Tag:
Branch:
Tree:
fab00b0ae0
master
oldabi
release/0.10
release/0.11
release/0.5
release/0.6
release/0.7
release/0.8
release/0.9
release/1.0
release/1.1
release/1.2
release/2.0
release/2.1
release/2.2
release/2.3
release/2.4
release/2.5
release/2.6
release/2.7
release/2.8
release/3.0
release/3.1
release/3.2
release/3.3
release/3.4
release/4.0
release/4.1
release/4.2
release/4.3
release/4.4
release/5.0
release/5.1
release/6.0
release/6.1
release/7.0
release/7.1
N
ffmpeg-0.6.3
n0.10
n0.10.1
n0.10.10
n0.10.11
n0.10.12
n0.10.13
n0.10.14
n0.10.15
n0.10.16
n0.10.2
n0.10.3
n0.10.4
n0.10.5
n0.10.6
n0.10.7
n0.10.8
n0.10.9
n0.11
n0.11-dev
n0.11.1
n0.11.2
n0.11.3
n0.11.4
n0.11.5
n0.12-dev
n0.5.10
n0.5.11
n0.5.12
n0.5.13
n0.5.14
n0.5.15
n0.5.5
n0.5.6
n0.5.7
n0.5.8
n0.5.9
n0.6.4
n0.6.5
n0.6.6
n0.6.7
n0.7.1
n0.7.10
n0.7.11
n0.7.12
n0.7.13
n0.7.14
n0.7.15
n0.7.16
n0.7.17
n0.7.2
n0.7.3
n0.7.4
n0.7.5
n0.7.6
n0.7.7
n0.7.8
n0.7.9
n0.8
n0.8.1
n0.8.10
n0.8.11
n0.8.12
n0.8.13
n0.8.14
n0.8.15
n0.8.2
n0.8.3
n0.8.4
n0.8.5
n0.8.6
n0.8.7
n0.8.8
n0.8.9
n0.9
n0.9.1
n0.9.2
n0.9.3
n0.9.4
n1.0
n1.0.1
n1.0.10
n1.0.2
n1.0.3
n1.0.4
n1.0.5
n1.0.6
n1.0.7
n1.0.8
n1.0.9
n1.1
n1.1-dev
n1.1.1
n1.1.10
n1.1.11
n1.1.12
n1.1.13
n1.1.14
n1.1.15
n1.1.16
n1.1.2
n1.1.3
n1.1.4
n1.1.5
n1.1.6
n1.1.7
n1.1.8
n1.1.9
n1.2
n1.2-dev
n1.2.1
n1.2.10
n1.2.11
n1.2.12
n1.2.2
n1.2.3
n1.2.4
n1.2.5
n1.2.6
n1.2.7
n1.2.8
n1.2.9
n1.3-dev
n2.0
n2.0.1
n2.0.2
n2.0.3
n2.0.4
n2.0.5
n2.0.6
n2.0.7
n2.1
n2.1-dev
n2.1.1
n2.1.2
n2.1.3
n2.1.4
n2.1.5
n2.1.6
n2.1.7
n2.1.8
n2.2
n2.2-dev
n2.2-rc1
n2.2-rc2
n2.2.1
n2.2.10
n2.2.11
n2.2.12
n2.2.13
n2.2.14
n2.2.15
n2.2.16
n2.2.2
n2.2.3
n2.2.4
n2.2.5
n2.2.6
n2.2.7
n2.2.8
n2.2.9
n2.3
n2.3-dev
n2.3.1
n2.3.2
n2.3.3
n2.3.4
n2.3.5
n2.3.6
n2.4
n2.4-dev
n2.4.1
n2.4.10
n2.4.11
n2.4.12
n2.4.13
n2.4.14
n2.4.2
n2.4.3
n2.4.4
n2.4.5
n2.4.6
n2.4.7
n2.4.8
n2.4.9
n2.5
n2.5-dev
n2.5.1
n2.5.10
n2.5.11
n2.5.2
n2.5.3
n2.5.4
n2.5.5
n2.5.6
n2.5.7
n2.5.8
n2.5.9
n2.6
n2.6-dev
n2.6.1
n2.6.2
n2.6.3
n2.6.4
n2.6.5
n2.6.6
n2.6.7
n2.6.8
n2.6.9
n2.7
n2.7-dev
n2.7.1
n2.7.2
n2.7.3
n2.7.4
n2.7.5
n2.7.6
n2.7.7
n2.8
n2.8-dev
n2.8.1
n2.8.10
n2.8.11
n2.8.12
n2.8.13
n2.8.14
n2.8.15
n2.8.16
n2.8.17
n2.8.18
n2.8.19
n2.8.2
n2.8.20
n2.8.21
n2.8.22
n2.8.3
n2.8.4
n2.8.5
n2.8.6
n2.8.7
n2.8.8
n2.8.9
n2.9-dev
n3.0
n3.0.1
n3.0.10
n3.0.11
n3.0.12
n3.0.2
n3.0.3
n3.0.4
n3.0.5
n3.0.6
n3.0.7
n3.0.8
n3.0.9
n3.1
n3.1-dev
n3.1.1
n3.1.10
n3.1.11
n3.1.2
n3.1.3
n3.1.4
n3.1.5
n3.1.6
n3.1.7
n3.1.8
n3.1.9
n3.2
n3.2-dev
n3.2.1
n3.2.10
n3.2.11
n3.2.12
n3.2.13
n3.2.14
n3.2.15
n3.2.16
n3.2.17
n3.2.18
n3.2.19
n3.2.2
n3.2.3
n3.2.4
n3.2.5
n3.2.6
n3.2.7
n3.2.8
n3.2.9
n3.3
n3.3-dev
n3.3.1
n3.3.2
n3.3.3
n3.3.4
n3.3.5
n3.3.6
n3.3.7
n3.3.8
n3.3.9
n3.4
n3.4-dev
n3.4.1
n3.4.10
n3.4.11
n3.4.12
n3.4.13
n3.4.2
n3.4.3
n3.4.4
n3.4.5
n3.4.6
n3.4.7
n3.4.8
n3.4.9
n3.5-dev
n4.0
n4.0.1
n4.0.2
n4.0.3
n4.0.4
n4.0.5
n4.0.6
n4.1
n4.1-dev
n4.1.1
n4.1.10
n4.1.11
n4.1.2
n4.1.3
n4.1.4
n4.1.5
n4.1.6
n4.1.7
n4.1.8
n4.1.9
n4.2
n4.2-dev
n4.2.1
n4.2.10
n4.2.2
n4.2.3
n4.2.4
n4.2.5
n4.2.6
n4.2.7
n4.2.8
n4.2.9
n4.3
n4.3-dev
n4.3.1
n4.3.2
n4.3.3
n4.3.4
n4.3.5
n4.3.6
n4.3.7
n4.3.8
n4.4
n4.4-dev
n4.4.1
n4.4.2
n4.4.3
n4.4.4
n4.4.5
n4.5-dev
n5.0
n5.0.1
n5.0.2
n5.0.3
n5.1
n5.1-dev
n5.1.1
n5.1.2
n5.1.3
n5.1.4
n5.1.5
n5.1.6
n5.2-dev
n6.0
n6.0.1
n6.1
n6.1-dev
n6.1.1
n6.1.2
n6.2-dev
n7.0
n7.0.1
n7.0.2
n7.1
n7.1-dev
n7.2-dev
v0.5
v0.5.1
v0.5.2
v0.5.3
v0.6
v0.6.1
${ noResults }
23 Commits (fab00b0ae077207a9aa1fa2cea34beb6ed860452)
Author | SHA1 | Message | Date |
---|---|---|---|
|
fab00b0ae0 |
dnn_backend_native_layer_mathunary: add floor support
