give high quality resampling
as good as with linear_interp=on
as fast as without linear_interp=on
tested visually with ffplay
ffplay -f lavfi "aevalsrc='sin(10000*t*t)', aresample=osr=48000, showcqt=gamma=5"
ffplay -f lavfi "aevalsrc='sin(10000*t*t)', aresample=osr=48000:linear_interp=on, showcqt=gamma=5"
ffplay -f lavfi "aevalsrc='sin(10000*t*t)', aresample=osr=48000:exact_rational=on, showcqt=gamma=5"
slightly speed improvement
for fair comparison with -cpuflags 0
audio.wav is ~ 1 hour 44100 stereo 16bit wav file
ffmpeg -i audio.wav -af aresample=osr=48000 -f null -
old new
real 13.498s 13.121s
user 13.364s 12.987s
sys 0.131s 0.129s
linear_interp=on
old new
real 23.035s 23.050s
user 22.907s 22.917s
sys 0.119s 0.125s
exact_rational=on
real 12.418s
user 12.298s
sys 0.114s
possibility to decrease memory usage if soft compensation is ignored
Signed-off-by: Muhammad Faiz <mfcc64@gmail.com>
Prototypes are not needed anymore now that the x86 functions don't
include resample_template.c
The DO_RESAMPLE_ONE macro is removed for that same reason as well.
Signed-off-by: James Almer <jamrial@gmail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
Linear interpolation goes from 63 (llvm) or 58 (gcc) to 48 (yasm)
cycles/sample on 64bit, or from 66 (llvm/gcc) to 52 (yasm) cycles/
sample on 32bit. Bon-linear goes from 43 (llvm) or 38 (gcc) to
32 (yasm) cycles/sample on 64bit, or from 46 (llvm) or 44 (gcc) to
38 (yasm) cycles/sample on 32bit (all testing on OSX 10.9.2, llvm
5.1 and gcc 4.8/9).
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
Should fix compilation failures with MSVC and any other compiler
without inline asm support.
Signed-off-by: James Almer <jamrial@gmail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
DSP bits of swri_resample go into their own mini-DSP functions; DSP
init goes from a per-call branch in multiple_resample to a proper
DSP init routine; x86 bits go into x86/; swri_resample() moves out of
resample_template.c into resample.c because it's independent of DSP
code or sample type; multiple_resample() is simplified.
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
I don't see dst_incr/dst_incr_frac ever being changed from their
initial value (which is the inverse of this operation), so it seems
to me that this is a no-op.
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
I think there's an off-by-one in terms of the switchpoint where we
switch from dst_incr to ideal_dst_incr, I don't think that's a massive
issue, but just be aware of that. It's probably trivial to prevent but
I don't care.
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
I could not reproduce any off by 1 error, results are bit exact (michael)
This removes a branch at a performance-sensitive point (in the middle
of the loop). In fate-swr-resample-s32p-8000-2626, this makes the code
about 10% faster. It also simplifies the loops, allowing us to rewrite
it in yasm at some later point.
The compensation_distance != 0 code and index < 0 code are still kind
of hairy. For compensation_distance != 0, this should likely be handled
in the caller, so that it calls swri_resample twice (once until the
dst_incr switch-point, and once with the remainder of the samples). For
index < 0, the code should probably be rewritten to break out of the
loop once sample_index >= 0, and then resume (e.g. as a tail-call) to
the common or linear resampling loops.
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
This should avoid slight differences in the output causes by input
size alignment differences between archs
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
pshuf+paddd is slightly faster than phaddd.
The real gain is in pre-ssse3 processors like AMD K8 and K10, which get
a big boost in performance compared to the mmxext version
Signed-off-by: James Almer <jamrial@gmail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
It has various benefits such as allowing some refactoring, clarifying
the code in the inclusion part, and making the template understandable
in standalone.
This commit is based on the templating method used by Justin Ruggles for
libavresample.