Thanks to Mathieu Malaterre <malat@debian.org> for reporting the
Que/Queue typo. (https://bugs.debian.org/839542)
Reviewed-by: Lou Logan <lou@lrcd.com>
Signed-off-by: Andreas Cadhalpun <Andreas.Cadhalpun@googlemail.com>
Performance improvements:
quant_bands:
with: 681 decicycles in quant_bands, 8388453 runs, 155 skips
without: 1190 decicycles in quant_bands, 8388386 runs, 222 skips
Around 42% for the function
Twoloop coder:
abs_pow34:
with/without: 7.82s/8.17s
Around 4% for the entire encoder
Both:
with/without: 7.15s/8.17s
Around 12% for the entire encoder
Fast coder:
abs_pow34:
with/without: 3.40s/3.77s
Around 10% for the entire encoder
Both:
with/without: 3.02s/3.77s
Around 20% faster for the entire encoder
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Tested-by: Michael Niedermayer <michael@niedermayer.cc>
Reviewed-by: James Almer <jamrial@gmail.com>
Clamp scalefactors by coef2minsf to avoid undefined behavior
caused by signed integer overflow. It also avoids clipping of
coefficients so it should avoid artifacts as well, on very
rare corner cases.
This patch does 4 things, all of which interact and thus it
woudln't be possible to commit them separately without causing
either quality regressions or assertion failures.
Fate comparison targets don't all reflect improvements in
quality, yet listening tests show substantially improved quality
and stability.
1. Increase SF range utilization.
The spec requires SF delta values to be constrained within the
range -60..60. The previous code was applying that range to
the whole SF array and not only the deltas of consecutive values,
because doing so requires smarter code: zeroing or otherwise
skipping a band may invalidate lots of SF choices.
This patch implements that logic to allow the coders to utilize
the full dynamic range of scalefactors, increasing quality quite
considerably, and fixing delta-SF-related assertion failures,
since now the limitation is enforced rather than asserted.
2. PNS tweaks
The previous modification makes big improvements in twoloop's
efficiency, and every time that happens PNS logic needs to be
tweaked accordingly to avoid it from stepping all over twoloop's
decisions. This patch includes modifications of the sort.
3. Account for lowpass cutoff during PSY analysis
The closer PSY's allocation is to final allocation the better
the quality is, and given these modifications, twoloop is now
very efficient at avoiding holes. Thus, to compute accurate
thresholds, PSY needs to account for the lowpass applied
implicitly during twoloop (by zeroing high bands).
This patch makes twoloop set the cutoff in psymodel's context
the first time it runs, and makes PSY account for it during
threshold computation, making PE and threshold computations
closer to the final allocation and thus achieving better
subjective quality.
4. Tweaks to RC lambda tracking loop in relation to PNS
Without this tweak some corner cases cause quality regressions.
Basically, lambda needs to react faster to overall bitrate
efficiency changes since now PNS can be quite successful in
enforcing maximum bitrates, when PSY allocates too many bits
to the lower bands, suppressing the signals RC logic uses to
lower lambda in those cases and causing aggressive PNS.
This tweak makes PNS much less aggressive, though it can still
use some further tweaks.
Also update MIPS specializations and adjust fuzz
Also in lavc/mips/aacpsy_mips.h: remove trailing whitespace
In some conditions, where the first band was being zeroed
mainly, the wrong global gain scalefactor would be written
to the stream since it's always taken from the first band
regardless of whether it's been marked as zero or not.
So, always make sure it contians something useful.
This commit adds the ability for a profile to set the default
options, as well as for the user to override such options
by simply stating them in the command line while still keeping
the same profile, as long as those options are still permitted by
the profile.
Example: setting the profile to aac_low (the default) will turn
PNS and IS on. They can be disabled by -aac_pns 0 and -aac_is 0,
respectively. Turning on -aac_pred 1 will cause the profile to be
elevated to aac_main, as long as no options forbidding aac_main
have been entered (like AAC-LTP, which will be pushed soon).
