/* * RKA decoder * Copyright (c) 2023 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/channel_layout.h" #include "libavutil/intreadwrite.h" #include "avcodec.h" #include "codec_internal.h" #include "bytestream.h" #include "decode.h" typedef struct ACoder { GetByteContext gb; uint32_t low, high; uint32_t value; } ACoder; typedef struct FiltCoeffs { int32_t coeffs[257]; unsigned size; } FiltCoeffs; typedef struct Model64 { uint32_t zero[2]; uint32_t sign[2]; unsigned size; int bits; uint16_t val4[65]; uint16_t val1[65]; } Model64; typedef struct AdaptiveModel { int last; int total; int buf_size; int16_t sum; uint16_t aprob0; uint16_t aprob1; uint16_t *prob[2]; } AdaptiveModel; typedef struct ChContext { int cmode; int cmode2; int last_nb_decoded; unsigned srate_pad; unsigned pos_idx; AdaptiveModel *filt_size; AdaptiveModel *filt_bits; uint32_t *bprob[2]; AdaptiveModel position; AdaptiveModel fshift; AdaptiveModel nb_segments; AdaptiveModel coeff_bits[11]; Model64 mdl64[4][11]; int32_t buf0[131072+2560]; int32_t buf1[131072+2560]; } ChContext; typedef struct RKAContext { AVClass *class; ACoder ac; ChContext ch[2]; int bps; int align; int channels; int correlated; int frame_samples; int last_nb_samples; uint32_t total_nb_samples; uint32_t samples_left; uint32_t bprob[2][257]; AdaptiveModel filt_size; AdaptiveModel filt_bits; } RKAContext; static int adaptive_model_init(AdaptiveModel *am, int buf_size) { am->buf_size = buf_size; am->sum = 2000; am->aprob0 = 0; am->aprob1 = 0; am->total = 0; if (!am->prob[0]) am->prob[0] = av_malloc_array(buf_size + 5, sizeof(*am->prob[0])); if (!am->prob[1]) am->prob[1] = av_malloc_array(buf_size + 5, sizeof(*am->prob[1])); if (!am->prob[0] || !am->prob[1]) return AVERROR(ENOMEM); memset(am->prob[0], 0, (buf_size + 5) * sizeof(*am->prob[0])); memset(am->prob[1], 0, (buf_size + 5) * sizeof(*am->prob[1])); return 0; } static void adaptive_model_free(AdaptiveModel *am) { av_freep(&am->prob[0]); av_freep(&am->prob[1]); } static av_cold int rka_decode_init(AVCodecContext *avctx) { RKAContext *s = avctx->priv_data; int cmode; if (avctx->extradata_size < 16) return AVERROR_INVALIDDATA; s->bps = avctx->bits_per_raw_sample = avctx->extradata[13]; switch (s->bps) { case 8: avctx->sample_fmt = AV_SAMPLE_FMT_U8P; break; case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break; default: return AVERROR_INVALIDDATA; } av_channel_layout_uninit(&avctx->ch_layout); s->channels = avctx->ch_layout.nb_channels = avctx->extradata[12]; if (s->channels < 1 || s->channels > 2) return AVERROR_INVALIDDATA; s->align = (s->channels * (avctx->bits_per_raw_sample >> 3)); s->samples_left = s->total_nb_samples = (AV_RL32(avctx->extradata + 4)) / s->align; s->frame_samples = 131072 / s->align; s->last_nb_samples = s->total_nb_samples % s->frame_samples; s->correlated = avctx->extradata[15] & 1; cmode = avctx->extradata[14] & 0xf; if ((avctx->extradata[15] & 4) != 0) cmode = -cmode; s->ch[0].cmode = s->ch[1].cmode = cmode < 0 ? 