Michael Niedermayer
5dae33bb39
tools/target_dec_fuzzer: Adjust VQA threshold
...
Fixes: Timeout (169sec -> 9sec)
Fixes: 23745/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_VQA_fuzzer-5638172179693568
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
4 years ago
Michael Niedermayer
e3af2a0756
tools:target_dem_fuzzer: Split into a fuzzer fuzzing at the protocol level and one fuzzing a fixed demuxer input
...
This should improve coverage and should improve the efficiency of seed files
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
4 years ago
Michael Niedermayer
a12864938d
tools/target_dec_fuzzer: Adjust threshold for WMV3IMAGE
...
Fixes: Timeout (1131sec -> 1sec)
Fixes: 24727/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_WMV3IMAGE_fuzzer-5754167793287168
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
4 years ago
Mingyu Yin
3477feb643
dnn_backend_native_layer_mathbinary: add floormod support
...
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
4 years ago
Michael Niedermayer
d08c3f56ec
tools/target_dec_fuzzer: Adjust threshold for DST
...
Fixes: Timeout (too long -> 3sec)
Fixes: 24239/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_DST_fuzzer-5189061015502848
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Peter Ross <pross@xvid.org>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
4 years ago
Mingyu Yin
4ed6bca4ae
dnn_backend_native_layer_mathunary: add round support
...
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
4 years ago
Michael Niedermayer
4b7189848f
tools/target_dec_fuzzer: Adjust threshold for AGM
...
Fixes: Timeout (142sec -> 2sec)
Fixes: 24426/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_AGM_fuzzer-5639724379930624
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
4 years ago
Ting Fu
91efc41a69
dnn/native: add native support for avg_pool
...
Not support pooling strides in channel dimension yet.
Signed-off-by: Ting Fu <ting.fu@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
4 years ago
Mingyu Yin
fab00b0ae0
dnn_backend_native_layer_mathunary: add floor support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'floor'
pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))
with tf.Session(graph=tf.Graph()) as sess:
in_img = imageio.imread('detection.jpg')
in_img = in_img.astype(np.float32)
in_data = in_img[np.newaxis, :]
input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
y_ = tf.math.floor(input_x*255)/255
y = tf.identity(y_, name='dnn_out')
sess.run(tf.global_variables_initializer())
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
f.write(constant_graph.SerializeToString())
print("model.pb generated, please in ffmpeg path use\n \n \
python tools/python/convert.py {}_savemodel/model.pb --outdir={}_savemodel/ \n \nto generate model.model\n".format(name,name))
output = sess.run(y, feed_dict={ input_x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 {}_savemodel/tensorflow_out.md5\n \
or\n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow {}_savemodel/out_tensorflow.jpg\n \nto generate output result of tensorflow model\n".format(name, name, name, name))
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 {}_savemodel/native_out.md5\n \
or \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model={}_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native {}_savemodel/out_native.jpg\n \nto generate output result of native model\n".format(name, name, name, name))
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
4 years ago
Mingyu Yin
9fbdd5454b
dnn_backend_native_layer_mathunary: add ceil support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import os
import numpy as np
import imageio
from tensorflow.python.framework import graph_util
name = 'ceil'
pb_file_path = os.getcwd()
if not os.path.exists(pb_file_path+'/{}_savemodel/'.format(name)):
os.mkdir(pb_file_path+'/{}_savemodel/'.format(name))
with tf.Session(graph=tf.Graph()) as sess:
in_img = imageio.imread('detection.jpg')
in_img = in_img.astype(np.float32)
in_data = in_img[np.newaxis, :]
input_x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
y = tf.math.ceil( input_x, name='dnn_out')
sess.run(tf.global_variables_initializer())
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
with tf.gfile.FastGFile(pb_file_path+'/{}_savemodel/model.pb'.format(name), mode='wb') as f:
f.write(constant_graph.SerializeToString())
print("model.pb generated, please in ffmpeg path use\n \n \
python tools/python/convert.py ceil_savemodel/model.pb --outdir=ceil_savemodel/ \n \n \
to generate model.model\n")
output = sess.run(y, feed_dict={ input_x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.pb:input=dnn_in:output=dnn_out:dnn_backend=tensorflow -f framemd5 ceil_savemodel/tensorflow_out.md5\n \n \
to generate output result of tensorflow model\n")
print("To verify, please ffmpeg path use\n \n \
./ffmpeg -i detection.jpg -vf format=rgb24,dnn_processing=model=ceil_savemodel/model.model:input=dnn_in:output=dnn_out:dnn_backend=native -f framemd5 ceil_savemodel/native_out.md5\n \n \
