/* * Copyright (C) 2007 Marco Gerards * Copyright (C) 2009 David Conrad * Copyright (C) 2011 Jordi Ortiz * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Dirac Decoder * @author Marco Gerards , David Conrad, Jordi Ortiz */ #include "avcodec.h" #include "get_bits.h" #include "bytestream.h" #include "internal.h" #include "golomb.h" #include "dirac_arith.h" #include "dirac_vlc.h" #include "mpeg12data.h" #include "libavcodec/mpegvideo.h" #include "mpegvideoencdsp.h" #include "dirac_dwt.h" #include "dirac.h" #include "diractab.h" #include "diracdsp.h" #include "videodsp.h" /** * The spec limits this to 3 for frame coding, but in practice can be as high as 6 */ #define MAX_REFERENCE_FRAMES 8 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */ #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1) #define MAX_QUANT 255 /* max quant for VC-2 */ #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */ /** * DiracBlock->ref flags, if set then the block does MC from the given ref */ #define DIRAC_REF_MASK_REF1 1 #define DIRAC_REF_MASK_REF2 2 #define DIRAC_REF_MASK_GLOBAL 4 /** * Value of Picture.reference when Picture is not a reference picture, but * is held for delayed output. */ #define DELAYED_PIC_REF 4 #define CALC_PADDING(size, depth) \ (((size + (1 << depth) - 1) >> depth) << depth) #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b)) typedef struct { AVFrame *avframe; int interpolated[3]; /* 1 if hpel[] is valid */ uint8_t *hpel[3][4]; uint8_t *hpel_base[3][4]; int reference; } DiracFrame; typedef struct { union { int16_t mv[2][2]; int16_t dc[3]; } u; /* anonymous unions aren't in C99 :( */ uint8_t ref; } DiracBlock; typedef struct SubBand { int level; int orientation; int stride; /* in bytes */ int width; int height; int pshift; int quant; uint8_t *ibuf; struct SubBand *parent; /* for low delay */ unsigned length; const uint8_t *coeff_data; } SubBand; typedef struct Plane { DWTPlane idwt; int width; int height; ptrdiff_t stride; /* block length */ uint8_t xblen; uint8_t yblen; /* block separation (block n+1 starts after this many pixels in block n) */ uint8_t xbsep; uint8_t ybsep; /* amount of overspill on each edge (half of the overlap between blocks) */ uint8_t xoffset; uint8_t yoffset; SubBand band[MAX_DWT_LEVELS][4]; } Plane; /* Used by Low Delay and High Quality profiles */ typedef struct DiracSlice { GetBitContext gb; int slice_x; int slice_y; int bytes; } DiracSlice; typedef struct DiracContext { AVCodecContext *avctx; MpegvideoEncDSPContext mpvencdsp; VideoDSPContext vdsp; DiracDSPContext diracdsp; DiracGolombLUT *reader_ctx; DiracVersionInfo version; GetBitContext gb; AVDiracSeqHeader seq; int seen_sequence_header; int frame_number; /* number of the next frame to display */ Plane plane[3]; int chroma_x_shift; int chroma_y_shift; int bit_depth; /* bit depth */ int pshift; /* pixel shift = bit_depth > 8 */ int zero_res; /* zero residue flag */ int is_arith; /* whether coeffs use arith or golomb coding */ int core_syntax; /* use core syntax only */ int low_delay; /* use the low delay syntax */ int hq_picture; /* high quality picture, enables low_delay */ int ld_picture; /* use low delay picture, turns on low_delay */ int dc_prediction; /* has dc prediction */ int globalmc_flag; /* use global motion compensation */ int num_refs; /* number of reference pictures */ /* wavelet decoding */ unsigned wavelet_depth; /* depth of the IDWT */ unsigned wavelet_idx; /** * schroedinger older than 1.0.8 doesn't store * quant delta if only one codebook exists in a band */ unsigned old_delta_quant; unsigned codeblock_mode; unsigned num_x; /* number of horizontal slices */ unsigned num_y; /* number of vertical slices */ uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */ int threads_num_buf; /* Current # of buffers allocated */ int thread_buf_size; /* Each thread has a buffer this size */ DiracSlice *slice_params_buf; int slice_params_num_buf; struct { unsigned width; unsigned height; } codeblock[MAX_DWT_LEVELS+1]; struct { AVRational bytes; /* average bytes per slice */ uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */ } lowdelay; struct { unsigned prefix_bytes; uint64_t size_scaler; } highquality; struct { int pan_tilt[2]; /* pan/tilt vector */ int zrs[2][2]; /* zoom/rotate/shear matrix */ int perspective[2]; /* perspective vector */ unsigned zrs_exp; unsigned perspective_exp; } globalmc[2]; /* motion compensation */ uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */ int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */ unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */ int blwidth; /* number of blocks (horizontally) */ int blheight; /* number of blocks (vertically) */ int sbwidth; /* number of superblocks (horizontally) */ int sbheight; /* number of superblocks (vertically) */ uint8_t *sbsplit; DiracBlock *blmotion; uint8_t *edge_emu_buffer[4]; uint8_t *edge_emu_buffer_base; uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */ uint8_t *mcscratch; int buffer_stride; DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE]; void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h); void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h); void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen); dirac_weight_func weight_func; dirac_biweight_func biweight_func; DiracFrame *current_picture; DiracFrame *ref_pics[2]; DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1]; DiracFrame *delay_frames[MAX_DELAY+1]; DiracFrame all_frames[MAX_FRAMES]; } DiracContext; enum dirac_subband { subband_ll = 0, subband_hl = 1, subband_lh = 2, subband_hh = 3, subband_nb, }; /* magic number division by 3 from schroedinger */ static inline int divide3(int x) { return ((x+1)*21845 + 10922) >> 16; } static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum) { DiracFrame *remove_pic = NULL; int i, remove_idx = -1; for (i = 0; framelist[i]; i++) if (framelist[i]->avframe->display_picture_number == picnum) { remove_pic = framelist[i]; remove_idx = i; } if (remove_pic) for (i = remove_idx; framelist[i]; i++) framelist[i] = framelist[i+1]; return remove_pic; } static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame) { int i; for (i = 0; i < maxframes; i++) if (!framelist[i]) { framelist[i] = frame; return 0; } return -1; } static int alloc_sequence_buffers(DiracContext *s) { int sbwidth = DIVRNDUP(s->seq.width, 4); int sbheight = DIVRNDUP(s->seq.height, 4); int i, w, h, top_padding; /* todo: think more about this / use or set Plane here */ for (i = 0; i < 3; i++) { int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0); int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0); w = s->seq.width >> (i ? s->chroma_x_shift : 0); h = s->seq.height >> (i ? s->chroma_y_shift : 0); /* we allocate the max we support here since num decompositions can * change from frame to frame. Stride is aligned to 16 for SIMD, and * 1<0) in arith decoding * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that * on each side */ top_padding = FFMAX(1<plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift)); s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift); s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift); if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp) return AVERROR(ENOMEM); } /* fixme: allocate using real stride here */ s->sbsplit = av_malloc_array(sbwidth, sbheight); s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion)); if (!s->sbsplit || !s->blmotion) return AVERROR(ENOMEM); return 0; } static int alloc_buffers(DiracContext *s, int stride) { int w = s->seq.width; int h = s->seq.height; av_assert0(stride >= w); stride += 64; if (s->buffer_stride >= stride) return 0; s->buffer_stride = 0; av_freep(&s->edge_emu_buffer_base); memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer)); av_freep(&s->mctmp); av_freep(&s->mcscratch); s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE); s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp)); s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE); if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch) return AVERROR(ENOMEM); s->buffer_stride = stride; return 0; } static void free_sequence_buffers(DiracContext *s) { int i, j, k; for (i = 0; i < MAX_FRAMES; i++) { if (s->all_frames[i].avframe->data[0]) { av_frame_unref(s->all_frames[i].avframe); memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated)); } for (j = 0; j < 3; j++) for (k = 1; k < 4; k++) av_freep(&s->all_frames[i].hpel_base[j][k]); } memset(s->ref_frames, 0, sizeof(s->ref_frames)); memset(s->delay_frames, 0, sizeof(s->delay_frames)); for (i = 0; i < 3; i++) { av_freep(&s->plane[i].idwt.buf_base); av_freep(&s->plane[i].idwt.tmp); } s->buffer_stride = 0; av_freep(&s->sbsplit); av_freep(&s->blmotion); av_freep(&s->edge_emu_buffer_base); av_freep(&s->mctmp); av_freep(&s->mcscratch); } static av_cold int dirac_decode_init(AVCodecContext *avctx) { DiracContext *s = avctx->priv_data; int i; s->avctx = avctx; s->frame_number = -1; s->thread_buf = NULL; s->threads_num_buf = -1; s->thread_buf_size = -1; ff_dirac_golomb_reader_init(&s->reader_ctx); ff_diracdsp_init(&s->diracdsp); ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx); ff_videodsp_init(&s->vdsp, 8); for (i = 0; i < MAX_FRAMES; i++) { s->all_frames[i].avframe = av_frame_alloc(); if (!s->all_frames[i].avframe) { while (i > 0) av_frame_free(&s->all_frames[--i].avframe); return AVERROR(ENOMEM); } } return 0; } static void dirac_decode_flush(AVCodecContext *avctx) { DiracContext *s = avctx->priv_data; free_sequence_buffers(s); s->seen_sequence_header = 0; s->frame_number = -1; } static av_cold int dirac_decode_end(AVCodecContext *avctx) { DiracContext *s = avctx->priv_data; int i; ff_dirac_golomb_reader_end(&s->reader_ctx); dirac_decode_flush(avctx); for (i = 0; i < MAX_FRAMES; i++) av_frame_free(&s->all_frames[i].avframe); av_freep(&s->thread_buf); av_freep(&s->slice_params_buf); return 0; } static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset) { int coeff = dirac_get_se_golomb(gb); const int sign = FFSIGN(coeff); if (coeff) coeff = sign*((sign * coeff * qfactor + qoffset) >> 2); return coeff; } #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0)) #define UNPACK_ARITH(n, type) \ static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \ SubBand *b, type *buf, int x, int y) \ { \ int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \ const int mstride = -(b->stride >> (1+b->pshift)); \ if (b->parent) { \ const type *pbuf = (type *)b->parent->ibuf; \ const int stride = b->parent->stride >> (1+b->parent->pshift); \ pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \ } \ if (b->orientation == subband_hl) \ sign_pred = buf[mstride]; \ if (x) { \ pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \ if (b->orientation == subband_lh) \ sign_pred = buf[-1]; \ } else { \ pred_ctx += !buf[mstride]; \ } \ coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \ if (coeff) { \ coeff = (coeff * qfactor + qoffset) >> 2; \ sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \ coeff = (coeff ^ -sign) + sign; \ } \ *buf = coeff; \ } \ UNPACK_ARITH(8, int16_t) UNPACK_ARITH(10, int32_t) /** * Decode the coeffs in the rectangle defined by left, right, top, bottom * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock() */ static inline void codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith) { int x, y, zero_block; int qoffset, qfactor; uint8_t *buf; /* check for any coded coefficients in this codeblock */ if (!blockcnt_one) { if (is_arith) zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK); else zero_block = get_bits1(gb); if (zero_block) return; } if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) { int quant = b->quant; if (is_arith) quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA); else quant += dirac_get_se_golomb(gb); if (quant < 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n"); return; } b->quant = quant; } if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) { av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant); b->quant = 0; return; } qfactor = ff_dirac_qscale_tab[b->quant]; /* TODO: context pointer? */ if (!s->num_refs) qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2; else qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2; buf = b->ibuf + top * b->stride; if (is_arith) { for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { if (b->pshift) { coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y); } else { coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y); } } buf += b->stride; } } else { for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { int val = coeff_unpack_golomb(gb, qfactor, qoffset); if (b->pshift) { AV_WN32(&buf[4*x], val); } else { AV_WN16(&buf[2*x], val); } } buf += b->stride; } } } /** * Dirac Specification -> * 13.3 intra_dc_prediction(band) */ #define INTRA_DC_PRED(n, type) \ static inline void intra_dc_prediction_##n(SubBand *b) \ { \ type *buf = (type*)b->ibuf; \ int x, y; \ \ for (x = 1; x < b->width; x++) \ buf[x] += buf[x-1]; \ buf += (b->stride >> (1+b->pshift)); \ \ for (y = 1; y < b->height; y++) { \ buf[0] += buf[-(b->stride >> (1+b->pshift))]; \ \ for (x = 1; x < b->width; x++) { \ int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \ buf[x] += divide3(pred); \ } \ buf += (b->stride >> (1+b->pshift)); \ } \ } \ INTRA_DC_PRED(8, int16_t) INTRA_DC_PRED(10, int32_t) /** * Dirac Specification -> * 13.4.2 Non-skipped subbands. subband_coeffs() */ static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith) { int cb_x, cb_y, left, right, top, bottom; DiracArith c; GetBitContext gb; int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width; int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height; int blockcnt_one = (cb_width + cb_height) == 2; if (!b->length) return; init_get_bits8(&gb, b->coeff_data, b->length); if (is_arith) ff_dirac_init_arith_decoder(&c, &gb, b->length); top = 0; for (cb_y = 0; cb_y < cb_height; cb_y++) { bottom = (b->height * (cb_y+1LL)) / cb_height; left = 0; for (cb_x = 0; cb_x < cb_width; cb_x++) { right = (b->width * (cb_x+1LL)) / cb_width; codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith); left = right; } top = bottom; } if (b->orientation == subband_ll && s->num_refs == 0) { if (s->pshift) { intra_dc_prediction_10(b); } else { intra_dc_prediction_8(b); } } } static int decode_subband_arith(AVCodecContext *avctx, void *b) { DiracContext *s = avctx->priv_data; decode_subband_internal(s, b, 1); return 0; } static int decode_subband_golomb(AVCodecContext *avctx, void *arg) { DiracContext *s = avctx->priv_data; SubBand **b = arg; decode_subband_internal(s, *b, 0); return 0; } /** * Dirac Specification -> * [DIRAC_STD] 13.4.1 core_transform_data() */ static void decode_component(DiracContext *s, int comp) { AVCodecContext *avctx = s->avctx; SubBand *bands[3*MAX_DWT_LEVELS+1]; enum dirac_subband orientation; int level, num_bands = 0; /* Unpack all subbands at all levels. */ for (level = 0; level < s->wavelet_depth; level++) { for (orientation = !!level; orientation < 4; orientation++) { SubBand *b = &s->plane[comp].band[level][orientation]; bands[num_bands++] = b; align_get_bits(&s->gb); /* [DIRAC_STD] 13.4.2 subband() */ b->length = get_interleaved_ue_golomb(&s->gb); if (b->length) { b->quant = get_interleaved_ue_golomb(&s->gb); align_get_bits(&s->gb); b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8; b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0)); skip_bits_long(&s->gb, b->length*8); } } /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */ if (s->is_arith) avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level], NULL, 4-!!level, sizeof(SubBand)); } /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */ if (!s->is_arith) avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*)); } #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \ type *buf = (type *)buf1; \ buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \ if (get_bits_count(gb) >= ebits) \ return; \ if (buf2) { \ buf = (type *)buf2; \ buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \ if (get_bits_count(gb) >= ebits) \ return; \ } \ static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2) { int left = b1->width * slice_x / s->num_x; int right = b1->width *(slice_x+1) / s->num_x; int top = b1->height * slice_y / s->num_y; int bottom = b1->height *(slice_y+1) / s->num_y; int qfactor, qoffset; uint8_t *buf1 = b1->ibuf + top * b1->stride; uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL; int x, y; if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) { av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant); return; } qfactor = ff_dirac_qscale_tab[quant]; qoffset = ff_dirac_qoffset_intra_tab[quant] + 2; /* we have to constantly check for overread since the spec explicitly requires this, with the meaning that all remaining coeffs are set to 0 */ if (get_bits_count(gb) >= bits_end) return; if (s->pshift) { for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2); } buf1 += b1->stride; if (buf2) buf2 += b2->stride; } } else { for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2); } buf1 += b1->stride; if (buf2) buf2 += b2->stride; } } } /** * Dirac Specification -> * 13.5.2 Slices. slice(sx,sy) */ static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg) { DiracContext *s = avctx->priv_data; DiracSlice *slice = arg; GetBitContext *gb = &slice->gb; enum dirac_subband orientation; int level, quant, chroma_bits, chroma_end; int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */ int length_bits = av_log2(8 * slice->bytes)+1; int luma_bits = get_bits_long(gb, length_bits); int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb)); /* [DIRAC_STD] 13.5.5.2 luma_slice_band */ for (level = 0; level < s->wavelet_depth; level++) for (orientation = !!level; orientation < 4; orientation++) { quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0); decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end, &s->plane[0].band[level][orientation], NULL); } /* consume any unused bits from luma */ skip_bits_long(gb, get_bits_count(gb) - luma_end); chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits; chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb)); /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */ for (level = 0; level < s->wavelet_depth; level++) for (orientation = !!level; orientation < 4; orientation++) { quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0); decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end, &s->plane[1].band[level][orientation], &s->plane[2].band[level][orientation]); } return 0; } typedef struct SliceCoeffs { int left; int top; int tot_h; int tot_v; int tot; } SliceCoeffs; static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS]) { int level, coef = 0; for (level = 0; level < s->wavelet_depth; level++) { SliceCoeffs *o = &c[level]; SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */ o->top = b->height * y / s->num_y; o->left = b->width * x / s->num_x; o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left; o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top; o->tot = o->tot_h*o->tot_v; coef += o->tot * (4 - !!level); } return coef; } /** * VC-2 Specification -> * 13.5.3 hq_slice(sx,sy) */ static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf) { int i, level, orientation, quant_idx; int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4]; GetBitContext *gb = &slice->gb; SliceCoeffs coeffs_num[MAX_DWT_LEVELS]; skip_bits_long(gb, 8*s->highquality.prefix_bytes); quant_idx = get_bits(gb, 8); if (quant_idx > DIRAC_MAX_QUANT_INDEX) { av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx); return AVERROR_INVALIDDATA; } /* Slice quantization (slice_quantizers() in the specs) */ for (level = 0; level < s->wavelet_depth; level++) { for (orientation = !!level; orientation < 4; orientation++) { const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0); qfactor[level][orientation] = ff_dirac_qscale_tab[quant]; qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2; } } /* Luma + 2 Chroma planes */ for (i = 0; i < 3; i++) { int coef_num, coef_par, off = 0; int64_t length = s->highquality.size_scaler*get_bits(gb, 8); int64_t bits_end = get_bits_count(gb) + 8*length; const uint8_t *addr = align_get_bits(gb); if (length*8 > get_bits_left(gb)) { av_log(s->avctx, AV_LOG_ERROR, "end too far away\n"); return AVERROR_INVALIDDATA; } coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num); if (s->pshift) coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr, length, tmp_buf, coef_num); else coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr, length, tmp_buf, coef_num); if (coef_num > coef_par) { const int start_b = coef_par * (1 << (s->pshift + 1)); const int end_b = coef_num * (1 << (s->pshift + 1)); memset(&tmp_buf[start_b], 0, end_b - start_b); } for (level = 0; level < s->wavelet_depth; level++) { const SliceCoeffs *c = &coeffs_num[level]; for (orientation = !!level; orientation < 4; orientation++) { const SubBand *b1 = &s->plane[i].band[level][orientation]; uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1)); /* Change to c->tot_h <= 4 for AVX2 dequantization */ const int qfunc = s->pshift + 2*(c->tot_h <= 2); s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride, qfactor[level][orientation], qoffset[level][orientation], c->tot_v, c->tot_h); off += c->tot << (s->pshift + 1); } } skip_bits_long(gb, bits_end - get_bits_count(gb)); } return 0; } static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { int i; DiracContext *s = avctx->priv_data; DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr; uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr]; for (i = 0; i < s->num_x; i++) decode_hq_slice(s, &slices[i], thread_buf); return 0; } /** * Dirac Specification -> * 13.5.1 low_delay_transform_data() */ static int decode_lowdelay(DiracContext *s) { AVCodecContext *avctx = s->avctx; int slice_x, slice_y, bufsize; int64_t coef_buf_size, bytes = 0; const uint8_t *buf; DiracSlice *slices; SliceCoeffs tmp[MAX_DWT_LEVELS]; int slice_num = 0; if (s->slice_params_num_buf != (s->num_x * s->num_y)) { s->slice_params_buf = av_realloc_f(s->thread_buf, s->num_x * s->num_y, sizeof(DiracSlice)); if (!s->slice_params_buf) { av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n"); return AVERROR(ENOMEM); } s->slice_params_num_buf = s->num_x * s->num_y; } slices = s->slice_params_buf; /* 8 becacuse that's how much the golomb reader could overread junk data * from another plane/slice at most, and 512 because SIMD */ coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8; coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512; if (s->threads_num_buf != avctx->thread_count || s->thread_buf_size != coef_buf_size) { s->threads_num_buf = avctx->thread_count; s->thread_buf_size = coef_buf_size; s->thread_buf = av_realloc_f(s->thread_buf, avctx->thread_count, s->thread_buf_size); if (!s->thread_buf) { av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n"); return AVERROR(ENOMEM); } } align_get_bits(&s->gb); /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */ buf = s->gb.buffer + get_bits_count(&s->gb)/8; bufsize = get_bits_left(&s->gb); if (s->hq_picture) { int i; for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) { for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) { bytes = s->highquality.prefix_bytes + 1; for (i = 0; i < 3; i++) { if (bytes <= bufsize/8) bytes += buf[bytes] * s->highquality.size_scaler + 1; } if (bytes >= INT_MAX || bytes*8 > bufsize) { av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n"); return AVERROR_INVALIDDATA; } slices[slice_num].bytes = bytes; slices[slice_num].slice_x = slice_x; slices[slice_num].slice_y = slice_y; init_get_bits(&slices[slice_num].gb, buf, bufsize); slice_num++; buf += bytes; if (bufsize/8 >= bytes) bufsize -= bytes*8; else bufsize = 0; } } if (s->num_x*s->num_y != slice_num) { av_log(s->avctx, AV_LOG_ERROR, "too few slices\n"); return AVERROR_INVALIDDATA; } avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y); } else { for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) { for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) { bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den; slices[slice_num].bytes = bytes; slices[slice_num].slice_x = slice_x; slices[slice_num].slice_y = slice_y; init_get_bits(&slices[slice_num].gb, buf, bufsize); slice_num++; buf += bytes; if (bufsize/8 >= bytes) bufsize -= bytes*8; else bufsize = 0; } } avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num, sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */ } if (s->dc_prediction) { if (s->pshift) { intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */ intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */ intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */ } else { intra_dc_prediction_8(&s->plane[0].band[0][0]); intra_dc_prediction_8(&s->plane[1].band[0][0]); intra_dc_prediction_8(&s->plane[2].band[0][0]); } } return 0; } static void init_planes(DiracContext *s) { int i, w, h, level, orientation; for (i = 0; i < 3; i++) { Plane *p = &s->plane[i]; p->width = s->seq.width >> (i ? s->chroma_x_shift : 0); p->height = s->seq.height >> (i ? s->chroma_y_shift : 0); p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth); p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth); p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift); for (level = s->wavelet_depth-1; level >= 0; level--) { w = w>>1; h = h>>1; for (orientation = !!level; orientation < 4; orientation++) { SubBand *b = &p->band[level][orientation]; b->pshift = s->pshift; b->ibuf = p->idwt.buf; b->level = level; b->stride = p->idwt.stride << (s->wavelet_depth - level); b->width = w; b->height = h; b->orientation = orientation; if (orientation & 1) b->ibuf += w << (1+b->pshift); if (orientation > 1) b->ibuf += (b->stride>>1); if (level) b->parent = &p->band[level-1][orientation]; } } if (i > 0) { p->xblen = s->plane[0].xblen >> s->chroma_x_shift; p->yblen = s->plane[0].yblen >> s->chroma_y_shift; p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift; p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift; } p->xoffset = (p->xblen - p->xbsep)/2; p->yoffset = (p->yblen - p->ybsep)/2; } } /** * Unpack the motion compensation parameters * Dirac Specification -> * 11.2 Picture prediction data. picture_prediction() */ static int dirac_unpack_prediction_parameters(DiracContext *s) { static const uint8_t default_blen[] = { 4, 12, 16, 24 }; GetBitContext *gb = &s->gb; unsigned idx, ref; align_get_bits(gb); /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */ /* Luma and Chroma are equal. 11.2.3 */ idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */ if (idx > 4) { av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n"); return AVERROR_INVALIDDATA; } if (idx == 0) { s->plane[0].xblen = get_interleaved_ue_golomb(gb); s->plane[0].yblen = get_interleaved_ue_golomb(gb); s->plane[0].xbsep = get_interleaved_ue_golomb(gb); s->plane[0].ybsep = get_interleaved_ue_golomb(gb); } else { /*[DIRAC_STD] preset_block_params(index). Table 11.1 */ s->plane[0].xblen = default_blen[idx-1]; s->plane[0].yblen = default_blen[idx-1]; s->plane[0].xbsep = 4 * idx; s->plane[0].ybsep = 4 * idx; } /*[DIRAC_STD] 11.2.4 motion_data_dimensions() Calculated in function dirac_unpack_block_motion_data */ if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 || s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 || !s->plane[0].xblen || !s->plane[0].yblen) { av_log(s->avctx, AV_LOG_ERROR, "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n", s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift); return AVERROR_INVALIDDATA; } if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) { av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n"); return AVERROR_INVALIDDATA; } if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) { av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n"); return AVERROR_INVALIDDATA; } if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) { av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n"); return AVERROR_PATCHWELCOME; } /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision() Read motion vector precision */ s->mv_precision = get_interleaved_ue_golomb(gb); if (s->mv_precision > 3) { av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n"); return AVERROR_INVALIDDATA; } /*[DIRAC_STD] 11.2.6 Global motion. global_motion() Read the global motion compensation parameters */ s->globalmc_flag = get_bits1(gb); if (s->globalmc_flag) { memset(s->globalmc, 0, sizeof(s->globalmc)); /* [DIRAC_STD] pan_tilt(gparams) */ for (ref = 0; ref < s->num_refs; ref++) { if (get_bits1(gb)) { s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb); s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb); } /* [DIRAC_STD] zoom_rotate_shear(gparams) zoom/rotation/shear parameters */ if (get_bits1(gb)) { s->globalmc[ref].zrs_exp = get_interleaved_ue_golomb(gb); s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb); s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb); s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb); s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb); } else { s->globalmc[ref].zrs[0][0] = 1; s->globalmc[ref].zrs[1][1] = 1; } /* [DIRAC_STD] perspective(gparams) */ if (get_bits1(gb)) { s->globalmc[ref].perspective_exp = get_interleaved_ue_golomb(gb); s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb); s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb); } } } /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode() Picture prediction mode, not currently used. */ if (get_interleaved_ue_golomb(gb)) { av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n"); return AVERROR_INVALIDDATA; } /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights() just data read, weight calculation will be done later on. */ s->weight_log2denom = 1; s->weight[0] = 1; s->weight[1] = 1; if (get_bits1(gb)) { s->weight_log2denom = get_interleaved_ue_golomb(gb); s->weight[0] = dirac_get_se_golomb(gb); if (s->num_refs == 2) s->weight[1] = dirac_get_se_golomb(gb); } return 0; } /** * Dirac Specification -> * 11.3 Wavelet transform data. wavelet_transform() */ static int dirac_unpack_idwt_params(DiracContext *s) { GetBitContext *gb = &s->gb; int i, level; unsigned tmp; #define CHECKEDREAD(dst, cond, errmsg) \ tmp = get_interleaved_ue_golomb(gb); \ if (cond) { \ av_log(s->avctx, AV_LOG_ERROR, errmsg); \ return AVERROR_INVALIDDATA; \ }\ dst = tmp; align_get_bits(gb); s->zero_res = s->num_refs ? get_bits1(gb) : 0; if (s->zero_res) return 0; /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */ CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n") CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n") if (!s->low_delay) { /* Codeblock parameters (core syntax only) */ if (get_bits1(gb)) { for (i = 0; i <= s->wavelet_depth; i++) { CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n") CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n") } CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n") } else { for (i = 0; i <= s->wavelet_depth; i++) s->codeblock[i].width = s->codeblock[i].height = 1; } } else { s->num_x = get_interleaved_ue_golomb(gb); s->num_y = get_interleaved_ue_golomb(gb); if (s->ld_picture) { s->lowdelay.bytes.num = get_interleaved_ue_golomb(gb); s->lowdelay.bytes.den = get_interleaved_ue_golomb(gb); if (s->lowdelay.bytes.den <= 0) { av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n"); return AVERROR_INVALIDDATA; } } else if (s->hq_picture) { s->highquality.prefix_bytes = get_interleaved_ue_golomb(gb); s->highquality.size_scaler = get_interleaved_ue_golomb(gb); if (s->highquality.prefix_bytes >= INT_MAX / 8) { av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n"); return AVERROR_INVALIDDATA; } } /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */ if (get_bits1(gb)) { av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n"); /* custom quantization matrix */ s->lowdelay.quant[0][0] = get_interleaved_ue_golomb(gb); for (level = 0; level < s->wavelet_depth; level++) { s->lowdelay.quant[level][1] = get_interleaved_ue_golomb(gb); s->lowdelay.quant[level][2] = get_interleaved_ue_golomb(gb); s->lowdelay.quant[level][3] = get_interleaved_ue_golomb(gb); } } else { if (s->wavelet_depth > 4) { av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth); return AVERROR_INVALIDDATA; } /* default quantization matrix */ for (level = 0; level < s->wavelet_depth; level++) for (i = 0; i < 4; i++) { s->lowdelay.quant[level][i] = ff_dirac_default_qmat[s->wavelet_idx][level][i]; /* haar with no shift differs for different depths */ if (s->wavelet_idx == 3) s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level); } } } return 0; } static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y) { static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 }; if (!(x|y)) return 0; else if (!y) return sbsplit[-1]; else if (!x) return sbsplit[-stride]; return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]]; } static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask) { int pred; if (!(x|y)) return 0; else if (!y) return block[-1].ref & refmask; else if (!x) return block[-stride].ref & refmask; /* return the majority */ pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask); return (pred >> 1) & refmask; } static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y) { int i, n = 0; memset(block->u.dc, 0, sizeof(block->u.dc)); if (x && !(block[-1].ref & 3)) { for (i = 0; i < 3; i++) block->u.dc[i] += block[-1].u.dc[i]; n++; } if (y && !(block[-stride].ref & 3)) { for (i = 0; i < 3; i++) block->u.dc[i] += block[-stride].u.dc[i]; n++; } if (x && y && !(block[-1-stride].ref & 3)) { for (i = 0; i < 3; i++) block->u.dc[i] += block[-1-stride].u.dc[i]; n++; } if (n == 2) { for (i = 0; i < 3; i++) block->u.dc[i] = (block->u.dc[i]+1)>>1; } else if (n == 3) { for (i = 0; i < 3; i++) block->u.dc[i] = divide3(block->u.dc[i]); } } static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref) { int16_t *pred[3]; int refmask = ref+1; int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */ int n = 0; if (x && (block[-1].ref & mask) == refmask) pred[n++] = block[-1].u.mv[ref]; if (y && (block[-stride].ref & mask) == refmask) pred[n++] = block[-stride].u.mv[ref]; if (x && y && (block[-stride-1].ref & mask) == refmask) pred[n++] = block[-stride-1].u.mv[ref]; switch (n) { case 0: block->u.mv[ref][0] = 0; block->u.mv[ref][1] = 0; break; case 1: block->u.mv[ref][0] = pred[0][0]; block->u.mv[ref][1] = pred[0][1]; break; case 2: block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1; block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1; break; case 3: block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]); block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]); break; } } static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref) { int ez = s->globalmc[ref].zrs_exp; int ep = s->globalmc[ref].perspective_exp; int (*A)[2] = s->globalmc[ref].zrs; int *b = s->globalmc[ref].pan_tilt; int *c = s->globalmc[ref].perspective; int m = (1<u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep); block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep); } static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y) { int i; block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1); block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1); if (s->num_refs == 2) { block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2); block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1; } if (!block->ref) { pred_block_dc(block, stride, x, y); for (i = 0; i < 3; i++) block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA); return; } if (s->globalmc_flag) { block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL); block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2; } for (i = 0; i < s->num_refs; i++) if (block->ref & (i+1)) { if (block->ref & DIRAC_REF_MASK_GLOBAL) { global_mv(s, block, x, y, i); } else { pred_mv(block, stride, x, y, i); block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA); block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA); } } } /** * Copies the current block to the other blocks covered by the current superblock split mode */ static void propagate_block_data(DiracBlock *block, int stride, int size) { int x, y; DiracBlock *dst = block; for (x = 1; x < size; x++) dst[x] = *block; for (y = 1; y < size; y++) { dst += stride; for (x = 0; x < size; x++) dst[x] = *block; } } /** * Dirac Specification -> * 12. Block motion data syntax */ static int dirac_unpack_block_motion_data(DiracContext *s) { GetBitContext *gb = &s->gb; uint8_t *sbsplit = s->sbsplit; int i, x, y, q, p; DiracArith arith[8]; align_get_bits(gb); /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */ s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep); s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep); s->blwidth = 4 * s->sbwidth; s->blheight = 4 * s->sbheight; /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes() decode superblock split modes */ ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */ for (y = 0; y < s->sbheight; y++) { for (x = 0; x < s->sbwidth; x++) { unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA); if (split > 2) return AVERROR_INVALIDDATA; sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3; } sbsplit += s->sbwidth; } /* setup arith decoding */ ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); for (i = 0; i < s->num_refs; i++) { ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb)); ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb)); } for (i = 0; i < 3; i++) ff_dirac_init_arith_decoder(arith+1+i, gb, get_interleaved_ue_golomb(gb)); for (y = 0; y < s->sbheight; y++) for (x = 0; x < s->sbwidth; x++) { int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x]; int step = 4 >> s->sbsplit[y * s->sbwidth + x]; for (q = 0; q < blkcnt; q++) for (p = 0; p < blkcnt; p++) { int bx = 4 * x + p*step; int by = 4 * y + q*step; DiracBlock *block = &s->blmotion[by*s->blwidth + bx]; decode_block_params(s, arith, block, s->blwidth, bx, by); propagate_block_data(block, s->blwidth, step); } } return 0; } static int weight(int i, int blen, int offset) { #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \ (1 + (6*(i) + offset - 1) / (2*offset - 1)) if (i < 2*offset) return ROLLOFF(i); else if (i > blen-1 - 2*offset) return ROLLOFF(blen-1 - i); return 8; } static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy) { int x; for (x = 0; left && x < p->xblen >> 1; x++) obmc_weight[x] = wy*8; for (; x < p->xblen >> right; x++) obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset); for (; x < p->xblen; x++) obmc_weight[x] = wy*8; for (; x < stride; x++) obmc_weight[x] = 0; } static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom) { int y; for (y = 0; top && y < p->yblen >> 1; y++) { init_obmc_weight_row(p, obmc_weight, stride, left, right, 8); obmc_weight += stride; } for (; y < p->yblen >> bottom; y++) { int wy = weight(y, p->yblen, p->yoffset); init_obmc_weight_row(p, obmc_weight, stride, left, right, wy); obmc_weight += stride; } for (; y < p->yblen; y++) { init_obmc_weight_row(p, obmc_weight, stride, left, right, 8); obmc_weight += stride; } } static void init_obmc_weights(DiracContext *s, Plane *p, int by) { int top = !by; int bottom = by == s->blheight-1; /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */ if (top || bottom || by == 1) { init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom); init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom); init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom); } } static const uint8_t epel_weights[4][4][4] = { {{ 16, 0, 0, 0 }, { 12, 4, 0, 0 }, { 8, 8, 0, 0 }, { 4, 12, 0, 0 }}, {{ 12, 0, 4, 0 }, { 9, 3, 3, 1 }, { 6, 6, 2, 2 }, { 3, 9, 1, 3 }}, {{ 8, 0, 8, 0 }, { 6, 2, 6, 2 }, { 4, 4, 4, 4 }, { 2, 6, 2, 6 }}, {{ 4, 0, 12, 0 }, { 3, 1, 9, 3 }, { 2, 2, 6, 6 }, { 1, 3, 3, 9 }} }; /** * For block x,y, determine which of the hpel planes to do bilinear * interpolation from and set src[] to the location in each hpel plane * to MC from. * * @return the index of the put_dirac_pixels_tab function to use * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel */ static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane) { Plane *p = &s->plane[plane]; uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane]; int motion_x = block->u.mv[ref][0]; int motion_y = block->u.mv[ref][1]; int mx, my, i, epel, nplanes = 0; if (plane) { motion_x >>= s->chroma_x_shift; motion_y >>= s->chroma_y_shift; } mx = motion_x & ~(-1U << s->mv_precision); my = motion_y & ~(-1U << s->mv_precision); motion_x >>= s->mv_precision; motion_y >>= s->mv_precision; /* normalize subpel coordinates to epel */ /* TODO: template this function? */ mx <<= 3 - s->mv_precision; my <<= 3 - s->mv_precision; x += motion_x; y += motion_y; epel = (mx|my)&1; /* hpel position */ if (!((mx|my)&3)) { nplanes = 1; src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x; } else { /* qpel or epel */ nplanes = 4; for (i = 0; i < 4; i++) src[i] = ref_hpel[i] + y*p->stride + x; /* if we're interpolating in the right/bottom halves, adjust the planes as needed we increment x/y because the edge changes for half of the pixels */ if (mx > 4) { src[0] += 1; src[2] += 1; x++; } if (my > 4) { src[0] += p->stride; src[1] += p->stride; y++; } /* hpel planes are: [0]: F [1]: H [2]: V [3]: C */ if (!epel) { /* check if we really only need 2 planes since either mx or my is a hpel position. (epel weights of 0 handle this there) */ if (!(mx&3)) { /* mx == 0: average [0] and [2] mx == 4: average [1] and [3] */ src[!mx] = src[2 + !!mx]; nplanes = 2; } else if (!(my&3)) { src[0] = src[(my>>1) ]; src[1] = src[(my>>1)+1]; nplanes = 2; } } else { /* adjust the ordering if needed so the weights work */ if (mx > 4) { FFSWAP(const uint8_t *, src[0], src[1]); FFSWAP(const uint8_t *, src[2], src[3]); } if (my > 4) { FFSWAP(const uint8_t *, src[0], src[2]); FFSWAP(const uint8_t *, src[1], src[3]); } src[4] = epel_weights[my&3][mx&3]; } } /* fixme: v/h _edge_pos */ if (x + p->xblen > p->width +EDGE_WIDTH/2 || y + p->yblen > p->height+EDGE_WIDTH/2 || x < 0 || y < 0) { for (i = 0; i < nplanes; i++) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i], p->stride, p->stride, p->xblen, p->yblen, x, y, p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2); src[i] = s->edge_emu_buffer[i]; } } return (nplanes>>1) + epel; } static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen) { int x, y; dc += 128; for (y = 0; y < yblen; y++) { for (x = 0; x < xblen; x += 2) { dst[x ] += dc * obmc_weight[x ]; dst[x+1] += dc * obmc_weight[x+1]; } dst += stride; obmc_weight += MAX_BLOCKSIZE; } } static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty) { Plane *p = &s->plane[plane]; const uint8_t *src[5]; int idx; switch (block->ref&3) { case 0: /* DC */ add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen); return; case 1: case 2: idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane); s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); if (s->weight_func) s->weight_func(s->mcscratch, p->stride, s->weight_log2denom, s->weight[0] + s->weight[1], p->yblen); break; case 3: idx = mc_subpel(s, block, src, dstx, dsty, 0, plane); s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); idx = mc_subpel(s, block, src, dstx, dsty, 1, plane); if (s->biweight_func) { /* fixme: +32 is a quick hack */ s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen); s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom, s->weight[0], s->weight[1], p->yblen); } else s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); break; } s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen); } static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty) { Plane *p = &s->plane[plane]; int x, dstx = p->xbsep - p->xoffset; block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty); mctmp += p->xbsep; for (x = 1; x < s->blwidth-1; x++) { block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty); dstx += p->xbsep; mctmp += p->xbsep; } block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty); } static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen) { int idx = 0; if (xblen > 8) idx = 1; if (xblen > 16) idx = 2; memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab)); memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab)); s->add_obmc = s->diracdsp.add_dirac_obmc[idx]; if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) { s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx]; s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx]; } else { s->weight_func = NULL; s->biweight_func = NULL; } } static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height) { /* chroma allocates an edge of 8 when subsampled which for 4:2:2 means an h edge of 16 and v edge of 8 just use 8 for everything for the moment */ int i, edge = EDGE_WIDTH/2; ref->hpel[plane][0] = ref->avframe->data[plane]; s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */ /* no need for hpel if we only have fpel vectors */ if (!s->mv_precision) return 0; for (i = 1; i < 4; i++) { if (!ref->hpel_base[plane][i]) ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32); if (!ref->hpel_base[plane][i]) { return AVERROR(ENOMEM); } /* we need to be 16-byte aligned even for chroma */ ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16; } if (!ref->interpolated[plane]) { s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2], ref->hpel[plane][3], ref->hpel[plane][0], ref->avframe->linesize[plane], width, height); s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); } ref->interpolated[plane] = 1; return 0; } /** * Dirac Specification -> * 13.0 Transform data syntax. transform_data() */ static int dirac_decode_frame_internal(DiracContext *s) { DWTContext d; int y, i, comp, dsty; int ret; if (s->low_delay) { /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */ if (!s->hq_picture) { for (comp = 0; comp < 3; comp++) { Plane *p = &s->plane[comp]; memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height); } } if (!s->zero_res) { if ((ret = decode_lowdelay(s)) < 0) return ret; } } for (comp = 0; comp < 3; comp++) { Plane *p = &s->plane[comp]; uint8_t *frame = s->current_picture->avframe->data[comp]; /* FIXME: small resolutions */ for (i = 0; i < 4; i++) s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16); if (!s->zero_res && !s->low_delay) { memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height); decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */ } ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2, s->wavelet_depth, s->bit_depth); if (ret < 0) return ret; if (!s->num_refs) { /* intra */ for (y = 0; y < p->height; y += 16) { int idx = (s->bit_depth - 8) >> 1; ff_spatial_idwt_slice2(&d, y+16); /* decode */ s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride, p->stride, p->idwt.buf + y*p->idwt.stride, p->idwt.stride, p->width, 16); } } else { /* inter */ int rowheight = p->ybsep*p->stride; select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen); for (i = 0; i < s->num_refs; i++) { int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height); if (ret < 0) return ret; } memset(s->mctmp, 0, 4*p->yoffset*p->stride); dsty = -p->yoffset; for (y = 0; y < s->blheight; y++) { int h = 0, start = FFMAX(dsty, 0); uint16_t *mctmp = s->mctmp + y*rowheight; DiracBlock *blocks = s->blmotion + y*s->blwidth; init_obmc_weights(s, p, y); if (y == s->blheight-1 || start+p->ybsep > p->height) h = p->height - start; else h = p->ybsep - (start - dsty); if (h < 0) break; memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight); mc_row(s, blocks, mctmp, comp, dsty); mctmp += (start - dsty)*p->stride + p->xoffset; ff_spatial_idwt_slice2(&d, start + h); /* decode */ /* NOTE: add_rect_clamped hasn't been templated hence the shifts. * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */ s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride, (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h); dsty += p->ybsep; } } } return 0; } static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags) { int ret, i; int chroma_x_shift, chroma_y_shift; avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift); f->width = avctx->width + 2 * EDGE_WIDTH; f->height = avctx->height + 2 * EDGE_WIDTH + 2; ret = ff_get_buffer(avctx, f, flags); if (ret < 0) return ret; for (i = 0; f->data[i]; i++) { int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) * f->linesize[i] + 32; f->data[i] += offset; } f->width = avctx->width; f->height = avctx->height; return 0; } /** * Dirac Specification -> * 11.1.1 Picture Header. picture_header() */ static int dirac_decode_picture_header(DiracContext *s) { unsigned retire, picnum; int i, j, ret; int64_t refdist, refnum; GetBitContext *gb = &s->gb; /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */ picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32); av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum); /* if this is the first keyframe after a sequence header, start our reordering from here */ if (s->frame_number < 0) s->frame_number = picnum; s->ref_pics[0] = s->ref_pics[1] = NULL; for (i = 0; i < s->num_refs; i++) { refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF; refdist = INT64_MAX; /* find the closest reference to the one we want */ /* Jordi: this is needed if the referenced picture hasn't yet arrived */ for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++) if (s->ref_frames[j] && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) { s->ref_pics[i] = s->ref_frames[j]; refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum); } if (!s->ref_pics[i] || refdist) av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n"); /* if there were no references at all, allocate one */ if (!s->ref_pics[i]) for (j = 0; j < MAX_FRAMES; j++) if (!s->all_frames[j].avframe->data[0]) { s->ref_pics[i] = &s->all_frames[j]; get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF); break; } if (!s->ref_pics[i]) { av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n"); return AVERROR_INVALIDDATA; } } /* retire the reference frames that are not used anymore */ if (s->current_picture->reference) { retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF; if (retire != picnum) { DiracFrame *retire_pic = remove_frame(s->ref_frames, retire); if (retire_pic) retire_pic->reference &= DELAYED_PIC_REF; else av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n"); } /* if reference array is full, remove the oldest as per the spec */ while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) { av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n"); remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF; } } if (s->num_refs) { ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */ if (ret < 0) return ret; ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */ if (ret < 0) return ret; } ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */ if (ret < 0) return ret; init_planes(s); return 0; } static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame) { DiracFrame *out = s->delay_frames[0]; int i, out_idx = 0; int ret; /* find frame with lowest picture number */ for (i = 1; s->delay_frames[i]; i++) if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) { out = s->delay_frames[i]; out_idx = i; } for (i = out_idx; s->delay_frames[i]; i++) s->delay_frames[i] = s->delay_frames[i+1]; if (out) { out->reference ^= DELAYED_PIC_REF; *got_frame = 1; if((ret = av_frame_ref(picture, out->avframe)) < 0) return ret; } return 0; } /** * Dirac Specification -> * 9.6 Parse Info Header Syntax. parse_info() * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size */ #define DATA_UNIT_HEADER_SIZE 13 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */ static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size) { DiracContext *s = avctx->priv_data; DiracFrame *pic = NULL; AVDiracSeqHeader *dsh; int ret, i; uint8_t parse_code; unsigned tmp; if (size < DATA_UNIT_HEADER_SIZE) return AVERROR_INVALIDDATA; parse_code = buf[4]; init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE)); if (parse_code == DIRAC_PCODE_SEQ_HEADER) { if (s->seen_sequence_header) return 0; /* [DIRAC_STD] 10. Sequence header */ ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "error parsing sequence header"); return ret; } ret = ff_set_dimensions(avctx, dsh->width, dsh->height); if (ret < 0) { av_freep(&dsh); return ret; } ff_set_sar(avctx, dsh->sample_aspect_ratio); avctx->pix_fmt = dsh->pix_fmt; avctx->color_range = dsh->color_range; avctx->color_trc = dsh->color_trc; avctx->color_primaries = dsh->color_primaries; avctx->colorspace = dsh->colorspace; avctx->profile = dsh->profile; avctx->level = dsh->level; avctx->framerate = dsh->framerate; s->bit_depth = dsh->bit_depth; s->version.major = dsh->version.major; s->version.minor = dsh->version.minor; s->seq = *dsh; av_freep(&dsh); s->pshift = s->bit_depth > 8; avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); ret = alloc_sequence_buffers(s); if (ret < 0) return ret; s->seen_sequence_header = 1; } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */ free_sequence_buffers(s); s->seen_sequence_header = 0; } else if (parse_code == DIRAC_PCODE_AUX) { if (buf[13] == 1) { /* encoder implementation/version */ int ver[3]; /* versions older than 1.0.8 don't store quant delta for subbands with only one codeblock */ if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3) if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7) s->old_delta_quant = 1; } } else if (parse_code & 0x8) { /* picture data unit */ if (!s->seen_sequence_header) { av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n"); return AVERROR_INVALIDDATA; } /* find an unused frame */ for (i = 0; i < MAX_FRAMES; i++) if (s->all_frames[i].avframe->data[0] == NULL) pic = &s->all_frames[i]; if (!pic) { av_log(avctx, AV_LOG_ERROR, "framelist full\n"); return AVERROR_INVALIDDATA; } av_frame_unref(pic->avframe); /* [DIRAC_STD] Defined in 9.6.1 ... */ tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */ if (tmp > 2) { av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n"); return AVERROR_INVALIDDATA; } s->num_refs = tmp; s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */ s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */ s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */ s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */ s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */ s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */ pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */ pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */ pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */ /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */ if (s->version.minor == 2 && parse_code == 0x88) s->ld_picture = 1; if (s->low_delay && !(s->ld_picture || s->hq_picture) ) { av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n"); return AVERROR_INVALIDDATA; } if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0) return ret; s->current_picture = pic; s->plane[0].stride = pic->avframe->linesize[0]; s->plane[1].stride = pic->avframe->linesize[1]; s->plane[2].stride = pic->avframe->linesize[2]; if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0) return AVERROR(ENOMEM); /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */ ret = dirac_decode_picture_header(s); if (ret < 0) return ret; /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */ ret = dirac_decode_frame_internal(s); if (ret < 0) return ret; } return 0; } static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt) { DiracContext *s = avctx->priv_data; AVFrame *picture = data; uint8_t *buf = pkt->data; int buf_size = pkt->size; int i, buf_idx = 0; int ret; unsigned data_unit_size; /* release unused frames */ for (i = 0; i < MAX_FRAMES; i++) if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) { av_frame_unref(s->all_frames[i].avframe); memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated)); } s->current_picture = NULL; *got_frame = 0; /* end of stream, so flush delayed pics */ if (buf_size == 0) return get_delayed_pic(s, (AVFrame *)data, got_frame); for (;;) { /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6 [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646 BBCD start code search */ for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) { if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' && buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D') break; } /* BBCD found or end of data */ if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size) break; data_unit_size = AV_RB32(buf+buf_idx+5); if (data_unit_size > buf_size - buf_idx || !data_unit_size) { if(data_unit_size > buf_size - buf_idx) av_log(s->avctx, AV_LOG_ERROR, "Data unit with size %d is larger than input buffer, discarding\n", data_unit_size); buf_idx += 4; continue; } /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */ ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n"); return ret; } buf_idx += data_unit_size; } if (!s->current_picture) return buf_size; if (s->current_picture->avframe->display_picture_number > s->frame_number) { DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number); s->current_picture->reference |= DELAYED_PIC_REF; if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) { int min_num = s->delay_frames[0]->avframe->display_picture_number; /* Too many delayed frames, so we display the frame with the lowest pts */ av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n"); for (i = 1; s->delay_frames[i]; i++) if (s->delay_frames[i]->avframe->display_picture_number < min_num) min_num = s->delay_frames[i]->avframe->display_picture_number; delayed_frame = remove_frame(s->delay_frames, min_num); add_frame(s->delay_frames, MAX_DELAY, s->current_picture); } if (delayed_frame) { delayed_frame->reference ^= DELAYED_PIC_REF; if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0) return ret; *got_frame = 1; } } else if (s->current_picture->avframe->display_picture_number == s->frame_number) { /* The right frame at the right time :-) */ if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0) return ret; *got_frame = 1; } if (*got_frame) s->frame_number = picture->display_picture_number + 1; return buf_idx; } AVCodec ff_dirac_decoder = { .name = "dirac", .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_DIRAC, .priv_data_size = sizeof(DiracContext), .init = dirac_decode_init, .close = dirac_decode_end, .decode = dirac_decode_frame, .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1, .flush = dirac_decode_flush, };