When allocating stack space with an alignment requirement that is larger
than the current stack alignment we need to store a copy of the original
stack pointer in order to be able to restore it later.
If we chose to use another register for this purpose we should not pick
eax/rax since it can be overwritten as a return value.
When allocating stack space with an alignment requirement that is larger
than the current stack alignment we need to store a copy of the original
stack pointer in order to be able to restore it later.
If we chose to use another register for this purpose we should not pick
eax/rax since it can be overwritten as a return value.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
libavutil/x86/float_dsp_init.c(144) : warning C4028: formal parameter 1 different from declaration
libavutil/x86/float_dsp_init.c(144) : warning C4028: formal parameter 2 different from declaration
Allows emulation to work when dst is equal to src2 as long as the
instruction is commutative, e.g. `addps m0, m1, m0`.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
The yasm/nasm preprocessor only checks the first token, which means that
parameters such as `dword [rax]` are treated as identifiers, which is
generally not what we want.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Those instructions are not commutative since they only change the first
element in the vector and leave the rest unmodified.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
The yasm/nasm preprocessor only checks the first token, which means that
parameters such as `dword [rax]` are treated as identifiers, which is
generally not what we want.
Some debuggers/profilers use this metadata to determine which function a
given instruction is in; without it they get can confused by local labels
(if you haven't stripped those). On the other hand, some tools are still
confused even with this metadata. e.g. this fixes `gdb`, but not `perf`.
Currently only implemented for ELF.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
The REP_RET workaround is only needed on old AMD cpus, and the labels clutter
up the symbol table and confuse debugging/profiling tools, so use EQU to
create SHN_ABS symbols instead of creating local labels. Furthermore, skip
the workaround completely in functions that definitely won't run on such cpus.
Note that EQU is just creating a local label when using nasm instead of yasm.
This is probably a bug, but at least it doesn't break anything.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
When allocating stack space with a larger alignment than the known stack
alignment a temporary register is used for storing the stack pointer.
Ensure that this isn't one of the registers used for passing arguments.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
* Correctly handle FMA instructions with memory operands.
* Print a warning if FMA instructions are used without the correct cpuflag.
* Simplify the instantiation code.
* Clarify documentation.
Only the last operand in FMA3 instructions can be a memory operand. When
converting FMA4 instructions to FMA3 instructions we can utilize the fact
that multiply is a commutative operation and reorder operands if necessary
to ensure that a memory operand is used only as the last operand.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Some debuggers/profilers use this metadata to determine which function a
given instruction is in; without it they get can confused by local labels
(if you haven't stripped those). On the other hand, some tools are still
confused even with this metadata. e.g. this fixes `gdb`, but not `perf`.
Currently only implemented for ELF.
The REP_RET workaround is only needed on old AMD cpus, and the labels clutter
up the symbol table and confuse debugging/profiling tools, so use EQU to
create SHN_ABS symbols instead of creating local labels. Furthermore, skip
the workaround completely in functions that definitely won't run on such cpus.
Note that EQU is just creating a local label when using nasm instead of yasm.
This is probably a bug, but at least it doesn't break anything.
When allocating stack space with a larger alignment than the known stack
alignment a temporary register is used for storing the stack pointer.
Ensure that this isn't one of the registers used for passing arguments.
* Correctly handle FMA instructions with memory operands.
* Print a warning if FMA instructions are used without the correct cpuflag.
* Simplify the instantiation code.
* Clarify documentation.
Only the last operand in FMA3 instructions can be a memory operand. When
converting FMA4 instructions to FMA3 instructions we can utilize the fact
that multiply is a commutative operation and reorder operands if necessary
to ensure that a memory operand is used only as the last operand.
It seems to miscompile them
Should fix fate-ra-288 and fate-twinvq
Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: James Almer <jamrial@gmail.com>