/* * x86-optimized AC-3 DSP utils * Copyright (c) 2011 Justin Ruggles * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/mem.h" #include "libavutil/x86/asm.h" #include "libavutil/x86/cpu.h" #include "dsputil_mmx.h" #include "libavcodec/ac3.h" #include "libavcodec/ac3dsp.h" void ff_ac3_exponent_min_mmx (uint8_t *exp, int num_reuse_blocks, int nb_coefs); void ff_ac3_exponent_min_mmxext(uint8_t *exp, int num_reuse_blocks, int nb_coefs); void ff_ac3_exponent_min_sse2 (uint8_t *exp, int num_reuse_blocks, int nb_coefs); int ff_ac3_max_msb_abs_int16_mmx (const int16_t *src, int len); int ff_ac3_max_msb_abs_int16_mmxext(const int16_t *src, int len); int ff_ac3_max_msb_abs_int16_sse2 (const int16_t *src, int len); int ff_ac3_max_msb_abs_int16_ssse3(const int16_t *src, int len); void ff_ac3_lshift_int16_mmx (int16_t *src, unsigned int len, unsigned int shift); void ff_ac3_lshift_int16_sse2(int16_t *src, unsigned int len, unsigned int shift); void ff_ac3_rshift_int32_mmx (int32_t *src, unsigned int len, unsigned int shift); void ff_ac3_rshift_int32_sse2(int32_t *src, unsigned int len, unsigned int shift); void ff_float_to_fixed24_3dnow(int32_t *dst, const float *src, unsigned int len); void ff_float_to_fixed24_sse (int32_t *dst, const float *src, unsigned int len); void ff_float_to_fixed24_sse2 (int32_t *dst, const float *src, unsigned int len); int ff_ac3_compute_mantissa_size_sse2(uint16_t mant_cnt[6][16]); void ff_ac3_extract_exponents_3dnow(uint8_t *exp, int32_t *coef, int nb_coefs); void ff_ac3_extract_exponents_sse2 (uint8_t *exp, int32_t *coef, int nb_coefs); void ff_ac3_extract_exponents_ssse3(uint8_t *exp, int32_t *coef, int nb_coefs); #if HAVE_SSE_INLINE && HAVE_7REGS #define IF1(x) x #define IF0(x) #define MIX5(mono, stereo) \ __asm__ volatile ( \ "movss 0(%1), %%xmm5 \n" \ "movss 8(%1), %%xmm6 \n" \ "movss 24(%1), %%xmm7 \n" \ "shufps $0, %%xmm5, %%xmm5 \n" \ "shufps $0, %%xmm6, %%xmm6 \n" \ "shufps $0, %%xmm7, %%xmm7 \n" \ "1: \n" \ "movaps (%0, %2), %%xmm0 \n" \ "movaps (%0, %3), %%xmm1 \n" \ "movaps (%0, %4), %%xmm2 \n" \ "movaps (%0, %5), %%xmm3 \n" \ "movaps (%0, %6), %%xmm4 \n" \ "mulps %%xmm5, %%xmm0 \n" \ "mulps %%xmm6, %%xmm1 \n" \ "mulps %%xmm5, %%xmm2 \n" \ "mulps %%xmm7, %%xmm3 \n" \ "mulps %%xmm7, %%xmm4 \n" \ stereo("addps %%xmm1, %%xmm0 \n") \ "addps %%xmm1, %%xmm2 \n" \ "addps %%xmm3, %%xmm0 \n" \ "addps %%xmm4, %%xmm2 \n" \ mono("addps %%xmm2, %%xmm0 \n") \ "movaps %%xmm0, (%0, %2) \n" \ stereo("movaps %%xmm2, (%0, %3) \n") \ "add $16, %0 \n" \ "jl 1b \n" \ : "+&r"(i) \ : "r"(matrix), \ "r"(samples[0] + len), \ "r"(samples[1] + len), \ "r"(samples[2] + len), \ "r"(samples[3] + len), \ "r"(samples[4] + len) \ : XMM_CLOBBERS("%xmm0", "%xmm1", "%xmm2", "%xmm3", \ "%xmm4", "%xmm5", "%xmm6", "%xmm7",) \ "memory" \ ); #define MIX_MISC(stereo) \ __asm__ volatile ( \ "mov %5, %2 \n" \ "1: \n" \ "mov -%c7(%6, %2, %c8), %3 \n" \ "movaps (%3, %0), %%xmm0 \n" \ stereo("movaps %%xmm0, %%xmm1 \n") \ "mulps %%xmm4, %%xmm0 \n" \ stereo("mulps %%xmm5, %%xmm1 \n") \ "2: \n" \ "mov (%6, %2, %c8), %1 \n" \ "movaps (%1, %0), %%xmm2 \n" \ stereo("movaps %%xmm2, %%xmm3 \n") \ "mulps (%4, %2, 8), %%xmm2 \n" \ stereo("mulps 16(%4, %2, 8), %%xmm3 \n") \ "addps %%xmm2, %%xmm0 \n" \ stereo("addps %%xmm3, %%xmm1 \n") \ "add $4, %2 \n" \ "jl 2b \n" \ "mov %5, %2 \n" \ stereo("mov (%6, %2, %c8), %1 \n") \ "movaps %%xmm0, (%3, %0) \n" \ stereo("movaps %%xmm1, (%1, %0) \n") \ "add $16, %0 \n" \ "jl 1b \n" \ : "+&r"(i), "=&r"(j), "=&r"(k), "=&r"(m) \ : "r"(matrix_simd + in_ch), \ "g"((intptr_t) - 4 * (in_ch - 1)), \ "r"(samp + in_ch), \ "i"(sizeof(float *)), "i"(sizeof(float *)/4) \ : "memory" \ ); static void ac3_downmix_sse(float **samples, float (*matrix)[2], int out_ch, int in_ch, int len) { int (*matrix_cmp)[2] = (int(*)[2])matrix; intptr_t i, j, k, m; i = -len * sizeof(float); if (in_ch == 5 && out_ch == 2 && !(matrix_cmp[0][1] | matrix_cmp[2][0] | matrix_cmp[3][1] | matrix_cmp[4][0] | (matrix_cmp[1][0] ^ matrix_cmp[1][1]) | (matrix_cmp[0][0] ^ matrix_cmp[2][1]))) { MIX5(IF0, IF1); } else if (in_ch == 5 && out_ch == 1 && matrix_cmp[0][0] == matrix_cmp[2][0] && matrix_cmp[3][0] == matrix_cmp[4][0]) { MIX5(IF1, IF0); } else { DECLARE_ALIGNED(16, float, matrix_simd)[AC3_MAX_CHANNELS][2][4]; float *samp[AC3_MAX_CHANNELS]; for (j = 0; j < in_ch; j++) samp[j] = samples[j] + len; j = 2 * in_ch * sizeof(float); __asm__ volatile ( "1: \n" "sub $8, %0 \n" "movss (%2, %0), %%xmm4 \n" "movss 4(%2, %0), %%xmm5 \n" "shufps $0, %%xmm4, %%xmm4 \n" "shufps $0, %%xmm5, %%xmm5 \n" "movaps %%xmm4, (%1, %0, 4) \n" "movaps %%xmm5, 16(%1, %0, 4) \n" "jg 1b \n" : "+&r"(j) : "r"(matrix_simd), "r"(matrix) : "memory" ); if (out_ch == 2) { MIX_MISC(IF1); } else { MIX_MISC(IF0); } } } #endif /* HAVE_SSE_INLINE && HAVE_7REGS */ av_cold void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact) { int mm_flags = av_get_cpu_flags(); if (EXTERNAL_MMX(mm_flags)) { c->ac3_exponent_min = ff_ac3_exponent_min_mmx; c->ac3_max_msb_abs_int16 = ff_ac3_max_msb_abs_int16_mmx; c->ac3_lshift_int16 = ff_ac3_lshift_int16_mmx; c->ac3_rshift_int32 = ff_ac3_rshift_int32_mmx; } if (EXTERNAL_AMD3DNOW(mm_flags)) { c->extract_exponents = ff_ac3_extract_exponents_3dnow; if (!bit_exact) { c->float_to_fixed24 = ff_float_to_fixed24_3dnow; } } if (EXTERNAL_MMXEXT(mm_flags)) { c->ac3_exponent_min = ff_ac3_exponent_min_mmxext; c->ac3_max_msb_abs_int16 = ff_ac3_max_msb_abs_int16_mmxext; } if (EXTERNAL_SSE(mm_flags)) { c->float_to_fixed24 = ff_float_to_fixed24_sse; } if (EXTERNAL_SSE2(mm_flags)) { c->ac3_exponent_min = ff_ac3_exponent_min_sse2; c->ac3_max_msb_abs_int16 = ff_ac3_max_msb_abs_int16_sse2; c->float_to_fixed24 = ff_float_to_fixed24_sse2; c->compute_mantissa_size = ff_ac3_compute_mantissa_size_sse2; c->extract_exponents = ff_ac3_extract_exponents_sse2; if (!(mm_flags & AV_CPU_FLAG_SSE2SLOW)) { c->ac3_lshift_int16 = ff_ac3_lshift_int16_sse2; c->ac3_rshift_int32 = ff_ac3_rshift_int32_sse2; } } if (EXTERNAL_SSSE3(mm_flags)) { c->ac3_max_msb_abs_int16 = ff_ac3_max_msb_abs_int16_ssse3; if (!(mm_flags & AV_CPU_FLAG_ATOM)) { c->extract_exponents = ff_ac3_extract_exponents_ssse3; } } #if HAVE_SSE_INLINE && HAVE_7REGS if (INLINE_SSE(mm_flags)) { c->downmix = ac3_downmix_sse; } #endif }