This commit improves the TNS implementation to the point where it's
actually usable and very rarely results in nastyness (in all bitrates
except extremely low bitrates it's increasing the quality and prevents
some distortions from the coder being audiable).
Also adds a double filter support which is only used if the energy
difference between the top and bottom of the SFBs is above the
thresholds defined in the header file. Looking at the bitstream
that fdk_aac generates it sometimes used a double filter despite
the specs stating that a single filter should be enough for almost
all cases and purposes.
Unlike FAAC or fdk_aac we sometimes use a reverse filter in case
the energy difference isn't enought to use a double filter. This
actually works better.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit reworks the TNS implementation to a hybrid between what
the specifications say, what the decoder does and what's the best
thing to do.
The filter application function was copied from the decoder and
modified such that it applies the inverse AR filter to the
coefficients. The LPC coefficients themselves are fed into the
same quantization expression that the specifications say should
be used however further processing is not done, instead they're
converted to the form that the decoder expects them to be in
and are sent off to the compute_lpc_coeffs function exactly the
way the decoder does. This function does all conversions and will
return the exact coefficients that the decoder will generate, which
are then applied to the coefficients.
Having the exact same coefficients on both the encoder and decoder
is a must since otherwise the entire sfb's over which the filter
is applied will be attenuated.
Despite this major rework, TNS might not work fine on some audio
types at very low bitrates (e.g. sub 90kbps) as it can attenuate
some coefficients too much. Users are advised to experiment with
TNS at higher bitrates if they wish to use this tool or simply
wait for the implementation to be improved.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit abandons the way the specifications state to
quantize the coefficients, makes use of the new LPC float
functions and is much better.
The original way of converting non-normalized float samples
to int32_t which out LPC system expects was wrong and it was
wrong to assume the coefficients that are generated are also
valid. It was essentially a full garbage-in, garbage-out
system and it definitely shows when looking at spectrals
and listening. The high frequencies were very overattenuated.
The new LPC function performs the analysis directly.
The specifications state to quantize the coefficients into
four bit index values using an asin() function which of course
had to have ugly ternary operators because the function turns
negative if the coefficients are negative which when encoding
causes invalid bitstream to get generated.
This deviates from this by using the direct TNS tables, which
are fairly small since you only have 4 bits at most for index
values. The LPC values are directly quantized against the tables
and are then used to perform filtering after the requantization,
which simply fetches the array values.
The end result is that TNS works much better now and doesn't
attenuate anything but the actual signal, e.g. TNS removes
quantization errors and does it's job correctly now.
It might be enabled by default soon since it doesn't hurt and
helps reduce nastyness at low bitrates.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit implements temporal noise shaping support in the
encoder, along with an -aac_tns option to toggle it on or off
(off by default for now). TNS will increase audio quality
and reduce quantization noise by applying a multitap FIR filter
across allowed coefficients and transmit side information to the
decoder so it could create an inverse filter.
Users are encouraged to test the new functionality by enabling
-aac_tns 1 during encoding.
No major bugs are observable at this time so after a while if no
new problems appear and if the current implementation is deemed
of high enough quality and stability it will be enabled by default,
possibly at the same time the encoder has its experimental flag
removed and becomes the standard aac encoder in ffmpeg.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This requires the makedef perl script by Derek, from the
c89-to-c99 repo. That scripts produces a .def file, listing
the symbols to be exported, based on the gcc version scripts
and the built object files.
To properly load non-function symbols from DLL files, the
data symbol declarations need to have the attribute
__declspec(dllimport) when building the calling code. (On mingw,
the linker can fix this up automatically, which is why it has not
been an issue so far. If this attribute is omitted, linking
actually succeeds, but reads from the table will not produce the
desired results at runtime.)
MSVC seems to manage to link DLLs (and run properly) even if
this attribute is present while building the library itself
(which normally isn't recommended) - other object files in the
same library manage to link to the symbol (with a small warning
at link time, like "warning LNK4049: locally defined symbol
_avpriv_mpa_bitrate_tab imported" - it doesn't seem to be possible
to squelch this warning), and the definition of the tables
themselves produce a warning that can be squelched ("warning C4273:
'avpriv_mpa_bitrate_tab' : inconsistent dll linkage, see previous
definition of 'avpriv_mpa_bitrate_tab').
In this setup, mingw isn't able to link object files that refer to
data symbols with __declspec(dllimport) without those symbols
actually being linked via a DLL (linking avcodec.dll ends up with
errors like "undefined reference to `__imp__avpriv_mpa_freq_tab'").
The dllimport declspec isn't needed at all in mingw, so we simply
choose not to declare it for other compilers than MSVC that requires
it. (If ICL support later requires it, the condition can be extended
later to include both of them.)
This also implies that code that is built to link to a certain
library as a DLL can't link to the same library as a static library.
Therefore, we only allow building either static or shared but not
both at the same time. (That is, static libraries as such can be,
and actually are, built - this is used for linking the test tools to
internal symbols in the libraries - but e.g. libavformat built to
link to libavcodec as a DLL cannot link statically to libavcodec.)
Also, linking to DLLs is slightly different from linking to shared
libraries on other platforms. DLLs use a thing called import
libraries, which is basically a stub library allowing the linker
to know which symbols exist in the DLL and what name the DLL will
have at runtime.
In mingw/gcc, the import library is usually named libfoo.dll.a,
which goes next to a static library named libfoo.a. This allows
gcc to pick the dynamic one, if available, from the normal -lfoo
switches, just as it does for libfoo.a vs libfoo.so on Unix. On
MSVC however, you need to literally specify the name of the import
library instead of the static library.
Signed-off-by: Martin Storsjö <martin@martin.st>
This table is used only by mpegaudiodsp and mpegaudioenc. Separating
it allows dropping some dependencies from mpc[78] and qdm2.
Signed-off-by: Mans Rullgard <mans@mansr.com>
Passing an explicit filename to this command is only necessary if the
documentation in the @file block refers to a file different from the
one the block resides in.
Originally committed as revision 22921 to svn://svn.ffmpeg.org/ffmpeg/trunk
Otherwise doxygen complains about ambiguous filenames when files exist
under the same name in different subdirectories.
Originally committed as revision 16912 to svn://svn.ffmpeg.org/ffmpeg/trunk
Consistently apply this rule: the guard name is obtained from the
filename by stripping the leading "lib", converting '/' and '.' to
'_' and uppercasing the resulting name. Guard names in the root
directory have to be prefixed by "FFMPEG_".
Originally committed as revision 15120 to svn://svn.ffmpeg.org/ffmpeg/trunk