Align the second/third operands as they usually are.
Due to the wildly varying sizes of the written out operands
in aarch64 assembly, the column alignment is usually not as clear
as in arm assembly.
This is cherrypicked from libav commit
7995ebfad1.
Signed-off-by: Martin Storsjö <martin@martin.st>
In the half/quarter cases where we don't use the min_eob array, defer
loading the pointer until we know it will be needed.
This is cherrypicked from libav commit
3a0d5e206d.
Signed-off-by: Martin Storsjö <martin@martin.st>
This reduces the number of lines and reduces the duplication.
Also simplify the eob check for the half case.
If we are in the half case, we know we at least will need to do the
first three slices, we only need to check eob for the fourth one,
so we can hardcode the value to check against instead of loading
from the min_eob array.
Since at most one slice can be skipped in the first pass, we can
unroll the loop for filling zeros completely, as it was done for
the quarter case before.
This allows skipping loading the min_eob pointer when using the
quarter/half cases.
This is cherrypicked from libav commit
98ee855ae0.
Signed-off-by: Martin Storsjö <martin@martin.st>
Align the second/third operands as they usually are.
Due to the wildly varying sizes of the written out operands
in aarch64 assembly, the column alignment is usually not as clear
as in arm assembly.
Signed-off-by: Martin Storsjö <martin@martin.st>
In the half/quarter cases where we don't use the min_eob array, defer
loading the pointer until we know it will be needed.
Signed-off-by: Martin Storsjö <martin@martin.st>
This reduces the number of lines and reduces the duplication.
Also simplify the eob check for the half case.
If we are in the half case, we know we at least will need to do the
first three slices, we only need to check eob for the fourth one,
so we can hardcode the value to check against instead of loading
from the min_eob array.
Since at most one slice can be skipped in the first pass, we can
unroll the loop for filling zeros completely, as it was done for
the quarter case before.
This allows skipping loading the min_eob pointer when using the
quarter/half cases.
Signed-off-by: Martin Storsjö <martin@martin.st>
This matches the order they are in the 16 bpp version.
There they are in this order, to make sure we access them in the
same order they are declared, easing loading only half of the
coefficients at a time.
This makes the 8 bpp version match the 16 bpp version better.
This is cherrypicked from libav commit
08074c092d.
Signed-off-by: Martin Storsjö <martin@martin.st>
All elements are used pairwise, except for the first one.
Previously, the 16th element was unused. Move the unused element
to the second slot, to make the later element pairs not split
across registers.
This simplifies loading only parts of the coefficients,
reducing the difference to the 16 bpp version.
This is cherrypicked from libav commit
de06bdfe6c.
Signed-off-by: Martin Storsjö <martin@martin.st>
The idct32x32 function actually pushed q4-q7 onto the stack even
though it didn't clobber them; there are plenty of registers that
can be used to allow keeping all the idct coefficients in registers
without having to reload different subsets of them at different
stages in the transform.
Since the idct16 core transform avoids clobbering q4-q7 (but clobbers
q2-q3 instead, to avoid needing to back up and restore q4-q7 at all
in the idct16 function), and the lanewise vmul needs a register in
the q0-q3 range, we move the stored coefficients from q2-q3 into q4-q5
while doing idct16.
While keeping these coefficients in registers, we still can skip pushing
q7.
Before: Cortex A7 A8 A9 A53
vp9_inv_dct_dct_32x32_sub32_add_neon: 18553.8 17182.7 14303.3 12089.7
After:
vp9_inv_dct_dct_32x32_sub32_add_neon: 18470.3 16717.7 14173.6 11860.8
This is cherrypicked from libav commit
402546a172.
Signed-off-by: Martin Storsjö <martin@martin.st>
This allows reusing the macro for a separate implementation of the
pass2 function.
This is cherrypicked from libav commit
47b3c2c18d.
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
This reduces the code size of libavcodec/arm/vp9itxfm_neon.o from
15324 to 12388 bytes.
This gives a small slowdown of a couple tens of cycles, up to around
150 cycles for the full case of the largest transform, but makes
it more feasible to add more optimized versions of these transforms.
Before: Cortex A7 A8 A9 A53
vp9_inv_dct_dct_16x16_sub4_add_neon: 2063.4 1516.0 1719.5 1245.1
vp9_inv_dct_dct_16x16_sub16_add_neon: 3279.3 2454.5 2525.2 1982.3
vp9_inv_dct_dct_32x32_sub4_add_neon: 10750.0 7955.4 8525.6 6754.2
vp9_inv_dct_dct_32x32_sub32_add_neon: 18574.0 17108.4 14216.7 12010.2
After:
vp9_inv_dct_dct_16x16_sub4_add_neon: 2060.8 1608.5 1735.7 1262.0
vp9_inv_dct_dct_16x16_sub16_add_neon: 3211.2 2443.5 2546.1 1999.5
vp9_inv_dct_dct_32x32_sub4_add_neon: 10682.0 8043.8 8581.3 6810.1
vp9_inv_dct_dct_32x32_sub32_add_neon: 18522.4 17277.4 14286.7 12087.9
This is cherrypicked from libav commit
0331c3f5e8.
Signed-off-by: Martin Storsjö <martin@martin.st>
This matches the order they are in the 16 bpp version.
There they are in this order, to make sure we access them in the
same order they are declared, easing loading only half of the
coefficients at a time.
This makes the 8 bpp version match the 16 bpp version better.
Signed-off-by: Martin Storsjö <martin@martin.st>
All elements are used pairwise, except for the first one.
Previously, the 16th element was unused. Move the unused element
to the second slot, to make the later element pairs not split
across registers.
This simplifies loading only parts of the coefficients,
reducing the difference to the 16 bpp version.
Signed-off-by: Martin Storsjö <martin@martin.st>
The idct32x32 function actually pushed q4-q7 onto the stack even
though it didn't clobber them; there are plenty of registers that
can be used to allow keeping all the idct coefficients in registers
without having to reload different subsets of them at different
stages in the transform.
Since the idct16 core transform avoids clobbering q4-q7 (but clobbers
q2-q3 instead, to avoid needing to back up and restore q4-q7 at all
in the idct16 function), and the lanewise vmul needs a register in
the q0-q3 range, we move the stored coefficients from q2-q3 into q4-q5
while doing idct16.
While keeping these coefficients in registers, we still can skip pushing
q7.
Before: Cortex A7 A8 A9 A53
vp9_inv_dct_dct_32x32_sub32_add_neon: 18553.8 17182.7 14303.3 12089.7
After:
vp9_inv_dct_dct_32x32_sub32_add_neon: 18470.3 16717.7 14173.6 11860.8
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
This reduces the code size of libavcodec/arm/vp9itxfm_neon.o from
15324 to 12388 bytes.
This gives a small slowdown of a couple tens of cycles, up to around
150 cycles for the full case of the largest transform, but makes
it more feasible to add more optimized versions of these transforms.
Before: Cortex A7 A8 A9 A53
vp9_inv_dct_dct_16x16_sub4_add_neon: 2063.4 1516.0 1719.5 1245.1
vp9_inv_dct_dct_16x16_sub16_add_neon: 3279.3 2454.5 2525.2 1982.3
vp9_inv_dct_dct_32x32_sub4_add_neon: 10750.0 7955.4 8525.6 6754.2
vp9_inv_dct_dct_32x32_sub32_add_neon: 18574.0 17108.4 14216.7 12010.2
After:
vp9_inv_dct_dct_16x16_sub4_add_neon: 2060.8 1608.5 1735.7 1262.0
vp9_inv_dct_dct_16x16_sub16_add_neon: 3211.2 2443.5 2546.1 1999.5
vp9_inv_dct_dct_32x32_sub4_add_neon: 10682.0 8043.8 8581.3 6810.1
vp9_inv_dct_dct_32x32_sub32_add_neon: 18522.4 17277.4 14286.7 12087.9
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
Previously all subpartitions except the eob=1 (DC) case ran with
the same runtime:
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_16x16_sub16_add_neon: 3188.1 2435.4 2499.0 1969.0
vp9_inv_dct_dct_32x32_sub32_add_neon: 18531.7 16582.3 14207.6 12000.3
