More recent kernel versions allow for users to extract a sync_file
handle from a DMA-BUF, which can then be imported into Vulkan as a
binary semaphore.
This finally allows for synchronization between Vulkan and DMA-BUF
images, such as those from screen capture software, or VAAPI,
avoiding any corruption artifacts.
This is done fully asynchronously, where we use the kernel's
given binary semaphores as a dependency to increment the image's
usual VkSemaphores we allocate. The old imported binary semaphores
are cleaned up after execution as usual.
In the future, hwcontext_drm should receive support for explicitly
synchronized images as well, which would make the synchronization
more robust and portable.
The old query code never worked properly, and did some hideous
heuristics to read the status bit, and work that into a return
code.
This is all best left to callers to do, which simplifies
our code a lot.
This also fixes minor validation errors regarding calling queries
which are not in their active state.
The issue is that we ask for storage images by default if
available, but because that is gated by the format supporting
storage images, and the check for the format supporting storage
images is gated by the usage, this resulted in a catch-22.
In one of the failure paths of av_opt_get_array, the ret variable
was accidentally declared again, shadowing the outer one and once when
jumping to the fail label would return the still uninitialised outer
one.
To fix this simply remove the local declaration of ret that shadowed
the outer one.
Introduced in d89930f866
Fixes: CID1618663 Uninitialized scalar variable
In one failure path for av_opt_set_array, the ret variable
was declared again, shadowing the outer one and writing the
return value to the wrong one and then after the goto returning
the uninitialized one instead.
Introduced in 450a3f58ed
Fixes: CID1619242 Uninitialized scalar variable
Previously one could only replace the entire array with a new one
deserialized from a string. The new API allows inserting, replacing, and
removing arbitrary element ranges.
Vulkan encoding was designed in a very... consolidated way.
You had to know the exact codec and profile that the image was going to
eventually be encoded as at... image creation time. Unfortunately, as good
as our code is, glimpsing into the exact future isn't what its capable of.
video_maintenance1 removed that requirement, which only then made encoding
images practically possible.
The issue is that enabling features requires that the device
extension is supported. The extensions bitfield was set later,
so it was always 0, leading to no features being added.
The validation layer option only supported GPU-assisted validation.
This is mutually exclusive with shader debug printfs, so we need to
differentiate between the two.
This also fixes issues with user-given layers, and leaks in case of
errors.
Hardware frames with RGB colorspace will not have a YCbCrMatrixKey.
Currently, it will spam the console with warning if rgb frame is
uploaded.
Signed-off-by: Gnattu OC <gnattuoc@me.com>
Reviewed-by: Marvin Scholz <epirat07@gmail.com>
Signed-off-by: Zhao Zhili <zhilizhao@tencent.com>
Fixes:
vkCreateDevice(): pCreateInfo->pNext<VkPhysicalDeviceOpticalFlowFeaturesNV> includes a
pointer to a VkPhysicalDeviceOpticalFlowFeaturesNV, but when creating VkDevice, the
parent extension (VK_NV_optical_flow) was not included in ppEnabledExtensionNames.
The Vulkan spec states: Each pNext member of any structure (including this one) in
the pNext chain must be either NULL or a pointer to a valid struct for extending
VkDeviceCreateInfo.