This option is extremely codec specific and only a few codecs employ it.
Move it to codec private options instead: mpegenc family supports only 3
values, xavs and x264 use 5, and xvid has a different metric entirely.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
The rationale is that coded_frame was only used to communicate key_frame,
pict_type and quality to the caller, as well as a few other random fields,
in a non predictable, let alone consistent way.
There was agreement that there was no use case for coded_frame, as it is
a full-sized AVFrame container used for just 2-3 int-sized properties,
which shouldn't even belong into the AVCodecContext in the first place.
The appropriate AVPacket flag can be used instead of key_frame, while
quality is exported with the new AVPacketSideData quality factor.
There is no replacement for the other fields as they were unreliable,
mishandled or just not used at all.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
This is necessary to preserve the quality information currently exported
with coded_frame. Add the new side data to every encoder that needs it,
and use it in avconv.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
They are used by dnxhd and mpegvideo_enc exclusively, move them to codec
private options instead.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
ELS and ePIC decoder courtesy of Maxim Poliakovski,
cleanup and integration by Diego Biurrun.
Signed-off-by: Diego Biurrun <diego@biurrun.de>
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
Bump the minimum libvpx version to 1.3.0 and rework the configure logic
to fail only if no decoders and encoders are found.
Based on the original patch from Vittorio.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
This is useful for client programs to ask for nv12 surfaces instead of the
current default (uyvy), since those are more efficient to decode to.
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
Compared to existing, common opensource H264 encoders, this can be
useful since it has got a different license (BSD instead of GPL).
Performance- and qualitywise it is comparable to x264 in ultrafast
mode.
Hooking it up as an encoder in libavcodec also simplifies comparing
it against other common encoders.
This requires OpenH264 1.3 or newer. Since the OpenH264 API and ABI
changes frequently, only releases are supported.
To take advantage of the OpenH264 patent offer, the OpenH264 library
must not be redistributed, but downloaded at runtime at the end-user's
system.
Signed-off-by: Martin Storsjö <martin@martin.st>
Since the VDPAU pixel format does not distinguish between different
VDPAU video surface chroma types, we need another way to pass this
data to the application.
Originally VDPAU in libavcodec only supported decoding to 8-bits YUV
with 4:2:0 chroma sampling. Correspondingly, applications assumed that
libavcodec expected VDP_CHROMA_TYPE_420 video surfaces for output.
However some of the new HEVC profiles proposed for addition to VDPAU
would require different depth and/or sampling:
http://lists.freedesktop.org/archives/vdpau/2014-July/000167.html
...as would lossless AVC profiles:
http://lists.freedesktop.org/archives/vdpau/2014-November/000241.html
To preserve backward binary compatibility with existing applications,
a new av_vdpau_bind_context() flag is introduced in a further change.
Signed-off-by: Rémi Denis-Courmont <remi@remlab.net>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
This can be used by the application to signal its ability to cope with
video surface of types other than 8-bits YUV 4:2:0.
Signed-off-by: Rémi Denis-Courmont <remi@remlab.net>
Signed-off-by: Anton Khirnov <anton@khirnov.net>
This carries the pixel format that would be used if it were not for
hardware acceleration. This is equal to AVCodecContext.pix_fmt if
hardware acceleration is not in use.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
For streams which contain DRC metadata, the FDK decoder is able to
control rendering of the decoded output. The rendering parameters
are detailed in fdk_aac_dec_options [].
The default behavior is left up to the decoder.
Signed-off-by: Martin Storsjö <martin@martin.st>
The FDK decoder is capable of producing mono and stereo downmix from
multichannel streams. These streams may contain metadata that control
the downmix process. The decoder requires an Ancillary Buffer in order to
correctly apply downmix in streams containing downmix Metadata. The
decoder does not have an API interface to inform of the presence of
Metadata in the stream, and therefore the Ancillary Buffer is always
allocated whenever a downmix is requested.
When downmixing multichannel streams, the decoder requires the output
buffer in aacDecoder_DecodeFrame call to be of fixed size in order to
hold the actual number of channels contained in the stream. For example,
for a 5.1ch to stereo downmix, the decoder requires that the output buffer
is allocated for 6 channels, regardless of the fact that the output is in
fact two channels.
Due to this requirement, the output buffer is allocated for the maximum
output buffer size in case a downmix is requested (and also during
decoder init). When a downmix is requested, the buffer used for output
during init will also be used for the entire duration the decoder is open.
Otherwise, the initial decoder output buffer is freed and the decoder
decodes straight into the output AVFrame.
Signed-off-by: Martin Storsjö <martin@martin.st>
When decoding, this field holds the inverse of the framerate that can be
written in the headers for some codecs. Using a field called 'time_base'
for this is very misleading, as there are no timestamps associated with
it. Furthermore, this field is used for a very different purpose during
encoding.
Add a new field, called 'framerate', to replace the use of time_base for
decoding.