2 : cmode; s->ch[0].cmode2 = cmode < 0 ? FFABS(cmode) : 0; s->ch[1].cmode2 = cmode < 0 ? FFABS(cmode) : 0; av_log(avctx, AV_LOG_DEBUG, "cmode: %d\n", cmode); return 0; } static void model64_init(Model64 *m, unsigned bits) { unsigned x; m->bits = bits; m->size = 64; m->zero[0] = 1; x = (1 << (bits >> 1)) + 3; x = FFMIN(x, 20); m->zero[1] = x; m->sign[0] = 1; m->sign[1] = 1; for (int i = 0; i < FF_ARRAY_ELEMS(m->val4); i++) { m->val4[i] = 4; m->val1[i] = 1; } } static int chctx_init(RKAContext *s, ChContext *c, int sample_rate, int bps) { int ret; memset(c->buf0, 0, sizeof(c->buf0)); memset(c->buf1, 0, sizeof(c->buf1)); c->filt_size = &s->filt_size; c->filt_bits = &s->filt_bits; c->bprob[0] = s->bprob[0]; c->bprob[1] = s->bprob[1]; c->srate_pad = ((int64_t)sample_rate << 13) / 44100 & 0xFFFFFFFCU; c->pos_idx = 1; for (int i = 0; i < FF_ARRAY_ELEMS(s->bprob[0]); i++) c->bprob[0][i] = c->bprob[1][i] = 1; for (int i = 0; i < 11; i++) { ret = adaptive_model_init(&c->coeff_bits[i], 32); if (ret < 0) return ret; model64_init(&c->mdl64[0][i], i); model64_init(&c->mdl64[1][i], i); model64_init(&c->mdl64[2][i], i+1); model64_init(&c->mdl64[3][i], i+1); } ret = adaptive_model_init(c->filt_size, 256); if (ret < 0) return ret; ret = adaptive_model_init(c->filt_bits, 16); if (ret < 0) return ret; ret = adaptive_model_init(&c->position, 16); if (ret < 0) return ret; ret = adaptive_model_init(&c->nb_segments, 8); if (ret < 0) return ret; return adaptive_model_init(&c->fshift, 32); } static void init_acoder(ACoder *ac) { ac->low = 0x0; ac->high = 0xffffffff; ac->value = bytestream2_get_be32(&ac->gb); } static int ac_decode_bool(ACoder *ac, int freq1, int freq2) { unsigned help, add, high, value; int low; low = ac->low; help = ac->high / (unsigned)(freq2 + freq1); value = ac->value; add = freq1 * help; ac->high = help; if (value - low >= add) { ac->low = low = add + low; ac->high = high = freq2 * help; while (1) { if ((low ^ (high + low)) > 0xFFFFFF) { if (high > 0xFFFF) return 1; ac->high = (uint16_t)-(int16_t)low; } if (bytestream2_get_bytes_left(&ac->gb) <= 0) break; ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8); ac->high = high = ac->high << 8; low = ac->low = ac->low << 8; } return -1; } ac->high = add; while (1) { if ((low ^ (add + low)) > 0xFFFFFF) { if (add > 0xFFFF) return 0; ac->high = (uint16_t)-(int16_t)low; } if (bytestream2_get_bytes_left(&ac->gb) <= 0) break; ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8); ac->high = add = ac->high << 8; low = ac->low = ac->low << 8; } return -1; } static int decode_bool(ACoder *ac, ChContext *c, int idx) { uint32_t x; int b; x = c->bprob[0][idx]; if (x + c->bprob[1][idx] > 4096) { c->bprob[0][idx] = (x >> 1) + 1; c->bprob[1][idx] = (c->bprob[1][idx] >> 1) + 1; } b = ac_decode_bool(ac, c->bprob[0][idx], c->bprob[1][idx]); if (b < 0) return b; c->bprob[b][idx]++; return b; } static int ac_get_freq(ACoder *ac, unsigned freq, int *result) { uint32_t new_high; if (freq == 0) return -1; new_high = ac->high / freq; ac->high = new_high; if (new_high == 0) return -1; *result = (ac->value - ac->low) / new_high; return 0; } static int ac_update(ACoder *ac, int freq, int mul) { uint32_t low, high; low = ac->low = ac->high * freq + ac->low; high = ac->high = ac->high * mul; while (1) { if (((high + low) ^ low) > 0xffffff) { if (high > 0xffff) return 0; ac->high = (uint16_t)-(int16_t)low; } if (bytestream2_get_bytes_left(&ac->gb) <= 0) break; ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb); low = ac->low = ac->low << 8; high = ac->high = ac->high << 8; } return -1; } static void amdl_update_prob(AdaptiveModel *am, int val, int diff) { am->aprob0 += diff; if (val <= 0) { am->prob[0][0] += diff; } else { do { am->prob[0][val] += diff; val += (val & -val); } while (val < am->buf_size); } } static void update_ch_subobj(AdaptiveModel *am) { int idx2, idx = am->buf_size - 1; if (idx >= 0) { do { uint16_t *prob = am->prob[0]; int diff, prob_idx = prob[idx]; idx2 = idx - 1; if (idx > 0) { int idx3 = idx - 1; if ((idx2 & idx) != idx2) { do { prob_idx -= prob[idx3]; idx3 &= idx3 - 1; } while ((idx2 & idx) != idx3); } } diff = ((prob_idx > 0) - prob_idx) >> 1; amdl_update_prob(am, idx, diff); idx--; } while (idx2 >= 0); } if (am->sum < 8000) am->sum += 200; am->aprob1 = (am->aprob1 + 1) >> 1; } static int amdl_decode_int(AdaptiveModel *am, ACoder *ac, unsigned *dst, unsigned size) { unsigned freq, size2, val, mul; int j; size = FFMIN(size, am->buf_size - 1); if (am->aprob0 >= am->sum) update_ch_subobj(am); if (am->aprob1 && (am->total == am->buf_size || ac_decode_bool(ac, am->aprob0, am->aprob1) == 0)) { if (am->total <= 1) { dst[0] = am->last; amdl_update_prob(am, dst[0], 1); return 0; } if (size == am->buf_size - 1) { freq = am->aprob0; } else { freq = am->prob[0][0]; for (int j = size; j > 0; j &= (j - 1) ) freq += am->prob[0][j]; } ac_get_freq(ac, freq, &freq); size2 = am->buf_size >> 1; val = am->prob[0][0]; if (freq >= val) { int sum = 0; for (j = freq - val; size2; size2 >>= 1) { unsigned v = am->prob[0][size2 + sum]; if (j >= v) { sum += size2; j -= v; } } freq -= j; val = sum + 1; } else { freq = 0; val = 0; } dst[0] = val; mul = am->prob[0][val]; if (val > 0) { for (int k = val - 1; (val & (val - 1)) != k; k &= k - 1) mul -= am->prob[0][k]; } ac_update(ac, freq, mul); amdl_update_prob(am, dst[0], 1); return 0; } am->aprob1++; if (size == am->buf_size - 1) { ac_get_freq(ac, am->buf_size - am->total, &val); } else { freq = 1; for (dst[0] = 0; dst[0] < size; dst[0]++) { if (!am->prob[1][dst[0]]) freq++; } ac_get_freq(ac, freq, &val); } freq = 0; dst[0] = 0; if (val > 0 && am->buf_size > 0) { for (dst[0] = 0; dst[0] < size & freq < val; dst[0]++) { if (!am->prob[1][dst[0]]) freq++; } } if (am->prob[1][dst[0]]) { do { val = dst[0]++; } while (val + 1 < am->buf_size && am->prob[1][val + 1]); } ac_update(ac, freq, 1); am->prob[1][dst[0]]++; am->total++; amdl_update_prob(am, dst[0], 1); am->last = dst[0]; return 0; } static int decode_filt_coeffs(RKAContext *s, ChContext *ctx, ACoder *ac, FiltCoeffs *dst) { unsigned val, bits; int idx = 0; if (amdl_decode_int(ctx->filt_size, ac, &dst->size, 256) < 0) return -1; if (dst->size == 0) return 0; if (amdl_decode_int(ctx->filt_bits, ac, &bits, 10) < 0) return -1; do { if (((idx == 8) || (idx == 20)) && (0 < bits)) bits--; if (bits > 10) return -1; if (amdl_decode_int(&ctx->coeff_bits[bits], ac, &val, 31) < 0) return -1; if (val == 31) { ac_get_freq(ac, 65536, &val); ac_update(ac, val, 1); } if (val == 0) { dst->coeffs[idx++] = 0; } else { unsigned freq = 0; int