/* * AAC encoder long term prediction extension * Copyright (C) 2015 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC encoder long term prediction extension * @author Rostislav Pehlivanov ( atomnuker gmail com ) */ #include "aacenc_ltp.h" #include "aacenc_quantization.h" #include "aacenc_utils.h" /** * Encode LTP data. */ void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, int common_window) { int i; IndividualChannelStream *ics = &sce->ics; if (s->profile != AV_PROFILE_AAC_LTP || !ics->predictor_present) return; if (common_window) put_bits(&s->pb, 1, 0); put_bits(&s->pb, 1, ics->ltp.present); if (!ics->ltp.present) return; put_bits(&s->pb, 11, ics->ltp.lag); put_bits(&s->pb, 3, ics->ltp.coef_idx); for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++) put_bits(&s->pb, 1, ics->ltp.used[i]); } void ff_aac_ltp_insert_new_frame(AACEncContext *s) { int i, ch, tag, chans, cur_channel, start_ch = 0; ChannelElement *cpe; SingleChannelElement *sce; for (i = 0; i < s->chan_map[0]; i++) { cpe = &s->cpe[i]; tag = s->chan_map[i+1]; chans = tag == TYPE_CPE ? 2 : 1; for (ch = 0; ch < chans; ch++) { sce = &cpe->ch[ch]; cur_channel = start_ch + ch; /* New sample + overlap */ memcpy(&sce->ltp_state[0], &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0])); memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0])); memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0])); sce->ics.ltp.lag = 0; } start_ch += chans; } } static void get_lag(float *buf, const float *new, LongTermPrediction *ltp) { int i, j, lag = 0, max_corr = 0; float max_ratio = 0.0f; for (i = 0; i < 2048; i++) { float corr, s0 = 0.0f, s1 = 0.0f; const int start = FFMAX(0, i - 1024); for (j = start; j < 2048; j++) { const int idx = j - i + 1024; s0 += new[j]*buf[idx]; s1 += buf[idx]*buf[idx]; } corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f; if (corr > max_corr) { max_corr = corr; lag = i; max_ratio = corr/(2048-start); } } ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0); ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8); ltp->coef = ltp_coef[ltp->coef_idx]; } static void generate_samples(float *buf, LongTermPrediction *ltp) { int i, samples_num = 2048; if (!ltp->lag) { ltp->present = 0; return; } else if (ltp->lag < 1024) { samples_num = ltp->lag + 1024; } for (i = 0; i < samples_num; i++) buf[i] = ltp->coef*buf[i + 2048 - ltp->lag]; memset(&buf[i], 0, (2048 - i)*sizeof(float)); } /** * Process LTP parameters * @see Patent WO2006070265A1 */ void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce) { float *pred_signal = &sce->ltp_state[0]; const float *samples = &s->planar_samples[s->cur_channel][1024]; if (s->profile != AV_PROFILE_AAC_LTP) return; /* Calculate lag */ get_lag(pred_signal, samples, &sce->ics.ltp); generate_samples(pred_signal, &sce->ics.ltp); } void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe) { int sfb, count = 0; SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; if (!cpe->common_window || sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { sce0->ics.ltp.present = 0; return; } for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) { int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb]; if (sum != 2) { sce0->ics.ltp.used[sfb] = 0; } else { count++; } } sce0->ics.ltp.present = !!count; sce0->ics.predictor_present = !!count; } /** * Mark LTP sfb's */ void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, int common_window) { int w, g, w2, i, start = 0, count = 0; int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB)); float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1]; float *PCD34 = &s->scoefs[128*2]; const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { if (sce->ics.ltp.lag) { memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0])); memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction)); } return; } if (!sce->ics.ltp.lag || s->lambda > 120.0f) return; for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = 0; for (g = 0; g < sce->ics.num_swb; g++) { int bits1 = 0, bits2 = 0; float dist1 = 0.0f, dist2 = 0.0f; if (w*16+g > max_ltp) { start += sce->ics.swb_sizes[g]; continue; } for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int bits_tmp1, bits_tmp2; FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; for (i = 0; i < sce->ics.swb_sizes[g]; i++) PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i]; s->aacdsp.abs_pow34(C34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]); s->aacdsp.abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]); dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g], sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g], s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL); dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g], sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g], s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL); bits1 += bits_tmp1; bits2 += bits_tmp2; } if (dist2 < dist1 && bits2 < bits1) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) for (i = 0; i < sce->ics.swb_sizes[g]; i++) sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i]; sce->ics.ltp.used[w*16+g] = 1; saved_bits += bits1 - bits2; count++; } start += sce->ics.swb_sizes[g]; } } sce->ics.ltp.present = !!count && (saved_bits >= 0); sce->ics.predictor_present = !!sce->ics.ltp.present; /* Reset any marked sfbs */ if (!sce->ics.ltp.present && !!count) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = 0; for (g = 0; g < sce->ics.num_swb; g++) { if (sce->ics.ltp.used[w*16+g]) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { for (i = 0; i < sce->ics.swb_sizes[g]; i++) { sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i]; } } } start += sce->ics.swb_sizes[g]; } } } }