/* * RV30/40 decoder common data * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * RV30/40 decoder common data */ #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/internal.h" #include "libavutil/mem_internal.h" #include "libavutil/thread.h" #include "avcodec.h" #include "decode.h" #include "error_resilience.h" #include "mpegutils.h" #include "mpegvideo.h" #include "mpegvideodec.h" #include "golomb.h" #include "mathops.h" #include "mpeg_er.h" #include "qpeldsp.h" #include "rectangle.h" #include "thread.h" #include "threadframe.h" #include "rv34vlc.h" #include "rv34data.h" #include "rv34.h" static inline void ZERO8x2(void* dst, int stride) { fill_rectangle(dst, 1, 2, stride, 0, 4); fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4); } /** translation of RV30/40 macroblock types to lavc ones */ static const int rv34_mb_type_to_lavc[12] = { MB_TYPE_INTRA, MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC, MB_TYPE_16x16 | MB_TYPE_L0, MB_TYPE_8x8 | MB_TYPE_L0, MB_TYPE_16x16 | MB_TYPE_L0, MB_TYPE_16x16 | MB_TYPE_L1, MB_TYPE_SKIP, MB_TYPE_DIRECT2 | MB_TYPE_16x16, MB_TYPE_16x8 | MB_TYPE_L0, MB_TYPE_8x16 | MB_TYPE_L0, MB_TYPE_16x16 | MB_TYPE_L0L1, MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC }; static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES]; static int rv34_decode_mv(RV34DecContext *r, int block_type); /** * @name RV30/40 VLC generating functions * @{ */ static VLCElem table_data[117592]; /** * Generate VLC from codeword lengths. * @param bits codeword lengths (zeroes are accepted) * @param size length of input data * @param vlc output VLC * @param insyms symbols for input codes (NULL for default ones) * @param num VLC table number (for static initialization) */ static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms, int *offset) { int counts[17] = {0}, codes[17]; uint16_t cw[MAX_VLC_SIZE]; int maxbits; av_assert1(size > 0); for (int i = 0; i < size; i++) counts[bits[i]]++; /* bits[0] is zero for some tables, i.e. syms actually starts at 1. * So we reset it here. The code assigned to this element is 0x00. */ codes[0] = counts[0] = 0; for (int i = 0; i < 16; i++) { codes[i+1] = (codes[i] + counts[i]) << 1; if (counts[i]) maxbits = i; } for (int i = 0; i < size; i++) cw[i] = codes[bits[i]]++; vlc->table = &table_data[*offset]; vlc->table_allocated = FF_ARRAY_ELEMS(table_data) - *offset; ff_vlc_init_sparse(vlc, FFMIN(maxbits, 9), size, bits, 1, 1, cw, 2, 2, syms, !!syms, !!syms, VLC_INIT_STATIC_OVERLONG); *offset += vlc->table_size; } /** * Initialize all tables. */ static av_cold void rv34_init_tables(void) { int i, j, k, offset = 0; for(i = 0; i < NUM_INTRA_TABLES; i++){ for(j = 0; j < 2; j++){ rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, &offset); rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, &offset); rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, &offset); for(k = 0; k < 4; k++){ rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, &offset); } } for(j = 0; j < 4; j++){ rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, &offset); } rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, &offset); } for(i = 0; i < NUM_INTER_TABLES; i++){ rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, &offset); for(j = 0; j < 4; j++){ rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, &offset); } for(j = 0; j < 2; j++){ rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, &offset); rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, &offset); rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, &offset); } rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, &offset); } } /** @} */ // vlc group /** * @name RV30/40 4x4 block decoding functions * @{ */ /** * Decode coded block pattern. */ static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table) { int pattern, code, cbp=0; int ones; static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000}; static const int shifts[4] = { 0, 2, 8, 10 }; const int *curshift = shifts; int i, t, mask; code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2); pattern = code & 0xF; code >>= 4; ones = rv34_count_ones[pattern]; for(mask = 8; mask; mask >>= 1, curshift++){ if(pattern & mask) cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0]; } for(i = 0; i < 4; i++){ t = (modulo_three_table[code] >> (6 - 2*i)) & 3; if(t == 1) cbp |= cbp_masks[get_bits1(gb)] << i; if(t == 2) cbp |= cbp_masks[2] << i; } return cbp; } /** * Get one coefficient value from the bitstream and store it. */ static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q) { if(coef){ if(coef == esc){ coef = get_vlc2(gb, vlc->table, 9, 2); if(coef > 23){ coef -= 23; coef = 22 + ((1 << coef) | get_bits(gb, coef)); } coef += esc; } if(get_bits1(gb)) coef = -coef; *dst = (coef*q + 8) >> 4; } } /** * Decode 2x2 subblock of coefficients. */ static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q) { int flags = modulo_three_table[code]; decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q); if(is_block2){ decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q); decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q); }else{ decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q); decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q); } decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q); } /** * Decode a single coefficient. */ static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q) { int coeff = modulo_three_table[code] >> 6; decode_coeff(dst, coeff, 3, gb, vlc, q); } static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q_dc, int q_ac1, int q_ac2) { int flags = modulo_three_table[code]; decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc); decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1); decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1); decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2); } /** * Decode