sign; if (bits > 0) { ac_get_freq(ac, 1 << bits, &freq); ac_update(ac, freq, 1); } dst->coeffs[idx] = freq + 1 + ((val - 1U) << bits); sign = decode_bool(ac, ctx, idx); if (sign < 0) return -1; if (sign == 1) dst->coeffs[idx] = -dst->coeffs[idx]; idx++; } } while (idx < dst->size); return 0; } static int ac_dec_bit(ACoder *ac) { uint32_t high, low; low = ac->low; ac->high = high = ac->high >> 1; if (ac->value - low < high) { do { if (((high + low) ^ low) > 0xffffff) { if (high > 0xffff) return 0; ac->high = (uint16_t)-(int16_t)low; } if (bytestream2_get_bytes_left(&ac->gb) <= 0) break; ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb); ac->high = high = ac->high << 8; ac->low = low = ac->low << 8; } while (1); return -1; } ac->low = low = low + high; do { if (((high + low) ^ low) > 0xffffff) { if (high > 0xffff) return 1; ac->high = (uint16_t)-(int16_t)low; } if (bytestream2_get_bytes_left(&ac->gb) <= 0) break; ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb); ac->high = high = ac->high << 8; ac->low = low = ac->low << 8; } while (1); return -1; } static int mdl64_decode(ACoder *ac, Model64 *ctx, int *dst) { int sign, idx, bits; unsigned val = 0; if (ctx->zero[0] + ctx->zero[1] > 4000U) { ctx->zero[0] = (ctx->zero[0] >> 1) + 1; ctx->zero[1] = (ctx->zero[1] >> 1) + 1; } if (ctx->sign[0] + ctx->sign[1] > 4000U) { ctx->sign[0] = (ctx->sign[0] >> 1) + 1; ctx->sign[1] = (ctx->sign[1] >> 1) + 1; } sign = ac_decode_bool(ac, ctx->zero[0], ctx->zero[1]); if (sign == 0) { ctx->zero[0] += 2; dst[0] = 0; return 0; } else if (sign < 0) { return -1; } ctx->zero[1] += 2; sign = ac_decode_bool(ac, ctx->sign[0], ctx->sign[1]); if (sign < 0) return -1; ctx->sign[sign]++; bits = ctx->bits; if (bits > 0) { if (bits < 13) { ac_get_freq(ac, 1 << bits, &val); ac_update(ac, val, 1); } else { int hbits = bits / 2; ac_get_freq(ac, 1 << hbits, &val); ac_update(ac, val, 1); ac_get_freq(ac, 1 << (ctx->bits - (hbits)), &bits); ac_update(ac, val, 1); val += (bits << hbits); } } bits = ctx->size; idx = 0; if (bits >= 0) { do { uint16_t *val4 = ctx->val4; int b; if (val4[idx] + ctx->val1[idx] > 2000U) { val4[idx] = (val4[idx] >> 1) + 1; ctx->val1[idx] = (ctx->val1[idx] >> 1) + 1; } b = ac_decode_bool(ac, ctx->val4[idx], ctx->val1[idx]); if (b == 1) { ctx->val1[idx] += 4; break; } else if (b < 0) { return -1; } ctx->val4[idx] += 4; idx++; } while (idx <= ctx->size); bits = ctx->size; if (idx <= bits) { dst[0] = val + 1 + (idx << ctx->bits); if (sign) dst[0] = -dst[0]; return 0; } } bits++; while (ac_dec_bit(ac) == 0) bits += 64; ac_get_freq(ac, 64, &idx); ac_update(ac, idx, 1); idx += bits; dst[0] = val + 1 + (idx << ctx->bits); if (sign) dst[0] = -dst[0]; return 0; } static const uint8_t tab[16] = { 0, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; static int decode_filter(RKAContext *s, ChContext *ctx, ACoder *ac, int off, unsigned size) { FiltCoeffs filt; Model64 *mdl64; int m = 0, split, val, last_val = 0, ret; unsigned idx = 3, bits = 0; if (ctx->cmode == 0) { if (amdl_decode_int(&ctx->fshift, ac, &bits, 15) < 0) return -1; bits &= 31U; } ret = decode_filt_coeffs(s, ctx, ac, &filt); if (ret < 0) return ret; if (size < 512) split = size / 2; else split = size >> 4; if (size <= 1) return 0; for (int x = 0; x < size;) { if (amdl_decode_int(&ctx->position, ac, &idx, 10) < 0) return -1; idx = (ctx->pos_idx + idx) % 11; ctx->pos_idx = idx; for (int y = 0; y < FFMIN(split, size - x); y++, off++) { int midx, shift = idx, *src, sum = 16; if (off >= FF_ARRAY_ELEMS(ctx->buf0)) return -1; midx = FFABS(last_val) >> shift; if (midx >= 15) { mdl64 = &ctx->mdl64[3][idx]; } else if (midx >= 7) { mdl64 = &ctx->mdl64[2][idx]; } else if (midx >= 4) { mdl64 = &ctx->mdl64[1][idx]; } else { mdl64 = &ctx->mdl64[0][idx]; } ret = mdl64_decode(ac, mdl64, &val); if (ret < 0) return -1; last_val = val; src = &ctx->buf1[off + -1]; for (int i = 0; i < filt.size && i < 15; i++) sum += filt.coeffs[i] * (unsigned)src[-i]; sum = sum * 2U; for (int i = 15; i < filt.size; i++) sum += filt.coeffs[i] * (unsigned)src[-i]; sum = sum >> 6; if (ctx->cmode == 0) { if (bits == 0) { ctx->buf1[off] = sum + val; } else { ctx->buf1[off] = (val + (sum >> bits)) * (1 << bits) + (((1U << bits) - 1U) & ctx->buf1[off + -1]); } ctx->buf0[off] = ctx->buf1[off] + ctx->buf0[off + -1]; } else { val *= 1U << ctx->cmode; sum += ctx->buf0[off + -1] + val; switch (s->bps) { case 16: sum = av_clip_int16(sum); break; case 8: sum = av_clip_int8(sum); break; } ctx->buf1[off] = sum - ctx->buf0[off + -1]; ctx->buf0[off] = sum; m += FFABS(ctx->buf1[off]); } } if (ctx->cmode2 != 0) { int sum = 0; for (int i = (m << 6) / split; i > 0; i = i >> 1) sum++; sum = sum - (ctx->cmode2 + 7); ctx->cmode = FFMAX(sum, tab[ctx->cmode2]); } x += split; } return 0; } static int decode_samples(AVCodecContext *avctx, ACoder *ac, ChContext *ctx, int offset) { RKAContext *s = avctx->priv_data; int segment_size, offset2, mode, ret; ret = amdl_decode_int(&ctx->nb_segments, ac, &mode, 5); if (ret < 0) return ret; if (mode == 5) { ret = ac_get_freq(ac, ctx->srate_pad >> 2, &segment_size); if (ret < 0) return ret; ac_update(ac, segment_size, 1); segment_size *= 4; ret = decode_filter(s, ctx, ac, offset, segment_size); if (ret < 0) return ret; } else { segment_size = ctx->srate_pad; if (mode) { if (mode > 2) { ret = decode_filter(s, ctx, ac, offset, segment_size / 4); if (ret < 0) return ret; offset2 = segment_size / 4 + offset; ret = decode_filter(s, ctx, ac, offset2, segment_size / 4); if (ret < 0) return ret; offset2 = segment_size / 4 + offset2; } else { ret = decode_filter(s, ctx, ac, offset, segment_size / 2); if (ret < 0) return ret; offset2 = segment_size / 2 + offset; } if (mode & 1) { ret = decode_filter(s, ctx, ac, offset2, segment_size / 2); if (ret < 0) return ret; } else { ret = decode_filter(s, ctx, ac, offset2, segment_size / 4); if (ret < 0) return ret; ret = decode_filter(s, ctx, ac, segment_size / 4 + offset2, segment_size / 4); if (ret < 0) return ret; } } else { ret = decode_filter(s, ctx, ac, offset, ctx->srate_pad); if (ret < 0) return ret; } } return segment_size; } static int decode_ch_samples(AVCodecContext *avctx, ChContext *c) { RKAContext *s = avctx->priv_data; ACoder *ac = &s->ac; int nb_decoded = 0; if (bytestream2_get_bytes_left(&ac->gb) <= 0) return 0; memmove(c->buf0, &c->buf0[c->last_nb_decoded], 2560 * sizeof(*c->buf0)); memmove(c->buf1, &c->buf1[c->last_nb_decoded], 2560 * sizeof(*c->buf1)); nb_decoded = decode_samples(avctx, ac, c, 2560); if (nb_decoded < 0) return nb_decoded; c->last_nb_decoded = nb_decoded; return nb_decoded; } static int rka_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt) { RKAContext *s = avctx->priv_data; ACoder *ac = &s->ac; int ret; bytestream2_init(&ac->gb, avpkt->data, avpkt->size); init_acoder(ac); for (int ch = 0; ch < s->channels; ch++) { ret = chctx_init(s, &s->ch[ch], avctx->sample_rate, avctx->bits_per_raw_sample); if (ret < 0) return ret; } frame->nb_samples = s->frame_samples; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; if (s->channels == 2 && s->correlated) { int16_t *l16 = (int16_t *)frame->extended_data[0]; int16_t *r16 = (int16_t *)frame->extended_data[1]; uint8_t *l8 = frame->extended_data[0]; uint8_t *r8 = frame->extended_data[1]; for (int n = 0; n < frame->nb_samples;) { ret = decode_ch_samples(avctx, &s->ch[0]); if (ret == 0) { frame->nb_samples = n; break; } if (ret < 0 || n + ret > frame->nb_samples) return AVERROR_INVALIDDATA; ret = decode_ch_samples(avctx, &s->ch[1]); if (ret == 0) { frame->nb_samples = n; break; } if (ret < 0 || n + ret > frame->nb_samples) return AVERROR_INVALIDDATA; switch (avctx->sample_fmt) { case AV_SAMPLE_FMT_S16P: for (int i = 0; i < ret; i++) { int l = s->ch[0].buf0[2560 + i]; int r = s->ch[1].buf0[2560 + i]; l16[n + i] = (l * 2 + r + 1) >> 1; r16[n + i] = (l * 2 - r + 1) >> 1; } break; case AV_SAMPLE_FMT_U8P: for (int i = 0; i < ret; i++) { int l = s->ch[0].buf0[2560 + i]; int r = s->ch[1].buf0[2560 + i]; l8[n + i] = ((l * 2 + r + 1) >> 1) + 0x7f; r8[n + i] = ((l * 2 - r + 1) >> 1) + 0x7f; } break; default: return AVERROR_INVALIDDATA; } n += ret; } } else { for (int n = 0; n < frame->nb_samples;) { for (int ch = 0; ch < s->channels; ch++) { int16_t *m16 = (int16_t *)frame->data[ch]; uint8_t *m8 = frame->data[ch]; ret = decode_ch_samples(avctx, &s->ch[ch]); if (ret == 0) { frame->nb_samples = n; break; } if (ret < 0 || n + ret > frame->nb_samples) return AVERROR_INVALIDDATA; switch (avctx->sample_fmt) { case AV_SAMPLE_FMT_S16P: for (int i = 0; i < ret; i++) { int m = s->ch[ch].buf0[2560 + i]; m16[n + i] = m; } break; case AV_SAMPLE_FMT_U8P: for (int i = 0; i < ret; i++) { int m = s->ch[ch].buf0[2560 + i]; m8[n + i] = m + 0x7f; } break; default: return AVERROR_INVALIDDATA; } } n += ret; } } *got_frame_ptr = 1; return avpkt->size; } static av_cold int rka_decode_close(AVCodecContext *avctx) { RKAContext *s = avctx->priv_data; for (int ch = 0; ch < 2; ch++) { ChContext *c = &s->ch[ch]; for (int i = 0; i < 11; i++) adaptive_model_free(&c->coeff_bits[i]); adaptive_model_free(&c->position); adaptive_model_free(&c->nb_segments); adaptive_model_free(&c->fshift); } adaptive_model_free(&s->filt_size); adaptive_model_free(&s->filt_bits); return 0; } const FFCodec ff_rka_decoder = { .p.name = "rka", CODEC_LONG_NAME("RKA (RK Audio)"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_RKA, .priv_data_size = sizeof(RKAContext), .init = rka_decode_init, .close = rka_decode_close, FF_CODEC_DECODE_CB(rka_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };