >= sl->ref_count[0]) ref = 0; if (!sl->ref_list[0][ref].data[0]) { av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n"); ref = 0; } if ((sl->ref_list[0][ref].reference&3) != 3) { av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n"); return; } fill_rectangle(&h->cur_pic.ref_index[0][4 * sl->mb_xy], 2, 2, 2, ref, 1); fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); sl->mb_mbaff = sl->mb_field_decoding_flag = 0; ff_h264_hl_decode_mb(h, &h->slice_ctx[0]); } void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height) { AVCodecContext *avctx = h->avctx; const AVFrame *src = h->cur_pic.f; const AVPixFmtDescriptor *desc; int offset[AV_NUM_DATA_POINTERS]; int vshift; const int field_pic = h->picture_structure != PICT_FRAME; if (!avctx->draw_horiz_band) return; if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD)) return; if (field_pic) { height <<= 1; y <<= 1; } height = FFMIN(height, avctx->height - y); desc = av_pix_fmt_desc_get(avctx->pix_fmt); vshift = desc->log2_chroma_h; offset[0] = y * src->linesize[0]; offset[1] = offset[2] = (y >> vshift) * src->linesize[1]; for (int i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); avctx->draw_horiz_band(avctx, src, offset, y, h->picture_structure, height); } void ff_h264_free_tables(H264Context *h) { int i; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table = NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); ff_refstruct_pool_uninit(&h->qscale_table_pool); ff_refstruct_pool_uninit(&h->mb_type_pool); ff_refstruct_pool_uninit(&h->motion_val_pool); ff_refstruct_pool_uninit(&h->ref_index_pool); #if CONFIG_ERROR_RESILIENCE av_freep(&h->er.mb_index2xy); av_freep(&h->er.error_status_table); av_freep(&h->er.er_temp_buffer); av_freep(&h->dc_val_base); #endif for (i = 0; i < h->nb_slice_ctx; i++) { H264SliceContext *sl = &h->slice_ctx[i]; av_freep(&sl->bipred_scratchpad); av_freep(&sl->edge_emu_buffer); av_freep(&sl->top_borders[0]); av_freep(&sl->top_borders[1]); sl->bipred_scratchpad_allocated = 0; sl->edge_emu_buffer_allocated = 0; sl->top_borders_allocated[0] = 0; sl->top_borders_allocated[1] = 0; } } int ff_h264_alloc_tables(H264Context *h) { ERContext *const er = &h->er; const int big_mb_num = h->mb_stride * (h->mb_height + 1); const int row_mb_num = 2*h->mb_stride*FFMAX(h->nb_slice_ctx, 1); const int st_size = big_mb_num + h->mb_stride; int x, y; if (!FF_ALLOCZ_TYPED_ARRAY(h->intra4x4_pred_mode, row_mb_num * 8) || !FF_ALLOCZ_TYPED_ARRAY(h->non_zero_count, big_mb_num) || !FF_ALLOCZ_TYPED_ARRAY(h->slice_table_base, st_size) || !FF_ALLOCZ_TYPED_ARRAY(h->cbp_table, big_mb_num) || !FF_ALLOCZ_TYPED_ARRAY(h->chroma_pred_mode_table, big_mb_num) || !FF_ALLOCZ_TYPED_ARRAY(h->mvd_table[0], row_mb_num * 8) || !FF_ALLOCZ_TYPED_ARRAY(h->mvd_table[1], row_mb_num * 8) || !FF_ALLOCZ_TYPED_ARRAY(h->direct_table, big_mb_num * 4) || !FF_ALLOCZ_TYPED_ARRAY(h->list_counts, big_mb_num) || !FF_ALLOCZ_TYPED_ARRAY(h->mb2b_xy, big_mb_num) || !FF_ALLOCZ_TYPED_ARRAY(h->mb2br_xy, big_mb_num)) return AVERROR(ENOMEM); h->slice_ctx[0].intra4x4_pred_mode = h->intra4x4_pred_mode; h->slice_ctx[0].mvd_table[0] = h->mvd_table[0]; h->slice_ctx[0].mvd_table[1] = h->mvd_table[1]; memset(h->slice_table_base, -1, st_size * sizeof(*h->slice_table_base)); h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) { const int mb_xy = x + y * h->mb_stride; const int b_xy = 4 * x + 4 * y * h->b_stride; h->mb2b_xy[mb_xy] = b_xy; h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); } if (CONFIG_ERROR_RESILIENCE) { const