mirror of https://github.com/FFmpeg/FFmpeg.git
Tag:
Branch:
Tree:
6e487a50a1
master
oldabi
release/0.10
release/0.11
release/0.5
release/0.6
release/0.7
release/0.8
release/0.9
release/1.0
release/1.1
release/1.2
release/2.0
release/2.1
release/2.2
release/2.3
release/2.4
release/2.5
release/2.6
release/2.7
release/2.8
release/3.0
release/3.1
release/3.2
release/3.3
release/3.4
release/4.0
release/4.1
release/4.2
release/4.3
release/4.4
release/5.0
release/5.1
release/6.0
release/6.1
release/7.0
release/7.1
N
ffmpeg-0.6.3
n0.10
n0.10.1
n0.10.10
n0.10.11
n0.10.12
n0.10.13
n0.10.14
n0.10.15
n0.10.16
n0.10.2
n0.10.3
n0.10.4
n0.10.5
n0.10.6
n0.10.7
n0.10.8
n0.10.9
n0.11
n0.11-dev
n0.11.1
n0.11.2
n0.11.3
n0.11.4
n0.11.5
n0.12-dev
n0.5.10
n0.5.11
n0.5.12
n0.5.13
n0.5.14
n0.5.15
n0.5.5
n0.5.6
n0.5.7
n0.5.8
n0.5.9
n0.6.4
n0.6.5
n0.6.6
n0.6.7
n0.7.1
n0.7.10
n0.7.11
n0.7.12
n0.7.13
n0.7.14
n0.7.15
n0.7.16
n0.7.17
n0.7.2
n0.7.3
n0.7.4
n0.7.5
n0.7.6
n0.7.7
n0.7.8
n0.7.9
n0.8
n0.8.1
n0.8.10
n0.8.11
n0.8.12
n0.8.13
n0.8.14
n0.8.15
n0.8.2
n0.8.3
n0.8.4
n0.8.5
n0.8.6
n0.8.7
n0.8.8
n0.8.9
n0.9
n0.9.1
n0.9.2
n0.9.3
n0.9.4
n1.0
n1.0.1
n1.0.10
n1.0.2
n1.0.3
n1.0.4
n1.0.5
n1.0.6
n1.0.7
n1.0.8
n1.0.9
n1.1
n1.1-dev
n1.1.1
n1.1.10
n1.1.11
n1.1.12
n1.1.13
n1.1.14
n1.1.15
n1.1.16
n1.1.2
n1.1.3
n1.1.4
n1.1.5
n1.1.6
n1.1.7
n1.1.8
n1.1.9
n1.2
n1.2-dev
n1.2.1
n1.2.10
n1.2.11
n1.2.12
n1.2.2
n1.2.3
n1.2.4
n1.2.5
n1.2.6
n1.2.7
n1.2.8
n1.2.9
n1.3-dev
n2.0
n2.0.1
n2.0.2
n2.0.3
n2.0.4
n2.0.5
n2.0.6
n2.0.7
n2.1
n2.1-dev
n2.1.1
n2.1.2
n2.1.3
n2.1.4
n2.1.5
n2.1.6
n2.1.7
n2.1.8
n2.2
n2.2-dev
n2.2-rc1
n2.2-rc2
n2.2.1
n2.2.10
n2.2.11
n2.2.12
n2.2.13
n2.2.14
n2.2.15
n2.2.16
n2.2.2
n2.2.3
n2.2.4
n2.2.5
n2.2.6
n2.2.7
n2.2.8
n2.2.9
n2.3
n2.3-dev
n2.3.1
n2.3.2
n2.3.3
n2.3.4
n2.3.5
n2.3.6
n2.4
n2.4-dev
n2.4.1
n2.4.10
n2.4.11
n2.4.12
n2.4.13
n2.4.14
n2.4.2
n2.4.3
n2.4.4
n2.4.5
n2.4.6
n2.4.7
n2.4.8
n2.4.9
n2.5
n2.5-dev
n2.5.1
n2.5.10
n2.5.11
n2.5.2
n2.5.3
n2.5.4
n2.5.5
n2.5.6
n2.5.7
n2.5.8
n2.5.9
n2.6
n2.6-dev
n2.6.1
n2.6.2
n2.6.3
n2.6.4
n2.6.5
n2.6.6
n2.6.7
n2.6.8
n2.6.9
n2.7
n2.7-dev
n2.7.1
n2.7.2
n2.7.3
n2.7.4
n2.7.5
n2.7.6
n2.7.7
n2.8
n2.8-dev
n2.8.1
n2.8.10
n2.8.11
n2.8.12
n2.8.13
n2.8.14
n2.8.15
n2.8.16
n2.8.17
n2.8.18
n2.8.19
n2.8.2
n2.8.20
n2.8.21
n2.8.22
n2.8.3
n2.8.4
n2.8.5
n2.8.6
n2.8.7
n2.8.8
n2.8.9
n2.9-dev
n3.0
n3.0.1
n3.0.10
n3.0.11
n3.0.12
n3.0.2
n3.0.3
n3.0.4
n3.0.5
n3.0.6
n3.0.7
n3.0.8
n3.0.9
n3.1
n3.1-dev
n3.1.1
n3.1.10
n3.1.11
n3.1.2
n3.1.3
n3.1.4
n3.1.5
n3.1.6
n3.1.7
n3.1.8
n3.1.9
n3.2
n3.2-dev
n3.2.1
n3.2.10
n3.2.11
n3.2.12
n3.2.13
n3.2.14
n3.2.15
n3.2.16
n3.2.17
n3.2.18
n3.2.19
n3.2.2
n3.2.3
n3.2.4
n3.2.5
n3.2.6
n3.2.7
n3.2.8
n3.2.9
n3.3
n3.3-dev
n3.3.1
n3.3.2
n3.3.3
n3.3.4
n3.3.5
n3.3.6
n3.3.7
n3.3.8
n3.3.9
n3.4
n3.4-dev
n3.4.1
n3.4.10
n3.4.11
n3.4.12
n3.4.13
n3.4.2
n3.4.3
n3.4.4