It can be tested with the model generated with below python script: import tensorflow as tf import os import numpy as np import imageio from tensorflow.python.framework import graph_util name = 'floor' pb_file_path = os.getcwd() if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)): os.mkdir(pb_file_path+'/{}_savemodel/'.format(name)) with tf.Session(graph=tf.Graph()) as sess: in_img = imageio.imread('detection.jpg') in_img = in_img.astype(np.float32) in_data = in_img[np.newaxis, :] input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') y_ = tf.math.floor(input_x*255)/255 y = tf.identity(y_, name='dnn_out') sess.run(tf.global_variables_initializer()) constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f: f.write(constant_graph.SerializeToString()) print("model.pb generated, please in ffmpeg path use\n \n \ python tools/python/convert.py {}_savemodel/model.pb --outdir={}_savemodel/ \n \nto generate model.model\n".format(name,name)) output = sess.run(y, feed_dict={ input_x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 {}_savemodel/tensorflow_out.md5\n \ or\n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow {}_savemodel/out_tensorflow.jpg\n \nto generate output result of tensorflow model\n".format(name, name, name, name)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 {}_savemodel/native_out.md5\n \ or \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native {}_savemodel/out_native.jpg\n \nto generate output result of native model\n".format(name, name, name, name)) Signed-off-by: Mingyu Yin <mingyu.yin@intel.com> |
5 years ago |
|
9fbdd5454b |
dnn_backend_native_layer_mathunary: add ceil support
It can be tested with the model generated with below python script: import tensorflow as tf import os import numpy as np import imageio from tensorflow.python.framework import graph_util name = 'ceil' pb_file_path = os.getcwd() if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)): os.mkdir(pb_file_path+'/{}_savemodel/'.format(name)) with tf.Session(graph=tf.Graph()) as sess: in_img = imageio.imread('detection.jpg') in_img = in_img.astype(np.float32) in_data = in_img[np.newaxis, :] input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') y = tf.math.ceil( input_x, name='dnn_out') sess.run(tf.global_variables_initializer()) constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f: f.write(constant_graph.SerializeToString()) print("model.pb generated, please in ffmpeg path use\n \n \ python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \ to generate model.model\n") output = sess.run(y, feed_dict={ input_x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \ to generate output result of tensorflow model\n") print("To verify, please ffmpeg path use\n \n \ ./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \ to generate output result of native model\n") Signed-off-by: Mingyu Yin <mingyu.yin@intel.com> Reviewed-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
c0cdeea0ee |
dnn_backend_native_layer_mathunary: add atanh support
It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') please uncomment the part you want to test x_sinh_1 = tf.sinh(x) x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0) x_cosh_1 = tf.cosh(x) x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0) x_tanh_1 = tf.tanh(x) x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0) x_asinh_1 = tf.asinh(x) x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1) x_acosh_1 = tf.add(x, 1.1) x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf) x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1) x_atanh_1 = tf.divide(x, 1.1) x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1) x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1) y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> |
5 years ago |
|
cd2e3a864d |
dnn_backend_native_layer_mathunary: add acosh support
Signed-off-by: Ting Fu <ting.fu@intel.com> |
5 years ago |
|
9d14b38d9d |
dnn_backend_native_layer_mathunary: add asinh support
Signed-off-by: Ting Fu <ting.fu@intel.com> |
5 years ago |
|
ea71e731f4 |
dnn_backend_native_layer_mathunary: add tanh support
Signed-off-by: Ting Fu <ting.fu@intel.com> |
5 years ago |
|
62fc7e3035 |
dnn_backend_native_layer_mathunary: add cosh support
Signed-off-by: Ting Fu <ting.fu@intel.com> |
5 years ago |
|
91b4037101 |
dnn_backend_native_layer_mathunary: add sinh support
Signed-off-by: Ting Fu <ting.fu@intel.com> |
5 years ago |
|
13f5613e68 |
dnn_backend_native_layer_mathunary: add atan support