int er_size = h->mb_height * h->mb_stride * (4*sizeof(int) + 1); int mb_array_size = h->mb_height * h->mb_stride; int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); int yc_size = y_size + 2 * big_mb_num; /* init ER */ er->avctx = h->avctx; er->decode_mb = h264_er_decode_mb; er->opaque = h; er->quarter_sample = 1; er->mb_num = h->mb_num; er->mb_width = h->mb_width; er->mb_height = h->mb_height; er->mb_stride = h->mb_stride; er->b8_stride = h->mb_width * 2 + 1; // error resilience code looks cleaner with this if (!FF_ALLOCZ_TYPED_ARRAY(er->mb_index2xy, h->mb_num + 1) || !FF_ALLOCZ_TYPED_ARRAY(er->error_status_table, mb_array_size) || !FF_ALLOCZ_TYPED_ARRAY(er->er_temp_buffer, er_size) || !FF_ALLOCZ_TYPED_ARRAY(h->dc_val_base, yc_size)) return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * h->mb_stride + h->mb_width; er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2; er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1; er->dc_val[2] = er->dc_val[1] + big_mb_num; for (int i = 0; i < yc_size; i++) h->dc_val_base[i] = 1024; } return 0; } /** * Init slice context */ void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl) { sl->ref_cache[0][scan8[5] + 1] = sl->ref_cache[0][scan8[7] + 1] = sl->ref_cache[0][scan8[13] + 1] = sl->ref_cache[1][scan8[5] + 1] = sl->ref_cache[1][scan8[7] + 1] = sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; sl->er = &h->er; } static int h264_init_pic(H264Picture *pic) { pic->f = av_frame_alloc(); if (!pic->f) return AVERROR(ENOMEM); pic->f_grain = av_frame_alloc(); if (!pic->f_grain) return AVERROR(ENOMEM); return 0; } static int h264_init_context(AVCodecContext *avctx, H264Context *h) { int i, ret; h->avctx = avctx; h->cur_chroma_format_idc = -1; h->width_from_caller = avctx->width; h->height_from_caller = avctx->height; h->workaround_bugs = avctx->workaround_bugs; h->flags = avctx->flags; h->poc.prev_poc_msb = 1 << 16; h->recovery_frame = -1; h->frame_recovered = 0; h->poc.prev_frame_num = -1; h->sei.common.frame_packing.arrangement_cancel_flag = -1; h->sei.common.unregistered.x264_build = -1; h->next_outputed_poc = INT_MIN; for (i = 0; i < FF_ARRAY_ELEMS(h->last_pocs); i++) h->last_pocs[i] = INT_MIN; ff_h264_sei_uninit(&h->sei); if (avctx->active_thread_type & FF_THREAD_FRAME) { h->decode_error_flags_pool = ff_refstruct_pool_alloc(sizeof(atomic_int), 0); if (!h->decode_error_flags_pool) return AVERROR(ENOMEM); } h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ? avctx->thread_count : 1; h->slice_ctx = av_calloc(h->nb_slice_ctx, sizeof(*h->slice_ctx)); if (!h->slice_ctx) { h->nb_slice_ctx = 0; return AVERROR(ENOMEM); } for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { if ((ret = h264_init_pic(&h->DPB[i])) < 0) return ret; } if ((ret = h264_init_pic(&h->cur_pic)) < 0) return ret; if ((ret = h264_init_pic(&h->last_pic_for_ec)) < 0) return ret; for (i = 0; i < h->nb_slice_ctx; i++) h->slice_ctx[i].h264 = h; return 0; } static void h264_free_pic(H264Context *h, H264Picture *pic) { ff_h264_unref_picture(pic); av_frame_free(&pic->f); av_frame_free(&pic->f_grain); } static av_cold int h264_decode_end(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; ff_h264_remove_all_refs(h); ff_h264_free_tables(h); for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { h264_free_pic(h, &h->DPB[i]); } memset(h->delayed_pic, 0, sizeof(h->delayed_pic)); h->cur_pic_ptr = NULL; ff_refstruct_pool_uninit(&h->decode_error_flags_pool); av_freep(&h->slice_ctx); h->nb_slice_ctx = 