n3.4.5
n3.4.6
n3.4.7
n3.4.8
n3.4.9
n3.5-dev
n4.0
n4.0.1
n4.0.2
n4.0.3
n4.0.4
n4.0.5
n4.0.6
n4.1
n4.1-dev
n4.1.1
n4.1.10
n4.1.11
n4.1.2
n4.1.3
n4.1.4
n4.1.5
n4.1.6
n4.1.7
n4.1.8
n4.1.9
n4.2
n4.2-dev
n4.2.1
n4.2.10
n4.2.2
n4.2.3
n4.2.4
n4.2.5
n4.2.6
n4.2.7
n4.2.8
n4.2.9
n4.3
n4.3-dev
n4.3.1
n4.3.2
n4.3.3
n4.3.4
n4.3.5
n4.3.6
n4.3.7
n4.3.8
n4.4
n4.4-dev
n4.4.1
n4.4.2
n4.4.3
n4.4.4
n4.4.5
n4.5-dev
n5.0
n5.0.1
n5.0.2
n5.0.3
n5.1
n5.1-dev
n5.1.1
n5.1.2
n5.1.3
n5.1.4
n5.1.5
n5.1.6
n5.2-dev
n6.0
n6.0.1
n6.1
n6.1-dev
n6.1.1
n6.1.2
n6.2-dev
n7.0
n7.0.1
n7.0.2
n7.1
n7.1-dev
n7.2-dev
v0.5
v0.5.1
v0.5.2
v0.5.3
v0.6
v0.6.1
${ noResults }
3 Commits (6e487a50a10597f5bab8a4bde45f7d3a916296b4)
Author | SHA1 | Message | Date |
---|---|---|---|
Rémi Denis-Courmont | bfc69297c5 |
lavc/opusdsp: RISC-V V (512-bit) postfilter
This adds a variant of the postfilter for use with 512-bit vectors. Half a vector is enough to perform the scalar product. Normally a whole vector would be used anyhow. Indeed fractional multiplers are no faster than the unit multipler. But in this particular function, a full vector makes up 16 samples, which would be loaded at each iteration of the outer loop. The minimum guaranteed CELT postfilter period is only 15. Accounting for the edges, we can only safely preload up to 13 samples. The fractional multipler is thus used to cap the selected vector length to a safe value of 8 elements or 256 bits. Likewise, we have the 1024-bit variant with the quarter multipler. In theory, a 2048-bit one would be possible with the eigth multipler, but that length is not even defined in the specifications as of yet, nor is it supported by any emulator - forget actual hardware. |
2 years ago |
Rémi Denis-Courmont | 97d34befea |
lavc/opusdsp: RISC-V V (256-bit) postfilter
This adds a variant of the postfilter for use with 256-bit vectors. As a single vector is then large enough to perform the scalar product, the group multipler is reduced to just one at run-time. The different vector type is passed via register. Unfortunately, there is no VSETIVL instruction, so the constant vector size (5) also needs to be passed via a register. |
2 years ago |
Rémi Denis-Courmont | 8009581912 |
lavc/opusdsp: RISC-V V (128-bit) postfilter
This is implemented for a vector size of 128-bit. Since the scalar product in the inner loop covers 5 samples or 160 bits, we need a group multipler of 2. To avoid reconfiguring the vector type, the outer loop, which loads multiple input samples sticks to the same multipler. Consequently, the outer loop loads 8 samples per iteration. This is safe since the minimum period of the CELT codec is 15 samples. The same code would also work, albeit needlessly inefficiently with a vector length of 256 bits. A proper implementation will follow instead. |
2 years ago |