coefficients for 4x4 block. * * This is done by filling 2x2 subblocks with decoded coefficients * in this order (the same for subblocks and subblock coefficients): * o--o * / * / * o--o */ static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2) { int code, pattern, has_ac = 1; code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2); pattern = code & 0x7; code >>= 3; if (modulo_three_table[code] & 0x3F) { decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2); } else { decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc); if (!pattern) return 0; has_ac = 0; } if(pattern & 4){ code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2); decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2); } if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2); decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2); } if(pattern & 1){ code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2); decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2); } return has_ac | pattern; } /** * @name RV30/40 bitstream parsing * @{ */ /** * Decode starting slice position. * @todo Maybe replace with ff_h263_decode_mba() ? */ int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size) { int i; for(i = 0; i < 5; i++) if(rv34_mb_max_sizes[i] >= mb_size - 1) break; return rv34_mb_bits_sizes[i]; } /** * Select VLC set for decoding from current quantizer, modifier and frame type. */ static inline RV34VLC* choose_vlc_set(int quant, int mod, int type) { if(mod == 2 && quant < 19) quant += 10; else if(mod && quant < 26) quant += 5; av_assert2(quant >= 0 && quant < 32); return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][quant]] : &intra_vlcs[rv34_quant_to_vlc_set[0][quant]]; } /** * Decode intra macroblock header and return CBP in case of success, -1 otherwise. */ static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types) { MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int t; r->is16 = get_bits1(gb); if(r->is16){ s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16; r->block_type = RV34_MB_TYPE_INTRA16x16; t = get_bits(gb, 2); fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0])); r->luma_vlc = 2; }else{ if(!r->rv30){ if(!get_bits1(gb)) av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n"); } s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA; r->block_type = RV34_MB_TYPE_INTRA; if(r->decode_intra_types(r, gb, intra_types) < 0) return -1; r->luma_vlc = 1; } r->chroma_vlc = 0; r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0); return rv34_decode_cbp(gb, r->cur_vlcs, r->is16); } /** * Decode inter macroblock header and return CBP in case of success, -1 otherwise. */ static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types) { MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int i, t; r->block_type = r->decode_mb_info(r); if(r->block_type == -1) return -1; s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type]; r->mb_type[mb_pos] = r->block_type; if(r->block_type == RV34_MB_SKIP){ if(s->pict_type == AV_PICTURE_TYPE_P) r->mb_type[mb_pos] = RV34_MB_P_16x16; if(s->pict_type == AV_PICTURE_TYPE_B) r->mb_type[mb_pos] = RV34_MB_B_DIRECT; } r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]); if (rv34_decode_mv(r, r->block_type) < 0) return -1; if(r->block_type == RV34_MB_SKIP){ fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0])); return 0; } r->chroma_vlc = 1; r->luma_vlc = 0; if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){ if(r->is16){ t = get_bits(gb, 2); fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0])); r->luma_vlc = 2; }else{ if(r->decode_intra_types(r, gb, intra_types) < 0) return -1; r->luma_vlc = 1; } r->chroma_vlc = 0; r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0); }else{ for(i = 0; i < 16; i++) intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0; r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1); if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){ r->is16 = 1; r->chroma_vlc = 1; r->luma_vlc = 2; r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0); } } return rv34_decode_cbp(gb, r->cur_vlcs, r->is16); } /** @} */ //bitstream functions /** * @name motion vector related code (prediction, reconstruction, motion compensation) * @{ */ /** macroblock partition width in 8x8 blocks */ static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 }; /** macroblock partition height in 8x8 blocks */ static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 }; /** availability index for subblocks */ static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 }; /** * motion vector prediction * * Motion prediction performed for the block by using median prediction of * motion vectors from the left, top and right top blocks but in corner cases * some other vectors may be used instead. */ static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no) { MpegEncContext *s = &r->s; int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride; int A[2] = {0}, B[2], C[2]; int i, j; int mx, my; int* avail = r->avail_cache + avail_indexes[subblock_no]; int c_off = part_sizes_w[block_type]; mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride; if(subblock_no == 3) c_off = -1; if(avail[-1]){ A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0]; A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1]; } if(avail[-4]){ B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0]; B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1]; }else{ B[0] = A[0]; B[1] = A[1]; } if(!avail[c_off-4]){ if(avail[-4] && (avail[-1] || r->rv30)){ C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0]; C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1]; }else{ C[0] = A[0]; C[1] = A[1]; } }else{ C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0]; C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1]; } mx = mid_pred(A[0], B[0], C[0]); my = mid_pred(A[1], B[1], C[1]); mx += r->dmv[dmv_no][0]; my += r->dmv[dmv_no][1]; for(j = 0; j < part_sizes_h[block_type]; j++){ for(i = 0; i < part_sizes_w[block_type]; i++){ s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx; s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my; } } } #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF) /** * Calculate motion vector component that should be added for direct blocks. */ static int calc_add_mv(RV34DecContext *r, int dir, int val) { int mul = dir ? -r->mv_weight2 : r->mv_weight1; return (int)(val * (SUINT)mul + 0x2000) >> 14; } /** * Predict motion vector for B-frame macroblock. */ static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2], int A_avail, int B_avail, int C_avail, int *mx, int *my) { if(A_avail + B_avail + C_avail != 3){ *mx = A[0] + B[0] + C[0]; *my = A[1] + B[1] + C[1]; if(A_avail + B_avail + C_avail == 2){ *mx /= 2; *my /= 2; } }else{ *mx = mid_pred(A[0], B[0], C[0]); *my = mid_pred(A[1], B[1], C[1]); } } /** * motion vector prediction for B-frames */ static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir) { MpegEncContext *s = &r->s; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride; int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 }; int has_A = 0, has_B = 0, has_C = 0; int mx, my; int i, j; Picture *cur_pic = s->current_picture_ptr; const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0; int type = cur_pic->mb_type[mb_pos]; if((r->avail_cache[6-1] & type) & mask){ A[0] = cur_pic->motion_val[dir][mv_pos - 1][0]; A[1] = cur_pic->motion_val[dir][mv_pos - 1][1]; has_A = 1; } if((r->avail_cache[6-4] & type) & mask){ B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0]; B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1]; has_B = 1; } if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){ C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0]; C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1]; has_C = 1; }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){ C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0]; C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1]; has_C = 1; } rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my); mx += r->dmv[dir][0]; my += r->dmv[dir][1]; for(j = 0; j < 2; j++){ for(i = 0; i < 2; i++){ cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx; cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my; } } if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){ ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride); } } /** * motion vector prediction - RV3 version */ static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir) { MpegEncContext *s = &r->s; int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride; int A[2] = {0}, B[2], C[2]; int i, j, k; int mx, my; int* avail = r->avail_cache + avail_indexes[0]; if(avail[-1]){ A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0]; A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1]; } if(avail[-4]){ B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0]; B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1]; }else{ B[0] = A[0]; B[1] = A[1]; } if(!avail[-4 + 2]){ if(avail[-4] && (avail[-1])){ C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0]; C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1]; }else{ C[0] = A[0]; C[1] = A[1]; } }else{ C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0]; C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1]; } mx = mid_pred(A[0], B[0], C[0]); my = mid_pred(A[1], B[1], C[1]); mx += r->dmv[0][0]; my += r->dmv[0][1]; for(j = 0; j < 2; j++){ for(i = 0; i < 2; i++){ for(k = 0; k < 2; k++){ s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx; s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my; } } } } static const int chroma_coeffs[3] = { 0, 3, 5 }; /** * generic motion compensation function * * @param r decoder context * @param block_type type of the current block * @param xoff horizontal offset from the start of the current block * @param yoff vertical offset from the start of the current block * @param mv_off offset to the motion vector information * @param width width of the current partition in 8x8 blocks * @param height height of the current partition in 8x8 blocks * @param dir motion compensation direction (i.e. from the last or the next reference frame) * @param thirdpel motion vectors are specified in 1/3 of pixel * @param qpel_mc a set of functions used to perform luma motion compensation * @param chroma_mc a set of functions used to perform chroma motion compensation */ static inline void rv34_mc(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir, const int thirdpel, int weighted, qpel_mc_func (*qpel_mc)[16], h264_chroma_mc_func (*chroma_mc)) { MpegEncContext *s = &r->s; uint8_t *Y, *U, *V, *srcY, *srcU, *srcV; int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off; int is16x16 = 1; int emu = 0; if(thirdpel){ int chroma_mx, chroma_my; mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24); my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24); lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3; ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3; chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2; chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2; umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24); umy = (chroma_my + (3 << 24)) / 3 - (1 << 24); uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3]; uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3]; }else{ int cx, cy; mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2; my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2; lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3; ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3; cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2; cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2; umx = cx >> 2; umy = cy >> 2; uvmx = (cx & 3) << 1; uvmy = (cy & 3) << 1; //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3 if(uvmx == 6 && uvmy == 6) uvmx = uvmy = 4; } if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) { /* wait for the referenced mb row to be finished */ int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4); const ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf; ff_thread_await_progress(f, mb_row, 0); } dxy = ly*4 + lx; srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0]; srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1]; srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2]; src_x = s->mb_x * 16 + xoff + mx; src_y = s->mb_y * 16 + yoff + my; uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx; uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy; srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 || (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) { srcY -= 2 + 2*s->linesize; s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY, s->linesize, s->linesize, (width << 3) + 6, (height << 3) + 6, src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos); srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize; emu = 1; } if(!weighted){ Y = s->dest[0] + xoff + yoff *s->linesize; U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize; V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize; }else{ Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize; U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize; V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize; } if(block_type == RV34_MB_P_16x8){ qpel_mc[1][dxy](Y, srcY, s->linesize); Y += 8; srcY += 8; }else if(block_type == RV34_MB_P_8x16){ qpel_mc[1][dxy](Y, srcY, s->linesize); Y += 8 * s->linesize; srcY += 8 * s->linesize; } is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16); qpel_mc[!is16x16][dxy](Y, srcY, s->linesize); if (emu) { uint8_t *uvbuf = s->sc.edge_emu_buffer; s->vdsp.emulated_edge_mc(uvbuf, srcU, s->uvlinesize, s->uvlinesize, (width << 2) + 1, (height << 2) + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = uvbuf; uvbuf += 9*s->uvlinesize; s->vdsp.emulated_edge_mc(uvbuf, srcV, s->uvlinesize, s->uvlinesize, (width << 2) + 1, (height << 2) + 1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcV = uvbuf; } chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy); chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy); } static void rv34_mc_1mv(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir) { rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0, r->rdsp.put_pixels_tab, r->rdsp.put_chroma_pixels_tab); } static void rv4_weight(RV34DecContext *r) { r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0], r->tmp_b_block_y[0], r->tmp_b_block_y[1], r->weight1, r->weight2, r->s.linesize); r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1], r->tmp_b_block_uv[0], r->tmp_b_block_uv[2], r->weight1, r->weight2, r->s.uvlinesize); r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2], r->tmp_b_block_uv[1], r->tmp_b_block_uv[3], r->weight1, r->weight2, r->s.uvlinesize); } static void rv34_mc_2mv(RV34DecContext *r, const int block_type) { int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192; rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted, r->rdsp.put_pixels_tab, r->rdsp.put_chroma_pixels_tab); if(!weighted){ rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0, r->rdsp.avg_pixels_tab, r->rdsp.avg_chroma_pixels_tab); }else{ rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1, r->rdsp.put_pixels_tab, r->rdsp.put_chroma_pixels_tab); rv4_weight(r); } } static void rv34_mc_2mv_skip(RV34DecContext *r) { int i, j; int weighted = !r->rv30 && r->weight1 != 8192; for(j = 0; j < 2; j++) for(i = 0; i < 2; i++){ rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30, weighted, r->rdsp.put_pixels_tab, r->rdsp.put_chroma_pixels_tab); rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30, weighted, weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab, weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab); } if(weighted) rv4_weight(r); } /** number of motion vectors in each macroblock type */ static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 }; /** * Decode motion vector differences * and perform motion vector reconstruction and motion compensation. */ static int rv34_decode_mv(RV34DecContext *r, int block_type) { MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; int i, j, k, l; int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride; int next_bt; memset(r->dmv, 0, sizeof(r->dmv)); for(i = 0; i < num_mvs[block_type]; i++){ r->dmv[i][0] = get_interleaved_se_golomb(gb); r->dmv[i][1] = get_interleaved_se_golomb(gb); if (r->dmv[i][0] == INVALID_VLC || r->dmv[i][1] == INVALID_VLC) { r->dmv[i][0] = r->dmv[i][1] = 0; return AVERROR_INVALIDDATA; } } switch(block_type){ case RV34_MB_TYPE_INTRA: case RV34_MB_TYPE_INTRA16x16: ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride); return 0; case RV34_MB_SKIP: if(s->pict_type == AV_PICTURE_TYPE_P){ ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride); rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0); break; } case RV34_MB_B_DIRECT: //surprisingly, it uses motion scheme from next reference frame /* wait for the current mb row to be finished */ if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0); next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride]; if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){ ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride); ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride); }else for(j = 0; j < 2; j++) for(i = 0; i < 2; i++) for(k = 0; k < 2; k++) for(l = 0; l < 2; l++) s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]); if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC rv34_mc_2mv(r, block_type); else rv34_mc_2mv_skip(r); ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride); break; case RV34_MB_P_16x16: case RV34_MB_P_MIX16x16: rv34_pred_mv(r, block_type, 0, 0); rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0); break; case RV34_MB_B_FORWARD: case RV34_MB_B_BACKWARD: r->dmv[1][0] = r->dmv[0][0]; r->dmv[1][1] = r->dmv[0][1]; if(r->rv30) rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD); else rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD); rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD); break; case RV34_MB_P_16x8: case RV34_MB_P_8x16: rv34_pred_mv(r, block_type, 0, 0); rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1); if(block_type == RV34_MB_P_16x8){ rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0); rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0); } if(block_type == RV34_MB_P_8x16){ rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0); rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0); } break; case RV34_MB_B_BIDIR: rv34_pred_mv_b (r, block_type, 0); rv34_pred_mv_b (r, block_type, 1); rv34_mc_2mv (r, block_type); break; case RV34_MB_P_8x8: for(i=0;i< 4;i++){ rv34_pred_mv(r, block_type, i, i); rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0); } break; } return 0; } /** @} */ // mv group /** * @name Macroblock reconstruction functions * @{ */ /** mapping of RV30/40 intra prediction types to standard H.264 types */ static const int ittrans[9] = { DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED, VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED, }; /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */ static const int ittrans16[4] = { DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8, }; /** * Perform 4x4 intra prediction. */ static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right) { uint8_t *prev = dst - stride + 4; uint32_t topleft; if(!up && !left) itype = DC_128_PRED; else if(!up){ if(itype == VERT_PRED) itype = HOR_PRED; if(itype == DC_PRED) itype = LEFT_DC_PRED; }else if(!left){ if(itype == HOR_PRED) itype = VERT_PRED; if(itype == DC_PRED) itype = TOP_DC_PRED; if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN; } if(!down){ if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN; if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN; if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN; } if(!right && up){ topleft = dst[-stride + 3] * 0x01010101u; prev = (uint8_t*)&topleft; } r->h.pred4x4[itype](dst, prev, stride); } static inline int adjust_pred16(int itype, int up, int left) { if(!up && !left) itype = DC_128_PRED8x8; else if(!up){ if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8; if(itype == VERT_PRED8x8) itype = HOR_PRED8x8; if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8; }else if(!left){ if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8; if(itype == HOR_PRED8x8) itype = VERT_PRED8x8; if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8; } return itype; } static inline void rv34_process_block(RV34DecContext *r, uint8_t *pdst, int stride, int fc, int sc, int q_dc, int q_ac) { MpegEncContext *s = &r->s; int16_t *ptr = s->block[0]; int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs, fc, sc, q_dc, q_ac, q_ac); if(has_ac){ r->rdsp.rv34_idct_add(pdst, stride, ptr); }else{ r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]); ptr[0] = 0; } } static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp) { LOCAL_ALIGNED_16(int16_t, block16, [16]); MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ], q_ac = rv34_qscale_tab[s->qscale]; uint8_t *dst = s->dest[0]; int16_t *ptr = s->block[0]; int i, j, itype, has_ac; memset(block16, 0, 16 * sizeof(*block16)); has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac); if(has_ac) r->rdsp.rv34_inv_transform(block16); else r->rdsp.rv34_inv_transform_dc(block16); itype = ittrans16[intra_types[0]]; itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]); r->h.pred16x16[itype](dst, s->linesize); for(j = 0; j < 4; j++){ for(i = 0; i < 4; i++, cbp >>= 1){ int dc = block16[i + j*4]; if(cbp & 1){ has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac); }else has_ac = 0; if(has_ac){ ptr[0] = dc; r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr); }else r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc); } dst += 4*s->linesize; } itype = ittrans16[intra_types[0]]; if(itype == PLANE_PRED8x8) itype = DC_PRED8x8; itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]); q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]]; q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]; for(j = 1; j < 3; j++){ dst = s->dest[j]; r->h.pred8x8[itype](dst, s->uvlinesize); for(i = 0; i < 4; i++, cbp >>= 1){ uint8_t *pdst; if(!(cbp & 1)) continue; pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize; rv34_process_block(r, pdst, s->uvlinesize, r->chroma_vlc, 1, q_dc, q_ac); } } } static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp) { MpegEncContext *s = &r->s; uint8_t *dst = s->dest[0]; int avail[6*8] = {0}; int i, j, k; int idx, q_ac, q_dc; // Set neighbour information. if(r->avail_cache[1]) avail[0] = 1; if(r->avail_cache[2]) avail[1] = avail[2] = 1; if(r->avail_cache[3]) avail[3] = avail[4] = 1; if(r->avail_cache[4]) avail[5] = 1; if(r->avail_cache[5]) avail[8] = avail[16] = 1; if(r->avail_cache[9]) avail[24] = avail[32] = 1; q_ac = rv34_qscale_tab[s->qscale]; for(j = 0; j < 4; j++){ idx = 9 + j*8; for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){ rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]); avail[idx] = 1; if(!