0; ff_h264_sei_uninit(&h->sei); ff_h264_ps_uninit(&h->ps); ff_h2645_packet_uninit(&h->pkt); h264_free_pic(h, &h->cur_pic); h264_free_pic(h, &h->last_pic_for_ec); return 0; } static AVOnce h264_vlc_init = AV_ONCE_INIT; static av_cold int h264_decode_init(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int ret; ret = h264_init_context(avctx, h); if (ret < 0) return ret; ret = ff_thread_once(&h264_vlc_init, ff_h264_decode_init_vlc); if (ret != 0) { av_log(avctx, AV_LOG_ERROR, "pthread_once has failed."); return AVERROR_UNKNOWN; } #if FF_API_TICKS_PER_FRAME FF_DISABLE_DEPRECATION_WARNINGS avctx->ticks_per_frame = 2; FF_ENABLE_DEPRECATION_WARNINGS #endif if (!avctx->internal->is_copy) { if (avctx->extradata_size > 0 && avctx->extradata) { ret = ff_h264_decode_extradata(avctx->extradata, avctx->extradata_size, &h->ps, &h->is_avc, &h->nal_length_size, avctx->err_recognition, avctx); if (ret < 0) { int explode = avctx->err_recognition & AV_EF_EXPLODE; av_log(avctx, explode ? AV_LOG_ERROR: AV_LOG_WARNING, "Error decoding the extradata\n"); if (explode) { return ret; } ret = 0; } } } if (h->ps.sps && h->ps.sps->bitstream_restriction_flag && h->avctx->has_b_frames < h->ps.sps->num_reorder_frames) { h->avctx->has_b_frames = h->ps.sps->num_reorder_frames; } ff_h264_flush_change(h); if (h->enable_er < 0 && (avctx->active_thread_type & FF_THREAD_SLICE)) h->enable_er = 0; if (h->enable_er && (avctx->active_thread_type & FF_THREAD_SLICE)) { av_log(avctx, AV_LOG_WARNING, "Error resilience with slice threads is enabled. It is unsafe and unsupported and may crash. " "Use it at your own risk\n"); } return 0; } /** * instantaneous decoder refresh. */ static void idr(H264Context *h) { int i; ff_h264_remove_all_refs(h); h->poc.prev_frame_num = h->poc.prev_frame_num_offset = 0; h->poc.prev_poc_msb = 1<<16; h->poc.prev_poc_lsb = -1; for (i = 0; i < FF_ARRAY_ELEMS(h->last_pocs); i++) h->last_pocs[i] = INT_MIN; } /* forget old pics after a seek */ void ff_h264_flush_change(H264Context *h) { int i, j; h->next_outputed_poc = INT_MIN; h->prev_interlaced_frame = 1; idr(h); h->poc.prev_frame_num = -1; if (h->cur_pic_ptr) { h->cur_pic_ptr->reference = 0; for (j=i=0; h->delayed_pic[i]; i++) if (h->delayed_pic[i] != h->cur_pic_ptr) h->delayed_pic[j++] = h->delayed_pic[i]; h->delayed_pic[j] = NULL; } ff_h264_unref_picture(&h->last_pic_for_ec); h->first_field = 0; h->recovery_frame = -1; h->frame_recovered = 0; h->current_slice = 0; h->mmco_reset = 1; } static void h264_decode_flush(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; memset(h->delayed_pic, 0, sizeof(h->delayed_pic)); ff_h264_flush_change(h); ff_h264_sei_uninit(&h->sei); for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) ff_h264_unref_picture(&h->DPB[i]); h->cur_pic_ptr = NULL; ff_h264_unref_picture(&h->cur_pic); h->mb_y = 0; h->non_gray = 0; ff_h264_free_tables(h); h->context_initialized = 0; if (FF_HW_HAS_CB(avctx, flush)) FF_HW_SIMPLE_CALL(avctx, flush); } static int get_last_needed_nal(H264Context *h) { int nals_needed = 0; int slice_type = 0; int picture_intra_only = 1; int first_slice = 0; int i, ret; for (i = 0; i < h->pkt.nb_nals; i++) { H2645NAL *nal = &h->pkt.nals[i]; GetBitContext gb; /* packets can sometimes contain multiple PPS/SPS, * e.g. two PAFF field pictures in one packet, or a demuxer * which splits NALs strangely if so, when frame threading we * can't start the next thread until we've read all of them */ switch (nal->type) { case H264_NAL_SPS: case H264_NAL_PPS: nals_needed = i; break; case H264_NAL_DPA: case H264_NAL_IDR_SLICE: case H264_NAL_SLICE: ret = init_get_bits8(&gb, nal->data + 1, nal->size - 1); if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "Invalid zero-sized VCL NAL unit\n"); if (h->avctx->err_recognition & AV_EF_EXPLODE) return ret; break; } if (!get_ue_golomb_long(&gb) || // first_mb_in_slice !first_slice || first_slice != nal->type) nals_needed = i; slice_type = get_ue_golomb_31(&gb); if (slice_type > 9) slice_type = 0; if (slice_type > 4) slice_type -= 5; slice_type = ff_h264_golomb_to_pict_type[slice_type]; picture_intra_only &= (slice_type & 3) == AV_PICTURE_TYPE_I; if (!first_slice) first_slice = nal->type; } } h->picture_intra_only = picture_intra_only; return nals_needed; } static void debug_green_metadata(const H264SEIGreenMetaData *gm, void *logctx) { av_log(logctx, AV_LOG_DEBUG, "Green Metadata Info SEI message\n"); av_log(logctx, AV_LOG_DEBUG, " green_metadata_type: %d\n", gm->green_metadata_type); if (gm->green_metadata_type == 0) { av_log(logctx, AV_LOG_DEBUG, " green_metadata_period_type: %d\n", gm->period_type); if (gm->period_type == 2) av_log(logctx, AV_LOG_DEBUG, " green_metadata_num_seconds: %d\n", gm->num_seconds); else if (gm->period_type == 3) av_log(logctx, AV_LOG_DEBUG, " green_metadata_num_pictures: %d\n", gm->num_pictures); av_log(logctx, AV_LOG_DEBUG, " SEI GREEN Complexity Metrics: %f %f %f %f\n", (float)gm->percent_non_zero_macroblocks/255, (float)gm->percent_intra_coded_macroblocks/255, (float)gm->percent_six_tap_filtering/255, (float)gm->percent_alpha_point_deblocking_instance/255); } else if (gm->green_metadata_type == 1) { av_log(logctx, AV_LOG_DEBUG, " xsd_metric_type: %d\n", gm->xsd_metric_type); if (gm->xsd_metric_type == 0) av_log(logctx, AV_LOG_DEBUG, " xsd_metric_value: %f\n", (float)gm->xsd_metric_value/100); } } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size) { AVCodecContext *const avctx = h->avctx; int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts int idr_cleared=0; int i, ret = 0; h->has_slice = 0; h->nal_unit_type= 0; if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) { h->current_slice = 0; if (!h->first_field) { h->cur_pic_ptr = NULL; ff_h264_sei_uninit(&h->sei); } } if (h->nal_length_size == 4) { if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) { h->is_avc = 0; }else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size) h->is_avc = 1; } ret = ff_h2645_packet_split(&h->pkt, buf, buf_size, avctx, h->is_avc, h->nal_length_size, avctx->codec_id, 0, 0); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error splitting the input into NAL units.\n"); return ret; } if (avctx->active_thread_type & FF_THREAD_FRAME) nals_needed = get_last_needed_nal(h); if (nals_needed < 0) return nals_needed; for (i = 0; i < h->pkt.nb_nals; i++) { H2645NAL *nal = &h->pkt.nals[i]; int max_slice_ctx, err; if (avctx->skip_frame >= AVDISCARD_NONREF && nal->ref_idc == 0 && nal->type != H264_NAL_SEI) continue; // FIXME these should stop being context-global variables h->nal_ref_idc = nal->ref_idc; h->nal_unit_type = nal->type; err = 0; switch (nal->type) { case H264_NAL_IDR_SLICE: if ((nal->data[1] & 0xFC) == 0x98) { av_log(h->avctx, AV_LOG_ERROR, "Invalid inter IDR frame\n"); h->next_outputed_poc = INT_MIN; ret = -1; goto end; } if(!idr_cleared) { idr(h); // FIXME ensure we don't lose some frames if there is reordering } idr_cleared = 1; h->has_recovery_point = 1; case H264_NAL_SLICE: h->has_slice = 1; if ((err = ff_h264_queue_decode_slice(h, nal))) { H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued; sl->ref_count[0] = sl->ref_count[1] = 0; break; } if (h->current_slice == 1) { if (avctx->active_thread_type & FF_THREAD_FRAME && i >= nals_needed && !h->setup_finished && h->cur_pic_ptr) { ff_thread_finish_setup(avctx); h->setup_finished = 1; } if (h->avctx->hwaccel && (ret = FF_HW_CALL(h->avctx, start_frame, buf, buf_size)) < 0) goto end; } max_slice_ctx = avctx->hwaccel ? 