The Matroska muxer has always mapped the title tag to the FileDescription
element for attachments streams since support for writing attachments
was added in commit c7a63a521b. This
commit merely documents this fact.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
This is intended to replace the deprecated the AV_FRAME_DATA_QP_TABLE*
API and extend it to a wider range of codecs.
In the future, it may also be extended to support other encoding
parameters such as motion vectors.
Additional changes by Anton Khirnov <anton@khirnov.net> with suggestions
by Lynne <dev@lynne.ee>.
Signed-off-by: Juan De León <juandl@google.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
This solves a huge oversight - it lets users reliably use their own
AVVulkanDeviceContext. Otherwise, the extensions supplied and enabled
are not discoverable by anything outside of hwcontext_vulkan.
Also clarifies that any user-supplied VkInstance must be at least 1.1.
Also documents all options supported by the hwdevice.
This lets users enable all extensions they need without writing their own
instance initialization code.
After this claim was made in e34e361 kamedo2 did an in-depth ABX
test comparing these encoders:
https://hydrogenaud.io/index.php?topic=111085.0
Result: FFmpeg AAC wasn't as good as libfdk_aac on average.
I know some things have changed since then such as, "use the fast
coder as the default" (fcb681ac) for example, so maybe the situation
is different now.
However, I am unaware of any recent comparison. So without any
substantiation we shouldn't make such a blantant claim.
Signed-off-by: Lou Logan <lou@lrcd.com>
Signed-off-by: Gyan Doshi <ffmpeg@gyani.pro>
It's based on the following specs:
RDD 45:2017 - SMPTE Registered Disclosure Doc - Interoperable Master Format - Application ProRes
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
It's based on the following specs:
RDD 36:2015 - SMPTE Registered Disclosure Doc - Apple ProRes Bitstream Syntax and Decoding Process
Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
Sequence numbers of segments should be unique, if an encoder is using shorter
than 1 second segments and it is restarted, then future segments will be using
already used sequence numbers if initial sequence number is based on the number
of seconds since epoch and not microseconds.
Signed-off-by: Marton Balint <cus@passwd.hu>
Because not every user know about in_pad and out_pad reasonable value range
so maybe try to set 1.0, but setting 1.0 is so hugh to get an fatal error.
Suggested-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Steven Liu <lq@chinaffmpeg.org>
bump minor version for DOVI sidedata, because added the dovi_meta.h
as lavu API part. Also update APIchanges.
Signed-off-by: Jun Zhao <barryjzhao@tencent.com>
Up until now, the Matroska muxer would mark a track as default if it had
the disposition AV_DISPOSITION_DEFAULT or if there was no track with
AV_DISPOSITION_DEFAULT set; in the latter case even more than one track
of a kind (audio, video, subtitles) was marked as default which is not
sensible.
This commit changes the logic used to mark tracks as default. There are
now three modes for this:
a) In the "infer" mode the first track of every type (audio, video,
subtitles) with default disposition set will be marked as default; if
there is no such track (for a given type), then the first track of this
type (if existing) will be marked as default. This behaviour is inspired
by mkvmerge. It ensures that the default flags will be set in a sensible
way even if the input comes from containers that lack the concept of
default flags. This mode is the default mode.
b) The "infer_no_subs" mode is similar to the "infer" mode; the
difference is that if no subtitle track with default disposition exists,
no subtitle track will be marked as default at all.
c) The "passthrough" mode: Here the track will be marked as default if
and only the corresponding input stream had disposition default.
This fixes ticket #8173 (the passthrough mode is ideal for this) as
well as ticket #8416 (the "infer_no_subs" mode leads to the desired
output).
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Previously, there was no way to flush an encoder such that after
draining, the encoder could be used again. We generally suggested
that clients teardown and replace the encoder instance in these
situations. However, for at least some hardware encoders, the cost of
this tear down/replace cycle is very high, which can get in the way of
some use-cases - for example: segmented encoding with nvenc.
To help address that use case, we added support for calling
avcodec_flush_buffers() to nvenc and things worked in practice,
although it was not clearly documented as to whether this should work
or not. There was only one previous example of an encoder implementing
the flush callback (audiotoolboxenc) and it's unclear if that was
intentional or not. However, it was clear that calling
avocdec_flush_buffers() on any other encoder would leave the encoder in
an undefined state, and that's not great.
As part of cleaning this up, this change introduces a formal capability
flag for encoders that support flushing and ensures a flush call is a
no-op for any other encoder. This allows client code to check if it is
meaningful to call flush on an encoder before actually doing it.
I have not attempted to separate the steps taken inside
avcodec_flush_buffers() because it's not doing anything that's wrong
for an encoder. But I did add a sanity check to reject attempts to
flush a frame threaded encoder because I couldn't wrap my head around
whether that code path was actually safe or not. As this combination
doesn't exist today, we'll deal with it if it ever comes up.
The current design, where
- proper init is called for the first per-thread context
- first thread's private data is copied into private data for all the
other threads
- a "fixup" function is called for all the other threads to e.g.
allocate dynamically allocated data
is very fragile and hard to follow, so it is abandoned. Instead, the
same init function is used to init each per-thread context. Where
necessary, AVCodecInternal.is_copy can be used to differentiate between
the first thread and the other ones (e.g. for decoding the extradata
just once).