When collecting performance information from checkasm it is common
to parse the output for use in graphs to compare vs different
architectures.
Signed-off-by: J. Dekker <jdek@itanimul.li>
F and D extensions are included in all RISC-V application profiles ever
made (so starting from RV64GC a.k.a. RVA20). Realistically they need to be
selected at compilation time.
Currently, there are no consumers for these two flags. If there is ever a
need to reintroduce F- or D-specific optimisations, we can always use
__riscv_f or __riscv_d compiler predefined macros respectively.
The B extension was finally ratified in May 2024, encompassing:
- Zba (addresses),
- Zbb (basics) and
- Zbs (single bits).
It does not include Zbc (base-2 polynomials).
The check should be >= 0, not > 0. The check itself is redundant
since uninit only being called after init is success.
Signed-off-by: Zhao Zhili <zhilizhao@tencent.com>
The OS may silently fix (emulate) unaligned hardware access exceptions.
This is extremely slow and code should be fixed not to rely on unaligned
access on affected hardware. Accordingly this requests that the OS
disable emulation and instead throw Bus error, which will be caught by
checkasm's signal handler.
This has no effects if the hardware supports unaligned access in
hardware, since no exceptions are generated. prctl() will fail safe in
that case.
Some timers on certain device and test combinations can produce noisy
results, affecting the reliability of performance measurements. One
notable example of this is the Canaan K230 RISC-V development board.
An option to adjust the number of samples by an exponent (--runs) has
been added, allowing developers to increase the sample count for more
reliable results.
Signed-off-by: J. Dekker <jdek@itanimul.li>
The exclude_guest option only has an effect on x86. Omitting
'exclude_guest' defaults to zero which implies that you can count guest
events should you run one. Some non-x86 kernels just ignore it, while
others (e.g. the Asahi Linux kernels) require the user to explicitly set
the option to 1, i.e. the only behaviour that makes sense when counting
guest events isn't supported.
Signed-off-by: J. Dekker <jdek@itanimul.li>
On some platforms (in particular, ARM/AArch64), the implementation
of AV_READ_TIME() may use a privileged instruction - in such
cases, benchmarking just fails with a SIGILL.
Instead of crashing, try executing AV_READ_TIME() once within
a region with the signal handler active, to allow gracefully
informing the user about the issue.
This matches the dav1d checkasm commit
95a192549a448b70d9542e840c4e34b60d09b093.
Signed-off-by: Martin Storsjö <martin@martin.st>
This replaces the riscv specific handling from
7212466e73 (which essentially is
reverted), with a different implementation of the same (plus a bit
more), based on the corresponding feature in dav1d's checkasm,
supporting both Unix and Windows.
See in particular the dav1d commits
0b6ee30eab2400e4f85b735ad29a68a842c34e21,
0421f787ea592fd2cc74c887f20b8dc31393788b,
8501a4b20135f93a4c3b426468e2240e872949c5 and
d23e87f7aee26ddcf5f7a2e185112031477599a7, authored by Henrik Gramner.
The overall approach compared to the existing implementation for
riscv is the same; set up a signal handler, store the state with
sigsetjmp, jump out of the crashing function with siglongjmp.
The main difference is in what happens when the signal handler
is invoked. In the previous implementation, it would resume from
right before calling the crashing function, and then skip that call
based on the setjmp return value.
In the imported implementation from dav1d, we return to right before
the check_func() call, which will skip testing the current function
(as the pointer is the same as it was before).
Other differences are:
- Support for other signal handling mechanisms (Windows
AddVectoredExceptionHandler)
- Using RtlCaptureContext/RtlRestoreContext instead of setjmp/longjmp
on Windows with SEH
- Only catching signals once per function - if more than one
signal is delivered before signal handling is reenabled, any
signal is handled as it would without our handler
- Not using an arch specific signal handler written in assembly
Signed-off-by: Martin Storsjö <martin@martin.st>
The ffmpeg coding style doesn't usually use const on scalar
parameters (or on the pointer values - as opposed to the type
that is pointed to, where it has a semantic meaning), contrary
to the dav1d coding style (where this was imported from).
This avoids warnings about differences in the type signatures
between declaration and definition of this function, with older
versions of MSVC.
The issue was observed with one version of MSVC 2017,
19.16.27024.1, with warnings like these:
src/tests/checkasm/checkasm.c(969): warning C4028: formal parameter 3 different from declaration
The warning itself is bogus as the const here is harmless, and
newer versions of MSVC no longer warn about this.
Signed-off-by: Martin Storsjö <martin@martin.st>
Terminating the whole checkasm process is not very helpful. This will
report if an illegal instruction occurs while executing a tested
function. This is a common occurrence whilst developping RISC-V
assembler, due to the compatibility between vector configuration and
instruction done at run-time.
The code was blindly assuming that Zbb or V implied Zba. While the
earlier is practically always true, the later broke some QEMU setups,
as V was introduced earlier than Zba.
This commit enabled assembly code with intel AVX512 VNNI and added unit test for sobel filter
sobel_c: 4537
sobel_avx512icl 2136
Signed-off-by: bwang30 <bin.wang@intel.com>
Signed-off-by: Haihao Xiang <haihao.xiang@intel.com>
Unfortunately, it is common, and will remain so, that the Bit
manipulations are not enabled at compilation time. This is an official
policy for Debian ports in general (though they do not support RISC-V
officially as of yet) to stick to the minimal target baseline, which
does not include the B extension or even its Zbb subset.
For inline helpers (CPOP, REV8), compiler builtins (CTZ, CLZ) or
even plain C code (MIN, MAX, MINU, MAXU), run-time detection seems
impractical. But at least it can work for the byte-swap DSP functions.
RVV defines a total of 12 different extensions, including:
- 5 different instruction subsets:
- Zve32x: 8-, 16- and 32-bit integers,
- Zve32f: Zve32x plus single precision floats,
- Zve64x: Zve32x plus 64-bit integers,
- Zve64f: Zve32f plus Zve64x,
- Zve64d: Zve64f plus double precision floats.
- 6 different vector lengths:
- Zvl32b (embedded only),
- Zvl64b (embedded only),
- Zvl128b,
- Zvl256b,
- Zvl512b,
- Zvl1024b,
- and the V extension proper: equivalent to Zve64f and Zvl128b.
In total, there are 6 different possible sets of supported instructions
(including the empty set), but for convenience we allocate one bit for
each type sets: up-to-32-bit ints (RVV_I32), floats (RVV_F32),
64-bit ints (RVV_I64) and doubles (RVV_F64).
Whence the vector size is needed, it can be retrieved by reading the
unprivileged read-only vlenb CSR. This should probably be a separate
helper macro if needed at a later point.