(cbp & 1)) continue; rv34_process_block(r, dst, s->linesize, r->luma_vlc, 0, q_ac, q_ac); } dst += s->linesize * 4 - 4*4; intra_types += r->intra_types_stride; } intra_types -= r->intra_types_stride * 4; q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]]; q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]; for(k = 0; k < 2; k++){ dst = s->dest[1+k]; fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4); for(j = 0; j < 2; j++){ int* acache = r->avail_cache + 6 + j*4; for(i = 0; i < 2; i++, cbp >>= 1, acache++){ int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]]; rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]); acache[0] = 1; if(!(cbp&1)) continue; rv34_process_block(r, dst + 4*i, s->uvlinesize, r->chroma_vlc, 1, q_dc, q_ac); } dst += 4*s->uvlinesize; } } } static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step) { int d; d = motion_val[0][0] - motion_val[-step][0]; if(d < -3 || d > 3) return 1; d = motion_val[0][1] - motion_val[-step][1]; if(d < -3 || d > 3) return 1; return 0; } static int rv34_set_deblock_coef(RV34DecContext *r) { MpegEncContext *s = &r->s; int hmvmask = 0, vmvmask = 0, i, j; int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride; int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx]; for(j = 0; j < 16; j += 8){ for(i = 0; i < 2; i++){ if(is_mv_diff_gt_3(motion_val + i, 1)) vmvmask |= 0x11 << (j + i*2); if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride)) hmvmask |= 0x03 << (j + i*2); } motion_val += s->b8_stride; } if(s->first_slice_line) hmvmask &= ~0x000F; if(!s->mb_x) vmvmask &= ~0x1111; if(r->rv30){ //RV30 marks both subblocks on the edge for filtering vmvmask |= (vmvmask & 0x4444) >> 1; hmvmask |= (hmvmask & 0x0F00) >> 4; if(s->mb_x) r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3; if(!s->first_slice_line) r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12; } return hmvmask | vmvmask; } static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types) { MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; uint8_t *dst = s->dest[0]; int16_t *ptr = s->block[0]; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp, cbp2; int q_dc, q_ac, has_ac; int i, j; int dist; // Calculate which neighbours are available. Maybe it's worth optimizing too. memset(r->avail_cache, 0, sizeof(r->avail_cache)); fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4); dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width; if(s->mb_x && dist) r->avail_cache[5] = r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1]; if(dist >= s->mb_width) r->avail_cache[2] = r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride]; if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1) r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1]; if(s->mb_x && dist > s->mb_width) r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1]; s->qscale = r->si.quant; cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types); r->cbp_luma [mb_pos] = cbp; r->cbp_chroma[mb_pos] = cbp >> 16; r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos]; s->current_picture_ptr->qscale_table[mb_pos] = s->qscale; if(cbp == -1) return -1; if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){ if(r->is16) rv34_output_i16x16(r, intra_types, cbp); else rv34_output_intra(r, intra_types, cbp); return 0; } if(r->is16){ // Only for RV34_MB_P_MIX16x16 LOCAL_ALIGNED_16(int16_t, block16, [16]); memset(block16, 0, 16 * sizeof(*block16)); q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ]; q_ac = rv34_qscale_tab[s->qscale]; if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac)) r->rdsp.rv34_inv_transform(block16); else r->rdsp.rv34_inv_transform_dc(block16); q_ac = rv34_qscale_tab[s->qscale]; for(j = 0; j < 4; j++){ for(i = 0; i < 4; i++, cbp >>= 1){ int dc = block16[i + j*4]; if(cbp & 1){ has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac); }else has_ac = 0; if(has_ac){ ptr[0] = dc; r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr); }else r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc); } dst += 4*s->linesize; } r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1); }else{ q_ac = rv34_qscale_tab[s->qscale]; for(j = 0; j < 4; j++){ for(i = 0; i < 4; i++, cbp >>= 1){ if(!(cbp & 1)) continue; rv34_process_block(r, dst + 4*i, s->linesize, r->luma_vlc, 0, q_ac, q_ac); } dst += 4*s->linesize; } } q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]]; q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]; for(j = 1; j < 3; j++){ dst = s->dest[j]; for(i = 0; i < 4; i++, cbp >>= 1){ uint8_t *pdst; if(!(cbp & 1)) continue; pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize; rv34_process_block(r, pdst, s->uvlinesize, r->chroma_vlc, 1, q_dc, q_ac); } } return 0; } static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types) { MpegEncContext *s = &r->s; int cbp, dist; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; // Calculate which neighbours are available. Maybe it's worth optimizing too. memset(r->avail_cache, 0, sizeof(r->avail_cache)); fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4); dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width; if(s->mb_x && dist) r->avail_cache[5] = r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1]; if(dist >= s->mb_width) r->avail_cache[2] = r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride]; if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1) r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1]; if(s->mb_x && dist > s->mb_width) r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1]; s->qscale = r->si.quant; cbp = rv34_decode_intra_mb_header(r, intra_types); r->cbp_luma [mb_pos] = cbp; r->cbp_chroma[mb_pos] = cbp >> 16; r->deblock_coefs[mb_pos] = 0xFFFF; s->current_picture_ptr->qscale_table[mb_pos] = s->qscale; if(cbp == -1) return -1; if(r->is16){ rv34_output_i16x16(r, intra_types, cbp); return 0; } rv34_output_intra(r, intra_types, cbp); return 0; } static int check_slice_end(RV34DecContext *r, MpegEncContext *s) { int bits; if(s->mb_y >= s->mb_height) return 1; if(!s->mb_num_left) return 