1 : h->nb_slice_ctx; if (h->nb_slice_ctx_queued == max_slice_ctx) { if (h->avctx->hwaccel) { ret = FF_HW_CALL(avctx, decode_slice, nal->raw_data, nal->raw_size); h->nb_slice_ctx_queued = 0; } else ret = ff_h264_execute_decode_slices(h); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; } break; case H264_NAL_DPA: case H264_NAL_DPB: case H264_NAL_DPC: avpriv_request_sample(avctx, "data partitioning"); break; case H264_NAL_SEI: if (h->setup_finished) { avpriv_request_sample(avctx, "Late SEI"); break; } ret = ff_h264_sei_decode(&h->sei, &nal->gb, &h->ps, avctx); h->has_recovery_point = h->has_recovery_point || h->sei.recovery_point.recovery_frame_cnt != -1; if (avctx->debug & FF_DEBUG_GREEN_MD) debug_green_metadata(&h->sei.green_metadata, h->avctx); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case H264_NAL_SPS: { GetBitContext tmp_gb = nal->gb; if (FF_HW_HAS_CB(avctx, decode_params)) { ret = FF_HW_CALL(avctx, decode_params, nal->type, nal->raw_data, nal->raw_size); if (ret < 0) goto end; } if (ff_h264_decode_seq_parameter_set(&tmp_gb, avctx, &h->ps, 0) >= 0) break; av_log(h->avctx, AV_LOG_DEBUG, "SPS decoding failure, trying again with the complete NAL\n"); init_get_bits8(&tmp_gb, nal->raw_data + 1, nal->raw_size - 1); if (ff_h264_decode_seq_parameter_set(&tmp_gb, avctx, &h->ps, 0) >= 0) break; ff_h264_decode_seq_parameter_set(&nal->gb, avctx, &h->ps, 1); break; } case H264_NAL_PPS: if (FF_HW_HAS_CB(avctx, decode_params)) { ret = FF_HW_CALL(avctx, decode_params, nal->type, nal->raw_data, nal->raw_size); if (ret < 0) goto end; } ret = ff_h264_decode_picture_parameter_set(&nal->gb, avctx, &h->ps, nal->size_bits); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case H264_NAL_AUD: case H264_NAL_END_SEQUENCE: case H264_NAL_END_STREAM: case H264_NAL_FILLER_DATA: case H264_NAL_SPS_EXT: case H264_NAL_AUXILIARY_SLICE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", nal->type, nal->size_bits); } if (err < 0) { av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); } } ret = ff_h264_execute_decode_slices(h); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; // set decode_error_flags to allow users to detect concealed decoding errors if ((ret < 0 || h->er.error_occurred) && h->cur_pic_ptr) { if (h->cur_pic_ptr->decode_error_flags) { /* Frame-threading in use */ atomic_int *decode_error = h->cur_pic_ptr->decode_error_flags; /* Using atomics here is not supposed to provide syncronisation; * they are merely used to allow to set decode_error from both * decoding threads in case of coded slices. */ atomic_fetch_or_explicit(decode_error, FF_DECODE_ERROR_DECODE_SLICES, memory_order_relaxed); } else h->cur_pic_ptr->f->decode_error_flags |= FF_DECODE_ERROR_DECODE_SLICES; } ret = 0; end: #if CONFIG_ERROR_RESILIENCE /* * FIXME: Error handling code does not seem to support interlaced * when slices span multiple rows * The ff_er_add_slice calls don't work right for bottom * fields; they cause massive erroneous error concealing * Error marking covers both fields (top and bottom). * This causes a mismatched s->error_count * and a bad error