Fixes: runtime error: shift exponent 132 is too large for 32-bit type 'int'
Fixes: 609/clusterfuzz-testcase-4825202619842560
See 11.2.2 IHDR Image header
Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/targets/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
If there is progressive input it will disable deinterlacing in cuvid for
all future frames even those interlaced.
Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
Channel mapping 2 additionally supports a non-diegetic stereo track
appended to the end of a full-order ambisonics signal, such that the
total channel count is either
(n + 1) ^ 2, or
(n + 1) ^ 2 + 2
where n is the ambisonics order
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
This marks the first time anyone has written an Opus encoder without
using any libopus code. The aim of the encoder is to prove how far
the format can go by writing the craziest encoder for it.
Right now the encoder's basic, it only supports CBR encoding, however
internally every single feature the CELT layer has is implemented
(except the pitch pre-filter which needs to work well with the rest of
whatever gets implemented). Psychoacoustic and rate control systems are
under development.
The encoder takes in frames of 120 samples and depending on the value of
opus_delay the plan is to use the extra buffered frames as lookahead.
Right now the encoder will pick the nearest largest legal frame size and
won't use the lookahead, but that'll change once there's a
psychoacoustic system.
Even though its a pretty basic encoder its already outperforming
any other native encoder FFmpeg has by a huge amount.
The PVQ search algorithm is faster and more accurate than libopus's
algorithm so the encoder's performance is close to that of libopus
at zero complexity (libopus has more SIMD).
The algorithm might be ported to libopus or other codecs using PVQ in
the future.
The encoder still has a few minor bugs, like desyncs at ultra low
bitrates (below 9kbps with 20ms frames).
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This is meant to be applied on top of my previous patch which
split PVQ into celt_pvq.c and made opus_celt.h
Essentially nothing has been changed other than renaming CeltFrame
to CeltBlock (CeltFrame had absolutely nothing at all to do with
a frame) and CeltContext to CeltFrame.
3 variables have been put in CeltFrame as they make more sense
there rather than being passed around as arguments.
The coefficients have been moved to the CeltBlock structure
(why the hell were they in CeltContext and not in CeltFrame??).
Now the encoder would be able to use the exact context the decoder
uses (plus a couple of extra fields in there).
FATE passes, no slowdowns, etc.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
A huge amount can be reused by the encoder, as the only thing
which needs to be done would be to add a 10 line celt_icwrsi,
a wrapper around it (celt_alg_quant) and templating the
ff_celt_decode_band to replace entropy decoding functions
with entropy encoding.
There is no performance loss but in fact a performance gain of
around 6% which is caused by the compiler being able to optimize
the decoding more efficiently.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Handles strides (needed for Opus transients), does pre-reindexing and folding
without needing a copy.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Mostly used the RFC document, the decoding functions and
the reference encoder's implmenentation as a reference.
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
A strict reading of the spec seems to imply that it should be aligned to
the start of the element instance tag, but that would break all of the
samples with PCEs.
It seems like a well formed LATM stream should have its PCE in the ASC
rather than inband.
Fixes ticket 4544