1; if(r->s.mb_skip_run > 1) return 0; bits = get_bits_left(&s->gb); if(bits <= 0 || (bits < 8 && !show_bits(&s->gb, bits))) return 1; return 0; } static void rv34_decoder_free(RV34DecContext *r) { av_freep(&r->intra_types_hist); r->intra_types = NULL; av_freep(&r->tmp_b_block_base); av_freep(&r->mb_type); av_freep(&r->cbp_luma); av_freep(&r->cbp_chroma); av_freep(&r->deblock_coefs); } static int rv34_decoder_alloc(RV34DecContext *r) { r->intra_types_stride = r->s.mb_width * 4 + 4; r->cbp_chroma = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma)); r->cbp_luma = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma)); r->deblock_coefs = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs)); r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist)); r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type)); if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs && r->intra_types_hist && r->mb_type)) { r->s.context_reinit = 1; rv34_decoder_free(r); return AVERROR(ENOMEM); } r->intra_types = r->intra_types_hist + r->intra_types_stride * 4; return 0; } static int rv34_decoder_realloc(RV34DecContext *r) { rv34_decoder_free(r); return rv34_decoder_alloc(r); } static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size) { MpegEncContext *s = &r->s; GetBitContext *gb = &s->gb; int mb_pos, slice_type; int res; init_get_bits(&r->s.gb, buf, buf_size*8); res = r->parse_slice_header(r, gb, &r->si); if(res < 0){ av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n"); return -1; } slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I; if (slice_type != s->pict_type) { av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n"); return AVERROR_INVALIDDATA; } if (s->width != r->si.width || s->height != r->si.height) { av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n"); return AVERROR_INVALIDDATA; } r->si.end = end; s->qscale = r->si.quant; s->mb_num_left = r->si.end - r->si.start; r->s.mb_skip_run = 0; mb_pos = s->mb_x + s->mb_y * s->mb_width; if(r->si.start != mb_pos){ av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos); s->mb_x = r->si.start % s->mb_width; s->mb_y = r->si.start / s->mb_width; } memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist)); s->first_slice_line = 1; s->resync_mb_x = s->mb_x; s->resync_mb_y = s->mb_y; ff_init_block_index(s); while(!check_slice_end(r, s)) { ff_update_block_index(s, 8, 0, 1); if(r->si.type) res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4); else res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4); if(res < 0){ ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR); return -1; } if (++s->mb_x == s->mb_width) { s->mb_x = 0; s->mb_y++; ff_init_block_index(s); memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist)); memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist)); if(r->loop_filter && s->mb_y >= 2) r->loop_filter(r, s->mb_y - 2); if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) ff_thread_report_progress(&s->current_picture_ptr->tf, s->mb_y - 2, 0); } if(s->mb_x == s->resync_mb_x) s->first_slice_line=0; s->mb_num_left--; } ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END); return s->mb_y == s->mb_height; } /** @} */ // reconstruction group end /** * Initialize decoder. */ av_cold int ff_rv34_decode_init(AVCodecContext *avctx) { static AVOnce init_static_once = AV_ONCE_INIT; RV34DecContext *r = avctx->priv_data; MpegEncContext *s = &r->s; int ret; ff_mpv_decode_init(s, avctx); s->out_format = FMT_H263; avctx->pix_fmt = AV_PIX_FMT_YUV420P; avctx->has_b_frames = 1; s->low_delay = 0; if ((ret = ff_mpv_common_init(s)) < 0) return ret; ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1); if ((ret = rv34_decoder_alloc(r)) < 0) { ff_mpv_common_end(&r->s); return ret; } ff_thread_once(&init_static_once, rv34_init_tables); return 0; } int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { RV34DecContext *r = dst->priv_data, *r1 = src->priv_data; MpegEncContext * const s = &r->s, * const s1 = &r1->s; int err; if (dst == src || !s1->context_initialized) return 0; if (s->height != s1->height || s->width != s1->width || s->context_reinit) { s->height = s1->height; s->width = s1->width; if ((err = ff_mpv_common_frame_size_change(s)) < 0) return err; if ((err = rv34_decoder_realloc(r)) < 0) return err; } r->cur_pts = r1->cur_pts; r->last_pts = r1->last_pts; r->next_pts = r1->next_pts; memset(&r->si, 0, sizeof(r->si)); // Do no call ff_mpeg_update_thread_context on a partially initialized // decoder context. if (!s1->context_initialized) return 0; return ff_mpeg_update_thread_context(dst, src); } static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size) { if (n < slice_count) { return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8); } else return buf_size; } static int finish_frame(AVCodecContext *avctx, AVFrame *pict) { RV34DecContext *r = avctx->priv_data; MpegEncContext *s = &r->s; int got_picture = 0, ret; ff_er_frame_end(&s->er, NULL); ff_mpv_frame_end(s); s->mb_num_left = 0; if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0); if (s->pict_type == AV_PICTURE_TYPE_B) { if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0) return ret; ff_print_debug_info(s, s->current_picture_ptr, pict); ff_mpv_export_qp_table(s, pict, s->current_picture_ptr, FF_MPV_QSCALE_TYPE_MPEG1); got_picture = 1; } else if (s->last_picture_ptr) { if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0) return ret; ff_print_debug_info(s, s->last_picture_ptr, pict); ff_mpv_export_qp_table(s, pict, s->last_picture_ptr, FF_MPV_QSCALE_TYPE_MPEG1); got_picture = 1; } return got_picture; } static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h) { // attempt to keep aspect during typical resolution switches if (!sar.num) sar = (AVRational){1, 1}; sar = av_mul_q(sar, av_mul_q((AVRational){new_h, new_w}, (AVRational){old_w, old_h})); return