table. Further, the error count goes to * INT_MAX when called for bottom field, because mb_y is * past end by one (callers fault) and resync_mb_y != 0 * causes problems for the first MB line, too. */ if (!FIELD_PICTURE(h) && h->current_slice && h->enable_er) { H264SliceContext *sl = h->slice_ctx; int use_last_pic = h->last_pic_for_ec.f->buf[0] && !sl->ref_count[0]; int decode_error_flags = 0; ff_h264_set_erpic(&h->er.cur_pic, h->cur_pic_ptr); if (use_last_pic) { ff_h264_set_erpic(&h->er.last_pic, &h->last_pic_for_ec); sl->ref_list[0][0].parent = &h->last_pic_for_ec; memcpy(sl->ref_list[0][0].data, h->last_pic_for_ec.f->data, sizeof(sl->ref_list[0][0].data)); memcpy(sl->ref_list[0][0].linesize, h->last_pic_for_ec.f->linesize, sizeof(sl->ref_list[0][0].linesize)); sl->ref_list[0][0].reference = h->last_pic_for_ec.reference; } else if (sl->ref_count[0]) { ff_h264_set_erpic(&h->er.last_pic, sl->ref_list[0][0].parent); } else ff_h264_set_erpic(&h->er.last_pic, NULL); if (sl->ref_count[1]) ff_h264_set_erpic(&h->er.next_pic, sl->ref_list[1][0].parent); ff_er_frame_end(&h->er, &decode_error_flags); if (decode_error_flags) { if (h->cur_pic_ptr->decode_error_flags) { atomic_int *decode_error = h->cur_pic_ptr->decode_error_flags; atomic_fetch_or_explicit(decode_error, decode_error_flags, memory_order_relaxed); } else h->cur_pic_ptr->f->decode_error_flags |= decode_error_flags; } if (use_last_pic) memset(&sl->ref_list[0][0], 0, sizeof(sl->ref_list[0][0])); } #endif /* CONFIG_ERROR_RESILIENCE */ /* clean up */ if (h->cur_pic_ptr && !h->droppable && h->has_slice) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } return (ret < 0) ? ret : buf_size; } /** * Return the number of bytes consumed for building the current frame. */ static int get_consumed_bytes(int pos, int buf_size) { if (pos == 0) pos = 1; // avoid infinite loops (I doubt that is needed but...) if (pos + 10 > buf_size) pos = buf_size; // oops ;) return pos; } static int h264_export_enc_params(AVFrame *f, const H264Picture *p) { AVVideoEncParams *par; unsigned int nb_mb = p->mb_height * p->mb_width; unsigned int x, y; par = av_video_enc_params_create_side_data(f, AV_VIDEO_ENC_PARAMS_H264, nb_mb); if (!par) return AVERROR(ENOMEM); par->qp = p->pps->init_qp; par->delta_qp[1][0] = p->pps->chroma_qp_index_offset[0]; par->delta_qp[1][1] = p->pps->chroma_qp_index_offset[0]; par->delta_qp[2][0] = p->pps->chroma_qp_index_offset[1]; par->delta_qp[2][1] = p->pps->chroma_qp_index_offset[1]; for (y = 0; y < p->mb_height; y++) for (x = 0; x < p->mb_width; x++) { const unsigned int block_idx = y * p->mb_width + x; const unsigned int mb_xy = y * p->mb_stride + x; AVVideoBlockParams *b = av_video_enc_params_block(par, block_idx); b->src_x = x * 16; b->src_y = y * 16; b->w = 16; b->h = 16; b->delta_qp = p->qscale_table[mb_xy] - par->qp; } return 0; } static int output_frame(H264Context *h, AVFrame *dst, H264Picture *srcp) { int ret; ret = av_frame_ref(dst, srcp->needs_fg ? srcp->f_grain : srcp->f); if (ret < 0) return ret; if (srcp->needs_fg && (ret = av_frame_copy_props(dst, srcp->f)) < 0) return ret; if (srcp->decode_error_flags) { atomic_int *decode_error = srcp->decode_error_flags; /* The following is not supposed to provide synchronisation at all: * given that srcp has already finished decoding, decode_error * has already been set to its final value. */ dst->decode_error_flags |= atomic_load_explicit(decode_error, memory_order_relaxed); } av_dict_set(&dst->metadata, "stereo_mode", ff_h264_sei_stereo_mode(&h->sei.common.frame_packing), 0); if (srcp->sei_recovery_frame_cnt == 0) dst->flags |= AV_FRAME_FLAG_KEY; if (h->avctx->export_side_data & AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS) { ret = h264_export_enc_params(dst, srcp); if (ret < 0) goto fail; } if (!