It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.atan(x) x2 = tf.divide(x1, 3.1416/4) # pi/4 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
5 years ago |
|
461485feac |
dnn_backend_native_layer_mathunary: add acos support
It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.acos(x) x2 = tf.divide(x1, 3.1416/2) # pi/2 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
5 years ago |
|
486c0c419d |
dnn_backend_native_layer_mathunary: add asin support
It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.asin(x) x2 = tf.divide(x1, 3.1416/2) # pi/2 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
5 years ago |
|
22d0860c13 |
dnn_backend_native_layer_mathunary: add tan support
It can be tested with the model generated with below python scripy import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.multiply(x, 0.78) x2 = tf.tan(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
5 years ago |
|
88fb494f42 |
dnn_backend_native_layer_mathunary: add cos support
It can be tested with the model generated with below python scripy import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.multiply(x, 1.5) x2 = tf.cos(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
5 years ago |
|
0b6d3f0d83 |
dnn_backend_native_layer_mathunary: add sin support
It can be tested with the model file generated with below python scripy: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.multiply(x, 3.14) x2 = tf.sin(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
5 years ago |
|
f73cc61bf5 |
dnn_backend_native_layer_mathunary: add abs support
more math unary operations will be added here It can be tested with the model file generated with below python scripy: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.subtract(x, 0.5) x2 = tf.abs(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
71e28c5422 |
dnn/native: add native support for minimum
it can be tested with model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.minimum(0.7, x) x2 = tf.maximum(x1, 0.4) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
8ce9d88f93 |
dnn/native: add native support for divide
it can be tested with model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 2 / x z2 = 1 / z1 z3 = z2 / 0.25 + 0.3 z4 = z3 - x * 1.5 - 0.3 y = tf.identity(z4, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
ef79408e97 |
dnn/native: add native support for 'mul'
it can be tested with model file generated from above python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.5 + 0.3 * x z2 = z1 * 4 z3 = z2 - x - 2.0 y = tf.identity(z3, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
6aa7e07e7c |
dnn/native: add native support for 'add'
It can be tested with the model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.039 + x z2 = x + 0.042 z3 = z1 + z2 z4 = z3 - 0.381 z5 = z4 - x y = tf.math.maximum(z5, 0.0, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
ffa1561608 |
dnn_backend_native_layer_mathbinary: add sub support
more math binary operations will be added here Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
5 years ago |
|
dff39ea9f0 |
dnn: add tf.nn.conv2d support for native model
Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many nodes (within a scope) in the graph, it just acts like other layers. tf.nn.conv2d only creates one node in the graph, and no internal nodes such as 'kernel' are created. The format of native model file is also changed, a flag named has_bias is added, so change the version number. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com> |
6 years ago |
|
b2683c66b2 |
libavfilter/dnn: add layer maximum for native mode.
The reason to add this layer is that it is used by srcnn in vf_sr. This layer is currently ignored in native mode. After this patch, we can add multiple outputs support for native mode. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com> |
6 years ago |
|
022f50d3fe |
libavfilter/dnn: add header into native model file
Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com> |
6 years ago |