to generate output result of native model\n")
Signed-off-by: Mingyu Yin <mingyu.yin@intel.com>
Reviewed-by: Guo, Yejun <yejun.guo@intel.com>
4 years ago
Ting Fu
c0cdeea0ee
dnn_backend_native_layer_mathunary: add atanh support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
please uncomment the part you want to test
x_sinh_1 = tf.sinh(x)
x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0)
x_cosh_1 = tf.cosh(x)
x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0)
x_tanh_1 = tf.tanh(x)
x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0)
x_asinh_1 = tf.asinh(x)
x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1)
x_acosh_1 = tf.add(x, 1.1)
x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf)
x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1)
x_atanh_1 = tf.divide(x, 1.1)
x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1)
x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1)
y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
cd2e3a864d
dnn_backend_native_layer_mathunary: add acosh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
9d14b38d9d
dnn_backend_native_layer_mathunary: add asinh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
ea71e731f4
dnn_backend_native_layer_mathunary: add tanh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
62fc7e3035
dnn_backend_native_layer_mathunary: add cosh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
91b4037101
dnn_backend_native_layer_mathunary: add sinh support
...
Signed-off-by: Ting Fu <ting.fu@intel.com>
5 years ago
Ting Fu
13f5613e68
dnn_backend_native_layer_mathunary: add atan support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.atan(x)
x2 = tf.divide(x1, 3.1416/4) # pi/4
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
461485feac
dnn_backend_native_layer_mathunary: add acos support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.acos(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
486c0c419d
dnn_backend_native_layer_mathunary: add asin support
...
It can be tested with the model generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.asin(x)
x2 = tf.divide(x1, 3.1416/2) # pi/2
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Michael Niedermayer
0b182ff66d
tools/target_dec_fuzzer: Adjust threshold for lagarith
...
Fixes: Timeout (3minute 49 sec -> 3sec)
Fixes: 22020/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_LAGARITH_fuzzer-5708544679870464
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
d3747f4431
tools/target_dem_fuzzer: Use file extensions listed in input formats
...
This should make it easier for the fuzzer to fuzz formats being detected only by
file extension and thus increase coverage
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Ting Fu
22d0860c13
dnn_backend_native_layer_mathunary: add tan support
...
It can be tested with the model generated with below python scripy
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 0.78)
x2 = tf.tan(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
88fb494f42
dnn_backend_native_layer_mathunary: add cos support
...
It can be tested with the model generated with below python scripy
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 1.5)
x2 = tf.cos(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Ting Fu
0b6d3f0d83
dnn_backend_native_layer_mathunary: add sin support
...
It can be tested with the model file generated with below python scripy:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.multiply(x, 3.14)
x2 = tf.sin(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo Yejun <yejun.guo@intel.com>
5 years ago
Michael Niedermayer
3371d0611f
tools/target_dec_fuzzer: enable mjpeg for tiff or tdsc
...
This is needed for fuzzing tiff/tdsc and should increase coverage
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
3e651eeac4
tools/target_dem_fuzzer: Implement AVSEEK_SIZE
...
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Ting Fu
f73cc61bf5
dnn_backend_native_layer_mathunary: add abs support
...
more math unary operations will be added here
It can be tested with the model file generated with below python scripy:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.subtract(x, 0.5)
x2 = tf.abs(x1)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Michael Niedermayer
6d4fdb4f5a
tools/target_dec_fuzzer: Adjust max_pixels for AV_CODEC_ID_HAP
...
Fixes: Timeout (170sec -> 6sec)
Fixes: 20956/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_HAP_fuzzer-5713643025203200
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
d6824ef905
tools/target_dec_fuzzer: Reduce maxpixels for HEVC
...
high resolutions with only small blocks appear to be rather
slow with the fuzzer + sanitizers.
A solution which makes this run faster is welcome.
Fixes: Timeout (did not wait -> 17sec)
Fixes: 21006/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_HEVC_fuzzer-6002552539971584
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
05d364dccc
tools/target_dec_fuzzer: Do not test AV_CODEC_FLAG2_FAST with AV_CODEC_ID_H264
...