(h->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN)) av_frame_remove_side_data(dst, AV_FRAME_DATA_FILM_GRAIN_PARAMS); return 0; fail: av_frame_unref(dst); return ret; } static int is_avcc_extradata(const uint8_t *buf, int buf_size) { int cnt= buf[5]&0x1f; const uint8_t *p= buf+6; if (!cnt) return 0; while(cnt--){ int nalsize= AV_RB16(p) + 2; if(nalsize > buf_size - (p-buf) || (p[2] & 0x9F) != 7) return 0; p += nalsize; } cnt = *(p++); if(!cnt) return 0; while(cnt--){ int nalsize= AV_RB16(p) + 2; if(nalsize > buf_size - (p-buf) || (p[2] & 0x9F) != 8) return 0; p += nalsize; } return 1; } static int finalize_frame(H264Context *h, AVFrame *dst, H264Picture *out, int *got_frame) { int ret; if (((h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) || (h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL) || out->recovered)) { if (h->skip_gray > 0 && h->non_gray && out->gray && !(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL) ) return 0; if (!h->avctx->hwaccel && (out->field_poc[0] == INT_MAX || out->field_poc[1] == INT_MAX) ) { int p; AVFrame *f = out->f; int field = out->field_poc[0] == INT_MAX; uint8_t *dst_data[4]; int linesizes[4]; const uint8_t *src_data[4]; av_log(h->avctx, AV_LOG_DEBUG, "Duplicating field %d to fill missing\n", field); for (p = 0; p<4; p++) { dst_data[p] = f->data[p] + (field^1)*f->linesize[p]; src_data[p] = f->data[p] + field *f->linesize[p]; linesizes[p] = 2*f->linesize[p]; } av_image_copy(dst_data, linesizes, src_data, linesizes, f->format, f->width, f->height>>1); } ret = output_frame(h, dst, out); if (ret < 0) return ret; *got_frame = 1; if (CONFIG_MPEGVIDEODEC) { ff_print_debug_info2(h->avctx, dst, NULL, out->mb_type, out->qscale_table, out->motion_val, out->mb_width, out->mb_height, out->mb_stride, 1); } } return 0; } static int send_next_delayed_frame(H264Context *h, AVFrame *dst_frame, int *got_frame, int buf_index) { int ret, i, out_idx; H264Picture *out; h->cur_pic_ptr = NULL; h->first_field = 0; while (h->delayed_pic[0]) { out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !(h->delayed_pic[i]->f->flags & AV_FRAME_FLAG_KEY) && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; if (out) { h->frame_recovered |= out->recovered; out->recovered |= h->frame_recovered & FRAME_RECOVERED_SEI; out->reference &= ~DELAYED_PIC_REF; ret = finalize_frame(h, dst_frame, out, got_frame); if (ret < 0) return ret; if (*got_frame) break; } } return buf_index; } static int h264_decode_frame(AVCodecContext *avctx, AVFrame *pict, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; int buf_index; int ret; h->flags = avctx->flags; h->setup_finished = 0; h->nb_slice_ctx_queued = 0; ff_h264_unref_picture(&h->last_pic_for_ec); /* end of stream, output what is still in the buffers */ if (buf_size == 0) return send_next_delayed_frame(h, pict, got_frame, 0); if (av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, NULL)) { size_t side_size; uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size); ff_h264_decode_extradata(side, side_size, &h->ps, &h->is_avc, &h->nal_length_size, avctx->err_recognition, avctx); } if (h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC) { if (is_avcc_extradata(buf, buf_size)) return