On ARM platforms, accessing the PMU registers requires special user
access permissions. Since there is no other way to get accurate timers,
the current implementation of timers in FFmpeg rely on these registers.
Unfortunately, enabling user access to these registers on Linux is not
trivial, and generally involve compiling a random and unreliable github
kernel module, or patching somehow your kernel.
Such module is very unlikely to reach the upstream anytime soon. Quoting
Robin Murphin from ARM:
> Say you do give userspace direct access to the PMU; now run two or more
> programs at once that believe they can use the counters for their own
> "minimal-overhead" profiling. Have fun interpreting those results...
>
> And that's not even getting into the implications of scheduling across
> different CPUs, CPUidle, etc. where the PMU state is completely beyond
> userspace's control. In general, the plan to provide userspace with
> something which might happen to just about work in a few corner cases,
> but is meaningless, misleading or downright broken in all others, is to
> never do so.
As a result, the alternative is to use the Performance Monitoring Linux
API which makes use of these registers internally (assuming the PMU of
your ARM board is supported in the kernel, which is definitely not a
given...).
While the Linux API is obviously cross platform, it does have a
significant overhead which needs to be taken into account. As a result,
that mode is only weakly enabled on ARM platforms exclusively.
Note on the non flexibility of the implementation: the timers (native
FFmpeg vs Linux API) are selected at compilation time to prevent the
need of function calls, which would result in a negative impact on the
cycle counters.
Use two separate functions, depending on whether VFP/NEON is available.
This is set to require armv5te - it uses blx, which is only available
since armv5t, but we don't have a separate configure item for that.
(It also uses ldrd, which requires armv5te, but this could be avoided
if necessary.)
Signed-off-by: Martin Storsjö <martin@martin.st>
The vector mode was deprecated in ARMv7-A/VFPv3 and various cpu
implementations do not support it in hardware. Vector mode code will
depending the OS either be emulated in software or result in an illegal
instruction on cpus which does not support it. This was not really
problem in practice since NEON implementations of the same functions are
preferred. It will however become a problem for checkasm which tests
every cpu flag separately.
Since this is a cpu feature newer cpu do not support anymore the
behaviour of this flag differs from the other flags. It can be only
activated by runtime cpu feature selection.
Tested functions are internally kept in a binary search tree for efficient
lookups. The downside of the current implementation is that the tree quickly
becomes unbalanced which causes an unneccessary amount of comparisons between
nodes. Improve this by changing the tree into a self-balancing left-leaning
red-black tree with a worst case lookup/insertion time complexity of O(log n).
Significantly reduces the recursion depth and makes the tests run around 10%
faster overall. The relative performance improvement compared to the existing
non-balanced tree will also most likely increase as more tests are added.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Tested functions are internally kept in a binary search tree for efficient
lookups. The downside of the current implementation is that the tree quickly
becomes unbalanced which causes an unneccessary amount of comparisons between
nodes. Improve this by changing the tree into a self-balancing left-leaning
red-black tree with a worst case lookup/insertion time complexity of O(log n).
Significantly reduces the recursion depth and makes the tests run around 10%
faster overall. The relative performance improvement compared to the existing
non-balanced tree will also most likely increase as more tests are added.
Now we no longer have to rely on function pointers intentionally
declared without specified argument types.
This makes it easier to support functions with floating point parameters
or return values as well as functions returning 64-bit values on 32-bit
architectures. It also avoids having to explicitly cast strides to
ptrdiff_t for example.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Now we no longer have to rely on function pointers intentionally
declared without specified argument types.
This makes it easier to support functions with floating point parameters
or return values as well as functions returning 64-bit values on 32-bit
architectures. It also avoids having to explicitly cast strides to
ptrdiff_t for example.