This combination skips allocating large padding which can read out of array
Fixes: 20978/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_H264_fuzzer-5746381832847360
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Anton Khirnov
ea980d4162
fate: add tests for h264 and vp9 video enc parameters export
5 years ago
Anton Khirnov
bf80725352
lavc: rename bsf.h to bsf_internal.h
...
This will allow adding a public header named bsf.h
5 years ago
Michael Niedermayer
4f54982773
tools/target_dec_fuzzer: Adjust threshold for PNG and APNG
...
Fixes: Timeout (84sec -> 2sec)
Fixes: 21127/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_APNG_fuzzer-5098412367413248
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Guo, Yejun
71e28c5422
dnn/native: add native support for minimum
...
it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.minimum(0.7, x)
x2 = tf.maximum(x1, 0.4)
y = tf.identity(x2, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Josh de Kock
d817b57d36
tools: fix const specifier for AVInputFormat
...
Signed-off-by: Josh de Kock <josh@itanimul.li>
5 years ago
Guo, Yejun
8ce9d88f93
dnn/native: add native support for divide
...
it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 2 / x
z2 = 1 / z1
z3 = z2 / 0.25 + 0.3
z4 = z3 - x * 1.5 - 0.3
y = tf.identity(z4, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
ef79408e97
dnn/native: add native support for 'mul'
...
it can be tested with model file generated from above python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.5 + 0.3 * x
z2 = z1 * 4
z3 = z2 - x - 2.0
y = tf.identity(z3, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Guo, Yejun
6aa7e07e7c
dnn/native: add native support for 'add'
...
It can be tested with the model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio
in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 0.039 + x
z2 = x + 0.042
z3 = z1 + z2
z4 = z3 - 0.381
z5 = z4 - x
y = tf.math.maximum(z5, 0.0, name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)
print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")
output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Josh de Kock
39962072a8
tools: stop using deprecated av_codec_next()
...
Signed-off-by: Josh de Kock <josh@itanimul.li>
5 years ago
Michael Niedermayer
2db37bf4cd
tools/target_dec_fuzzer: Adjust threshold for zerocodec
...
Fixes: Timeout (147sec -> 1sec)
Fixes: 20764/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_ZEROCODEC_fuzzer-5068274603917312
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
8dee1d7a30
tools/target_dec_fuzzer: Adjust threshold for screenpresso
...
Fixes: Timeout (332 -> 21 sec)
Fixes: 20280/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_SCREENPRESSO_fuzzer-6238663432470528
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Guo, Yejun
ffa1561608
dnn_backend_native_layer_mathbinary: add sub support
...
more math binary operations will be added here
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
5 years ago
Michael Niedermayer
32522b5307
tools/target_dec_fuzzer: limit per frame samples for APE
...
APE in its highest compression mode is really slow so even one frame
of millions of samples takes a long time
Fixes: Timeout (too long -> 3sec)
Fixes: 19937/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_APE_fuzzer-5751668818051072
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
48b6947821
tools/target_dec_fuzzer: Add threshold for ALS
...
Fixes: Timeout (253sec -> 16sec)
Fixes: 18668/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_ALS_fuzzer-6227155369590784
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
04e524c34b
tools/target_dec_fuzzer: Add threshold for IFF_ILBM
...
Fixes: Timeout (32 -> 1sec)
Fixes: 20138/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_IFF_ILBM_fuzzer-5634665251864576
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Peter Ross <pross@xvid.org>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
cc7bf7e05c
tools/target_dec_fuzzer: Sort threshold list alphabetically
...
This also removes the comments as they are hard to maintain
together with sorted lists
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
5f7727e1c9
tools/target_dec_fuzzer: Use codec_tags list
...
This should make it much quicker for the fuzzer to test
real relevant codec_tags
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
00447b6f52
tools/target_dec_fuzzer: Also Fuzz with CPU optimizations disabled
...
This should improve coverage of *_c()
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
4b733a7f5f
tools/target_dec_fuzzer: Fuzz private options of AC3/E-AC3
...
This should improve AC-3 coverage
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago
Michael Niedermayer
48083f1890
tools/target_dec_fuzzer: Fuzz idct_algo value
...
This should improve coverage
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
5 years ago