Just the presence of a hw frames context is not enough to detect whether
the transfer is an upload or a download, because hw frames mapped to
system memory will have a hw frames context attached.
D3DLOCK_READONLY properly corresponds to the absence of the write flag,
not to the presence of the read flag, while D3DLOCK_DISCARD is
equivalent to the overwrite flag.
A number of new pix_fmts* have been added to AviSynth+:
16-bit packed RGB and RGBA
10-, 12-, 14, and 16-bit YUV 4:2:0, 4:2:2, and 4:4:4
8-, 10-, 12-, 14-, and 16-bit Planar RGB
8-, 10-, 12-, 14-, and 16-bit Planar YUVA and Planar RGBA
10-, 12-, 14-, and 16-bit GRAY variants
32-bit floating point Planar YUV(A), Planar RGB(A), and GRAY
*some of which are not currently available pix_fmts here and were
not added to the demuxer due to this
Signed-off-by: Diego Biurrun <diego@biurrun.de>
Stream timebase should be set using avpriv_set_pts_info, otherwise
avctx->pkt_timebase is not correct, leading to A/V desync.
Signed-off-by: Marton Balint <cus@passwd.hu>
Reviewed-by: Stephen Hutchinson <qyot27@gmail.com>
Signed-off-by: Diego Biurrun <diego@biurrun.de>
This prevented the code from correctly exporting the rotation matrix
which caused a few samples to be displayed wrong.
Introduced in ecd2ec69ce.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
The dc-only mode is already checked to work correctly above, but this
allows benchmarking this mode for performance tuning, and allows making
sure that it actually is correctly hooked up.
Signed-off-by: Martin Storsjö <martin@martin.st>
The latter is 1 cycle faster on a cortex-53 and since the operands are
bytewise (or larger) bitmask (impossible to overflow to zero) both are
equivalent.
Since aarch64 has enough free general purpose registers use them to
branch to the appropiate storage code. 1-2 cycles faster for the
functions using loop_filter 8/16, ... on a cortex-a53. Mixed results
(up to 2 cycles faster/slower) on a cortex-a57.
In the latest git commits of libilbc developers removed WebRtc_xxx typedefs.
This commit uses int types instead. It's safe to apply also for previous
versions since WebRtc_Word16 was always a typedef of int16_t and
WebRtc_UWord16 a typedef of uint16_t.
Reviewed-by: Timothy Gu <timothygu99@gmail.com>
Signed-off-by: Diego Biurrun <diego@biurrun.de>
libavfilter/af_asyncts.c:212:9: warning: absolute value function 'labs' given an argument of type 'int64_t' (aka 'long long') but has parameter of type 'long' which may cause truncation of value [-Wabsolute-value]
This was correct for H.26[45], because libmfx uses the same values
derived from profile_idc and the constraint_set flags, but it is
wrong for other codecs.
Also avoid passing FF_LEVEL_UNKNOWN (-99) as the level, as this is
certainly invalid.
This work is sponsored by, and copyright, Google.
These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the loop filters with
16 pixels at a time. The implementation is fully templated, with
a single macro which can generate versions for both 8 and
16 pixels wide, for both 4, 8 and 16 pixels loop filters
(and the 4/8 mixed versions as well).
For the 8 pixel wide versions, it is pretty close in speed (the
v_4_8 and v_8_8 filters are the best examples of this; the h_4_8
and h_8_8 filters seem to get some gain in the load/transpose/store
part). For the 16 pixels wide ones, we get a speedup of around
1.2-1.4x compared to the 32 bit version.
Examples of runtimes vs the 32 bit version, on a Cortex A53:
ARM AArch64
vp9_loop_filter_h_4_8_neon: 144.0 127.2
vp9_loop_filter_h_8_8_neon: 207.0 182.5
vp9_loop_filter_h_16_8_neon: 415.0 328.7
vp9_loop_filter_h_16_16_neon: 672.0 558.6
vp9_loop_filter_mix2_h_44_16_neon: 302.0 203.5
vp9_loop_filter_mix2_h_48_16_neon: 365.0 305.2
vp9_loop_filter_mix2_h_84_16_neon: 365.0 305.2
vp9_loop_filter_mix2_h_88_16_neon: 376.0 305.2
vp9_loop_filter_mix2_v_44_16_neon: 193.2 128.2
vp9_loop_filter_mix2_v_48_16_neon: 246.7 218.4
vp9_loop_filter_mix2_v_84_16_neon: 248.0 218.5
vp9_loop_filter_mix2_v_88_16_neon: 302.0 218.2
vp9_loop_filter_v_4_8_neon: 89.0 88.7
vp9_loop_filter_v_8_8_neon: 141.0 137.7
vp9_loop_filter_v_16_8_neon: 295.0 272.7
vp9_loop_filter_v_16_16_neon: 546.0 453.7
The speedup vs C code in checkasm tests is around 2-7x, which is
pretty much the same as for the 32 bit version. Even if these functions
are faster than their 32 bit equivalent, the C version that we compare
to also became around 1.3-1.7x faster than the C version in 32 bit.
Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-5x.
Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
A57 gcc-5.3 neon
loop_filter_h_4_8_neon: 256.6 93.4
loop_filter_h_8_8_neon: 307.3 139.1
loop_filter_h_16_8_neon: 340.1 254.1
loop_filter_h_16_16_neon: 827.0 407.9
loop_filter_mix2_h_44_16_neon: 524.5 155.4
loop_filter_mix2_h_48_16_neon: 644.5 173.3
loop_filter_mix2_h_84_16_neon: 630.5 222.0
loop_filter_mix2_h_88_16_neon: 697.3 222.0
loop_filter_mix2_v_44_16_neon: 598.5 100.6
loop_filter_mix2_v_48_16_neon: 651.5 127.0
loop_filter_mix2_v_84_16_neon: 591.5 167.1
loop_filter_mix2_v_88_16_neon: 855.1 166.7
loop_filter_v_4_8_neon: 271.7 65.3
loop_filter_v_8_8_neon: 312.5 106.9
loop_filter_v_16_8_neon: 473.3 206.5
loop_filter_v_16_16_neon: 976.1 327.8
The speed-up compared to the C functions is 2.5 to 6 and the cortex-a57
is again 30-50% faster than the cortex-a53.
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
These are ported from the ARM version; thanks to the larger
amount of registers available, we can do the 16x16 and 32x32
transforms in slices 8 pixels wide instead of 4. This gives
a speedup of around 1.4x compared to the 32 bit version.
The fact that aarch64 doesn't have the same d/q register
aliasing makes some of the macros quite a bit simpler as well.
Examples of runtimes vs the 32 bit version, on a Cortex A53:
ARM AArch64
vp9_inv_adst_adst_4x4_add_neon: 90.0 87.7
vp9_inv_adst_adst_8x8_add_neon: 400.0 354.7
vp9_inv_adst_adst_16x16_add_neon: 2526.5 1827.2
vp9_inv_dct_dct_4x4_add_neon: 74.0 72.7
vp9_inv_dct_dct_8x8_add_neon: 271.0 256.7
vp9_inv_dct_dct_16x16_add_neon: 1960.7 1372.7
vp9_inv_dct_dct_32x32_add_neon: 11988.9 8088.3
vp9_inv_wht_wht_4x4_add_neon: 63.0 57.7
The speedup vs C code (2-4x) is smaller than in the 32 bit case,
mostly because the C code ends up significantly faster (around
1.6x faster, with GCC 5.4) when built for aarch64.
Examples of runtimes vs C on a Cortex A57 (for a slightly older version
of the patch):
A57 gcc-5.3 neon
vp9_inv_adst_adst_4x4_add_neon: 152.2 60.0
vp9_inv_adst_adst_8x8_add_neon: 948.2 288.0
vp9_inv_adst_adst_16x16_add_neon: 4830.4 1380.5
vp9_inv_dct_dct_4x4_add_neon: 153.0 58.6
vp9_inv_dct_dct_8x8_add_neon: 789.2 180.2
vp9_inv_dct_dct_16x16_add_neon: 3639.6 917.1
vp9_inv_dct_dct_32x32_add_neon: 20462.1 4985.0
vp9_inv_wht_wht_4x4_add_neon: 91.0 49.8
The asm is around factor 3-4 faster than C on the cortex-a57 and the asm
is around 30-50% faster on the a57 compared to the a53.
Signed-off-by: Martin Storsjö <martin@martin.st>
libavcodec/ratecontrol.c:120:9: warning: ISO C forbids initialization between function pointer and ‘void *’ [-Wpedantic]
libavcodec/ratecontrol.c:121:9: warning: ISO C forbids initialization between function pointer and ‘void *’ [-Wpedantic]
This work is sponsored by, and copyright, Google.
The implementation tries to have smart handling of cases
where no pixels need the full filtering for the 8/16 width
filters, skipping both calculation and writeback of the
unmodified pixels in those cases. The actual effect of this
is hard to test with checkasm though, since it tests the
full filtering, and the benefit depends on how many filtered
blocks use the shortcut.