A useful feature is that by setting the profile to mpeg2_aac_low,
all MPEG4 features will be disabled and if the user tries to enable
them then the program will exit with an error. This profile is
signalled with the same bitstream as aac_low (MPEG4) but some devices
and decoders will fail if any MPEG4 features have been enabled.
The bulk of calls to quantize_band_cost are replaced
by a call to a version that memoizes, greatly improving
performance, since during coefficient search there is
a great deal of repeat work.
Memoization cannot always be applied, so do this in a
different function, and leave the original as-is.
Intermediate results can indeed violate SF delta. Instead of asserting
there, just make the code safe, and assert on the final result.
Also re-clamp SFs more often in short windows (which tend to violate
the restriction when encoding the switch from one window to the other)
This finalizes merging of the work in the patches in ticket #2686.
Improvements to twoloop and RC logic are extensive.
The non-exhaustive list of twoloop improvments includes:
- Tweaks to distortion limits on the RD optimization phase of twoloop
- Deeper search in twoloop
- PNS information marking to let twoloop decide when to use it
(turned out having the decision made separately wasn't working)
- Tonal band detection and priorization
- Better band energy conservation rules
- Strict hole avoidance
For rate control:
- Use psymodel's bit allocation to allow proper use of the bit
reservoir. Don't work against the bit reservoir by moving lambda
in the opposite direction when psymodel decides to allocate more/less
bits to a frame.
- Retry the encode if the effective rate lies outside a reasonable
margin of psymodel's allocation or the selected ABR.
- Log average lambda at the end. Useful info for everyone, but especially
for tuning of the various encoder constants that relate to lambda
feedback.
Psy:
- Do not apply lowpass with a FIR filter, instead just let the coder
zero bands above the cutoff. The FIR filter induces group delay,
and while zeroing bands causes ripple, it's lost in the quantization
noise.
- Experimental VBR bit allocation code
- Tweak automatic lowpass filter threshold to maximize audio bandwidth
at all bitrates while still providing acceptable, stable quality.
I/S:
- Phase decision fixes. Unrelated to #2686, but the bugs only surfaced
when the merge was finalized. Measure I/S band energy accounting for
phase, and prevent I/S and M/S from being applied both.
PNS:
- Avoid marking short bands with PNS when they're part of a window
group in which there's a large variation of energy from one window
to the next. PNS can't preserve those and the effect is extremely
noticeable.
M/S:
- Implement BMLD protection similar to the specified in
ISO-IEC/13818:7-2003, Appendix C Section 6.1. Since M/S decision
doesn't conform to section 6.1, a different method had to be
implemented, but should provide equivalent protection.
- Move the decision logic closer to the method specified in
ISO-IEC/13818:7-2003, Appendix C Section 6.1. Specifically,
make sure M/S needs less bits than dual stereo.
- Don't apply M/S in bands that are using I/S
Now, this of course needed adjustments in the compare targets and
fuzz factors of the AAC encoder's fate tests, but if wondering why
the targets go up (more distortion), consider the previous coder
was using too many bits on LF content (far more than required by
psy), and thus those signals will now be more distorted, not less.
The extra distortion isn't audible though, I carried extensive
ABX testing to make sure.
A very similar patch was also extensively tested by Kamendo2 in
the context of #2686.
This patch refactors the AAC coders to reuse code
between the MIPS port and the regular, portable C code.
There were two main functions that had to use
hand-optimized versions of quantization code:
- search_for_quantizers_twoloop
- codebook_trellis_rate
Those two were split into their own template header
files so they can be inlined inside both the MIPS port
and the generic code. In each context, they'll link
to their specialized implementations, and thus be
optimized by the compiler.
This approach I believe is better than maintaining
several copies of each function. As past experience has
proven, having to keep those in sync was error prone.
In this way, they will remain in sync by default.
Also, an implementation of the dequantized output
argument for the optimized quantize_and_encode
functions is included in the patch. While the current
implementation of search_for_pred still isn't using
it, future iterations of main prediction probably will.
It should not imply any measurable performance hit while
not being used.