sar; } int ff_rv34_decode_frame(AVCodecContext *avctx, AVFrame *pict, int *got_picture_ptr, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; RV34DecContext *r = avctx->priv_data; MpegEncContext *s = &r->s; SliceInfo si; int i, ret; int slice_count; const uint8_t *slices_hdr = NULL; int last = 0; int faulty_b = 0; int offset; /* no supplementary picture */ if (buf_size == 0) { /* special case for last picture */ if (s->next_picture_ptr) { if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0) return ret; s->next_picture_ptr = NULL; *got_picture_ptr = 1; } return 0; } slice_count = (*buf++) + 1; slices_hdr = buf + 4; buf += 8 * slice_count; buf_size -= 1 + 8 * slice_count; offset = get_slice_offset(avctx, slices_hdr, 0, slice_count, buf_size); //parse first slice header to check whether this frame can be decoded if(offset < 0 || offset > buf_size){ av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n"); return AVERROR_INVALIDDATA; } init_get_bits(&s->gb, buf+offset, (buf_size-offset)*8); if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){ av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n"); return AVERROR_INVALIDDATA; } if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) && si.type == AV_PICTURE_TYPE_B) { av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without " "reference data.\n"); faulty_b = 1; } if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B) || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I) || avctx->skip_frame >= AVDISCARD_ALL) return avpkt->size; /* first slice */ if (si.start == 0) { if (s->mb_num_left > 0 && s->current_picture_ptr) { av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.\n", s->mb_num_left); if (!s->context_reinit) ff_er_frame_end(&s->er, NULL); ff_mpv_frame_end(s); } if (s->width != si.width || s->height != si.height || s->context_reinit) { int err; av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n", si.width, si.height); if (av_image_check_size(si.width, si.height, 0, s->avctx)) return AVERROR_INVALIDDATA; s->avctx->sample_aspect_ratio = update_sar( s->width, s->height, s->avctx->sample_aspect_ratio, si.width, si.height); s->width = si.width; s->height = si.height; err = ff_set_dimensions(s->avctx, s->width, s->height); if (err < 0) return err; if ((err = ff_mpv_common_frame_size_change(s)) < 0) return err; if ((err = rv34_decoder_realloc(r)) < 0) return err; } if (faulty_b) return AVERROR_INVALIDDATA; s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I; if (ff_mpv_frame_start(s, s->avctx) < 0) return -1; ff_mpeg_er_frame_start(s); if (!r->tmp_b_block_base) { int i; r->tmp_b_block_base = av_malloc(s->linesize * 48); if (!r->tmp_b_block_base) return AVERROR(ENOMEM); for (i = 0; i < 2; i++) r->tmp_b_block_y[i] = r->tmp_b_block_base + i * 16 * s->linesize; for (i = 0; i < 4; i++) r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize + (i >> 1) * 8 * s->uvlinesize + (i & 1) * 16; } r->cur_pts = si.pts; if (s->pict_type != AV_PICTURE_TYPE_B) { r->last_pts = r->next_pts; r->next_pts = r->cur_pts; } else { int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts); int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts); int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts); if(!refdist){ r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192; r->scaled_weight = 0; }else{ if (FFMAX(dist0, dist1) > refdist) av_log(avctx, AV_LOG_TRACE, "distance overflow\n"); r->mv_weight1 = (dist0 << 14) / refdist; r->mv_weight2 = (dist1 << 14) / refdist; if((r->mv_weight1|r->mv_weight2) & 511){ r->weight1 = r->mv_weight1; r->weight2 = r->mv_weight2; r->scaled_weight = 0; }else{ r->weight1 = r->mv_weight1 >> 9; r->weight2 = r->mv_weight2 >> 9; r->scaled_weight = 1; } } } s->mb_x = s->mb_y = 0; ff_thread_finish_setup(s->avctx); } else if (s->context_reinit) { av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames to " "reinitialize (start MB is %d).\n", si.start); return AVERROR_INVALIDDATA; } else if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) { av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame " "multithreading mode (start MB is %d).\n", si.start); return AVERROR_INVALIDDATA; } for(i = 0; i < slice_count; i++){ int offset = get_slice_offset(avctx, slices_hdr, i , slice_count, buf_size); int offset1 = get_slice_offset(avctx, slices_hdr, i+1, slice_count, buf_size); int size; if(offset < 0 || offset > offset1 || offset1 > buf_size){ av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n"); break; } size = offset1 - offset; r->si.end = s->mb_width * s->mb_height; s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start; if(i+1 < slice_count){ int offset2 = get_slice_offset(avctx, slices_hdr, i+2, slice_count, buf_size); if (offset2 < offset1 || offset2 > buf_size) { av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n"); break; } init_get_bits(&s->gb, buf+offset1, (buf_size-offset1)*8); if(r->parse_slice_header(r, &r->s.gb, &si) < 0){ size = offset2 - offset; }else r->si.end = si.start; } av_assert0 (size >= 0 && size <= buf_size - offset); last = rv34_decode_slice(r, r->si.end, buf + offset, size); if(last) break; } if (s->current_picture_ptr) { if (last) { if(r->loop_filter) r->loop_filter(r, s->mb_height - 1); ret = finish_frame(avctx, pict); if (ret < 0) return ret; *got_picture_ptr = ret; } else if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) { av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n"); /* always mark the current frame as finished, frame-mt supports * only complete frames */ ff_er_frame_end(&s->er, NULL); ff_mpv_frame_end(s); s->mb_num_left = 0; ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0); return AVERROR_INVALIDDATA; } } return avpkt->size; } av_cold int ff_rv34_decode_end(AVCodecContext *avctx) { RV34DecContext *r = avctx->priv_data; ff_mpv_common_end(&r->s); rv34_decoder_free(r); return 0; }