Wenlong Ding
b460595dd7
lavfi/dnn/dnn_backend_native_layer_mathunary: add exp support
...
Signed-off-by: Wenlong Ding <wenlong.ding@intel.com>
4 years ago
Mingyu Yin
3477feb643
dnn_backend_native_layer_mathbinary: add floormod support
...
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
4 years ago
Mingyu Yin
4ed6bca4ae
dnn_backend_native_layer_mathunary: add round support
...
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
4 years ago
Mingyu Yin
fab00b0ae0
dnn_backend_native_layer_mathunary: add floor support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'floor'
pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))
with tf.Session(graph=tf.Graph()) as sess:
in_img = imageio.imread('detection.jpg')
in_img = in_img.astype(np.float32)
in_data = in_img[np.newaxis, :]
input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
y_ = tf.math.floor(input_x*255)/255
y = tf.identity(y_, name='dnn_out')
sess.run(tf.global_variables_initializer())
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
f.write(constant_graph.SerializeToString())
print("model.pb generated, please in ffmpeg path use\n \n \
python tools/python/convert.py {}_savemodel/model.pb --outdir={}_savemodel/ \n \nto generate model.model\n".format(name,name))
output = sess.run(y, feed_dict={ input_x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 {}_savemodel/tensorflow_out.md5\n \
or\n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow {}_savemodel/out_tensorflow.jpg\n \nto generate output result of tensorflow model\n".format(name, name, name, name))
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 {}_savemodel/native_out.md5\n \
or \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native {}_savemodel/out_native.jpg\n \nto generate output result of native model\n".format(name, name, name, name))
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
4 years ago
Mingyu Yin
9fbdd5454b
dnn_backend_native_layer_mathunary: add ceil support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'ceil'
pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))
with tf.Session(graph=tf.Graph()) as sess:
in_img = imageio.imread('detection.jpg')
in_img = in_img.astype(np.float32)
in_data = in_img[np.newaxis, :]
input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
y = tf.math.ceil( input_x, name='dnn_out')
sess.run(tf.global_variables_initializer())
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
f.write(constant_graph.SerializeToString())
print("model.pb generated, please in ffmpeg path use\n \n \
python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \
to generate model.model\n")
output = sess.run(y, feed_dict={ input_x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \
to generate output result of tensorflow model\n")
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \
to generate output result of native model\n")
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
4 years ago
Ting Fu
c0cdeea0ee
dnn_backend_native_layer_mathunary: add atanh support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
please uncomment the part you want to test
x_sinh_1 = tf.sinh(x)
x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0)
x_cosh_1 = tf.cosh(x)
x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0)
x_tanh_1 = tf.tanh(x)
x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0)
x_asinh_1 = tf.asinh(x)
x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1)
x_acosh_1 = tf.add(x, 1.1)
x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf)
x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1)
x_atanh_1 = tf.divide(x, 1.1)
x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1)
x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1)
y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
cd2e3a864d
dnn_backend_native_layer_mathunary: add acosh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
9d14b38d9d
dnn_backend_native_layer_mathunary: add asinh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
ea71e731f4
dnn_backend_native_layer_mathunary: add tanh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
62fc7e3035
dnn_backend_native_layer_mathunary: add cosh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
91b4037101
dnn_backend_native_layer_mathunary: add sinh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
13f5613e68
dnn_backend_native_layer_mathunary: add atan support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.atan(x)
x2 = tf.divide(x1, 3.1416/4) # pi/4
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
461485feac
dnn_backend_native_layer_mathunary: add acos support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.acos(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
486c0c419d
dnn_backend_native_layer_mathunary: add asin support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.asin(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
22d0860c13
dnn_backend_native_layer_mathunary: add tan support
...
It can be tested with the model generated with below python scripy
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 0.78)
x2 = tf.tan(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
88fb494f42
dnn_backend_native_layer_mathunary: add cos support
...
It can be tested with the model generated with below python scripy
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 1.5)
x2 = tf.cos(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
0b6d3f0d83
dnn_backend_native_layer_mathunary: add sin support
...
It can be tested with the model file generated with below python scripy:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 3.14)
x2 = tf.sin(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
f73cc61bf5
dnn_backend_native_layer_mathunary: add abs support
...
more math unary operations will be added here
It can be tested with the model file generated with below python scripy:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.subtract(x, 0.5)
x2 = tf.abs(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
71e28c5422
dnn/native: add native support for minimum
...
it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.minimum(0.7, x)
x2 = tf.maximum(x1, 0.4)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
8ce9d88f93
dnn/native: add native support for divide
...
it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 2 / x
z2 = 1 / z1
z3 = z2 / 0.25 + 0.3
z4 = z3 - x * 1.5 - 0.3
y = tf.identity(z4, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
ef79408e97
dnn/native: add native support for 'mul'
...
it can be tested with model file generated from above python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.5 + 0.3 * x
z2 = z1 * 4
z3 = z2 - x - 2.0
y = tf.identity(z3, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
6aa7e07e7c
dnn/native: add native support for 'add'
...
It can be tested with the model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.039 + x
z2 = x + 0.042
z3 = z1 + z2
z4 = z3 - 0.381
z5 = z4 - x
y = tf.math.maximum(z5, 0.0, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
ffa1561608
dnn_backend_native_layer_mathbinary: add sub support
...
more math binary operations will be added here
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
dff39ea9f0
dnn: add tf.nn.conv2d support for native model
...
Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many
nodes (within a scope) in the graph, it just acts like other layers.
tf.nn.conv2d only creates one node in the graph, and no internal
nodes such as 'kernel' are created.
The format of native model file is also changed, a flag named
has_bias is added, so change the version number.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
5 years ago
Guo, Yejun
b2683c66b2
libavfilter/dnn: add layer maximum for native mode.
...
The reason to add this layer is that it is used by srcnn in vf_sr.
This layer is currently ignored in native mode. After this patch,
we can add multiple outputs support for native mode.
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
5 years ago
Guo, Yejun
022f50d3fe
libavfilter/dnn: add header into native model file
...
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
5 years ago