Examples of relative speedup compared to the C version, from checkasm:
Cortex A7 A8 A9 A53
vp9_loop_filter_h_4_8_neon: 2.72 2.68 1.78 3.15
vp9_loop_filter_h_8_8_neon: 2.36 2.38 1.70 2.91
vp9_loop_filter_h_16_8_neon: 1.80 1.89 1.45 2.01
vp9_loop_filter_h_16_16_neon: 2.81 2.78 2.18 3.16
vp9_loop_filter_mix2_h_44_16_neon: 2.65 2.67 1.93 3.05
vp9_loop_filter_mix2_h_48_16_neon: 2.46 2.38 1.81 2.85
vp9_loop_filter_mix2_h_84_16_neon: 2.50 2.41 1.73 2.85
vp9_loop_filter_mix2_h_88_16_neon: 2.77 2.66 1.96 3.23
vp9_loop_filter_mix2_v_44_16_neon: 4.28 4.46 3.22 5.70
vp9_loop_filter_mix2_v_48_16_neon: 3.92 4.00 3.03 5.19
vp9_loop_filter_mix2_v_84_16_neon: 3.97 4.31 2.98 5.33
vp9_loop_filter_mix2_v_88_16_neon: 3.91 4.19 3.06 5.18
vp9_loop_filter_v_4_8_neon: 4.53 4.47 3.31 6.05
vp9_loop_filter_v_8_8_neon: 3.58 3.99 2.92 5.17
vp9_loop_filter_v_16_8_neon: 3.40 3.50 2.81 4.68
vp9_loop_filter_v_16_16_neon: 4.66 4.41 3.74 6.02
The speedup vs C code is around 2-6x. The numbers are quite
inconclusive though, since the checkasm test runs multiple filterings
on top of each other, so later rounds might end up with different
codepaths (different decisions on which filter to apply, based
on input pixel differences). Disabling the early-exit in the asm
doesn't give a fair comparison either though, since the C code
only does the necessary calcuations for each row.
Based on START_TIMER/STOP_TIMER wrapping around a few individual
functions, the speedup vs C code is around 4-9x.
This is pretty similar in runtime to the corresponding routines
in libvpx. (This is comparing vpx_lpf_vertical_16_neon,
vpx_lpf_horizontal_edge_8_neon and vpx_lpf_horizontal_edge_16_neon
to vp9_loop_filter_h_16_8_neon, vp9_loop_filter_v_16_8_neon
and vp9_loop_filter_v_16_16_neon - note that the naming of horizonal
and vertical is flipped between the libraries.)
In order to have stable, comparable numbers, the early exits in both
asm versions were disabled, forcing the full filtering codepath.
Cortex A7 A8 A9 A53
vp9_loop_filter_h_16_8_neon: 597.2 472.0 482.4 415.0
libvpx vpx_lpf_vertical_16_neon: 626.0 464.5 470.7 445.0
vp9_loop_filter_v_16_8_neon: 500.2 422.5 429.7 295.0
libvpx vpx_lpf_horizontal_edge_8_neon: 586.5 414.5 415.6 383.2
vp9_loop_filter_v_16_16_neon: 905.0 784.7 791.5 546.0
libvpx vpx_lpf_horizontal_edge_16_neon: 1060.2 751.7 743.5 685.2
Our version is consistently faster on on A7 and A53, marginally slower on
A8, and sometimes faster, sometimes slower on A9 (marginally slower in all
three tests in this particular test run).
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
For the transforms up to 8x8, we can fit all the data (including
temporaries) in registers and just do a straightforward transform
of all the data. For 16x16, we do a transform of 4x16 pixels in
4 slices, using a temporary buffer. For 32x32, we transform 4x32
pixels at a time, in two steps of 4x16 pixels each.
Examples of relative speedup compared to the C version, from checkasm:
Cortex A7 A8 A9 A53
vp9_inv_adst_adst_4x4_add_neon: 3.39 5.83 4.17 4.01
vp9_inv_adst_adst_8x8_add_neon: 3.79 4.86 4.23 3.98
vp9_inv_adst_adst_16x16_add_neon: 3.33 4.36 4.11 4.16
vp9_inv_dct_dct_4x4_add_neon: 4.06 6.16 4.59 4.46
vp9_inv_dct_dct_8x8_add_neon: 4.61 6.01 4.98 4.86
vp9_inv_dct_dct_16x16_add_neon: 3.35 3.44 3.36 3.79
vp9_inv_dct_dct_32x32_add_neon: 3.89 3.50 3.79 4.42
vp9_inv_wht_wht_4x4_add_neon: 3.22 5.13 3.53 3.77
Thus, the speedup vs C code is around 3-6x.
This is mostly marginally faster than the corresponding routines
in libvpx on most cores, tested with their 32x32 idct (compared to
vpx_idct32x32_1024_add_neon). These numbers are slightly in libvpx's
favour since their version doesn't clear the input buffer like ours
do (although the effect of that on the total runtime probably is
negligible.)
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_32x32_add_neon: 18436.8 16874.1 14235.1 11988.9
libvpx vpx_idct32x32_1024_add_neon 20789.0 13344.3 15049.9 13030.5
Only on the Cortex A8, the libvpx function is faster. On the other cores,
ours is slightly faster even though ours has got source block clearing
integrated.
Signed-off-by: Martin Storsjö <martin@martin.st>
When decoding with threads enabled, the get_format callback will be
called with one of the per-thread codec contexts rather than with the
outer context. If a hwaccel is in use too, this will add a reference
to the hardware frames context on that codec context, which will then
propagate to all of the other per-thread contexts for decoding. Once
the decoder finishes, however, the per-thread contexts are not freed
normally, so these references leak.