ff_h264_decode_extradata(buf, buf_size, &h->ps, &h->is_avc, &h->nal_length_size, avctx->err_recognition, avctx); } buf_index = decode_nal_units(h, buf, buf_size); if (buf_index < 0) return AVERROR_INVALIDDATA; if (!h->cur_pic_ptr && h->nal_unit_type == H264_NAL_END_SEQUENCE) { av_assert0(buf_index <= buf_size); return send_next_delayed_frame(h, pict, got_frame, buf_index); } if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) && (!h->cur_pic_ptr || !h->has_slice)) { if (avctx->skip_frame >= AVDISCARD_NONREF || buf_size >= 4 && !memcmp("Q264", buf, 4)) return buf_size; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return AVERROR_INVALIDDATA; } if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) || (h->mb_y >= h->mb_height && h->mb_height)) { if ((ret = ff_h264_field_end(h, &h->slice_ctx[0], 0)) < 0) return ret; /* Wait for second field. */ if (h->next_output_pic) { ret = finalize_frame(h, pict, h->next_output_pic, got_frame); if (ret < 0) return ret; } } av_assert0(pict->buf[0] || !*got_frame); ff_h264_unref_picture(&h->last_pic_for_ec); return get_consumed_bytes(buf_index, buf_size); } #define OFFSET(x) offsetof(H264Context, x) #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM #define VDX VD | AV_OPT_FLAG_EXPORT static const AVOption h264_options[] = { { "is_avc", "is avc", OFFSET(is_avc), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, VDX }, { "nal_length_size", "nal_length_size", OFFSET(nal_length_size), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 4, VDX }, { "enable_er", "Enable error resilience on damaged frames (unsafe)", OFFSET(enable_er), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, VD }, { "x264_build", "Assume this x264 version if no x264 version found in any SEI", OFFSET(x264_build), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VD }, { "skip_gray", "Do not return gray gap frames", OFFSET(skip_gray), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, VD }, { "noref_gray", "Avoid using gray gap frames as references", OFFSET(noref_gray), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, VD }, { NULL }, }; static const AVClass h264_class = { .class_name = "H264 Decoder", .item_name = av_default_item_name, .option = h264_options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_h264_decoder = { .p.name = "h264", CODEC_LONG_NAME("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_H264, .priv_data_size = sizeof(H264Context), .init = h264_decode_init, .close = h264_decode_end, FF_CODEC_DECODE_CB(h264_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS, .hw_configs = (const AVCodecHWConfigInternal *const []) { #if CONFIG_H264_DXVA2_HWACCEL HWACCEL_DXVA2(h264), #endif #if CONFIG_H264_D3D11VA_HWACCEL HWACCEL_D3D11VA(h264), #endif #if CONFIG_H264_D3D11VA2_HWACCEL HWACCEL_D3D11VA2(h264), #endif #if CONFIG_H264_D3D12VA_HWACCEL HWACCEL_D3D12VA(h264), #endif #if CONFIG_H264_NVDEC_HWACCEL HWACCEL_NVDEC(h264), #endif #if CONFIG_H264_VAAPI_HWACCEL HWACCEL_VAAPI(h264), #endif #if CONFIG_H264_VDPAU_HWACCEL HWACCEL_VDPAU(h264), #endif #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL HWACCEL_VIDEOTOOLBOX(h264), #endif #if CONFIG_H264_VULKAN_HWACCEL HWACCEL_VULKAN(h264), #endif NULL }, .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_ALLOCATE_PROGRESS | FF_CODEC_CAP_INIT_CLEANUP, .flush = h264_decode_flush, UPDATE_THREAD_CONTEXT(ff_h264_update_thread_context), UPDATE_THREAD_CONTEXT_FOR_USER(ff_h264_update_thread_context_for_user), .p.profiles = NULL_IF_CONFIG_SMALL(ff_h264_profiles), .p.priv_class = &h264_class, };