By skipping individual 4x16 or 4x32 pixel slices in the first pass,
we reduce the runtime of these functions like this:
vp9_inv_dct_dct_16x16_sub1_add_neon: 274.6 189.5 211.7 235.8
vp9_inv_dct_dct_16x16_sub2_add_neon: 2064.0 1534.8 1719.4 1248.7
vp9_inv_dct_dct_16x16_sub4_add_neon: 2135.0 1477.2 1736.3 1249.5
vp9_inv_dct_dct_16x16_sub8_add_neon: 2446.7 1828.7 1993.6 1494.7
vp9_inv_dct_dct_16x16_sub12_add_neon: 2832.4 2118.3 2266.5 1735.1
vp9_inv_dct_dct_16x16_sub16_add_neon: 3211.7 2475.3 2523.5 1983.1
vp9_inv_dct_dct_32x32_sub1_add_neon: 756.2 456.7 862.0 553.9
vp9_inv_dct_dct_32x32_sub2_add_neon: 10682.2 8190.4 8539.2 6762.5
vp9_inv_dct_dct_32x32_sub4_add_neon: 10813.5 8014.9 8518.3 6762.8
vp9_inv_dct_dct_32x32_sub8_add_neon: 11859.6 9313.0 9347.4 7514.5
vp9_inv_dct_dct_32x32_sub12_add_neon: 12946.6 10752.4 10192.2 8280.2
vp9_inv_dct_dct_32x32_sub16_add_neon: 14074.6 11946.5 11001.4 9008.6
vp9_inv_dct_dct_32x32_sub20_add_neon: 15269.9 13662.7 11816.1 9762.6
vp9_inv_dct_dct_32x32_sub24_add_neon: 16327.9 14940.1 12626.7 10516.0
vp9_inv_dct_dct_32x32_sub28_add_neon: 17462.7 15776.1 13446.2 11264.7
vp9_inv_dct_dct_32x32_sub32_add_neon: 18575.5 17157.0 14249.3 12015.1
I.e. in general a very minor overhead for the full subpartition case due
to the additional loads and cmps, but a significant speedup for the cases
when we only need to process a small part of the actual input data.
In common VP9 content in a few inspected clips, 70-90% of the non-dc-only
16x16 and 32x32 IDCTs only have nonzero coefficients in the upper left
8x8 or 16x16 subpartitions respectively.
This is cherrypicked from libav commit
9c8bc74c2b.
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
This avoids reloading them if they haven't been clobbered, if the
first pass also was idct.
This is similar to what was done in the aarch64 version.
This is cherrypicked from libav commit
3c87039a40.
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Since the same parameter is used for both input and output,
the name inout is more fitting.
This matches the naming used below in the dmbutterfly macro.
This is cherrypicked from libav commit
79566ec8c7.
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
This is one instruction less for thumb, and only have got
1/2 arm/thumb specific instructions.
This is cherrypicked from libav commit
e5b0fc170f.
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
This work is sponsored by, and copyright, Google.
Previously all subpartitions except the eob=1 (DC) case ran with
the same runtime:
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_16x16_sub16_add_neon: 3188.1 2435.4 2499.0 1969.0
vp9_inv_dct_dct_32x32_sub32_add_neon: 18531.7 16582.3 14207.6 12000.3
By skipping individual 4x16 or 4x32 pixel slices in the first pass,
we reduce the runtime of these functions like this:
vp9_inv_dct_dct_16x16_sub1_add_neon: 274.6 189.5 211.7 235.8
vp9_inv_dct_dct_16x16_sub2_add_neon: 2064.0 1534.8 1719.4 1248.7
vp9_inv_dct_dct_16x16_sub4_add_neon: 2135.0 1477.2 1736.3 1249.5
vp9_inv_dct_dct_16x16_sub8_add_neon: 2446.7 1828.7 1993.6 1494.7
vp9_inv_dct_dct_16x16_sub12_add_neon: 2832.4 2118.3 2266.5 1735.1
vp9_inv_dct_dct_16x16_sub16_add_neon: 3211.7 2475.3 2523.5 1983.1
vp9_inv_dct_dct_32x32_sub1_add_neon: 756.2 456.7 862.0 553.9
vp9_inv_dct_dct_32x32_sub2_add_neon: 10682.2 8190.4 8539.2 6762.5
vp9_inv_dct_dct_32x32_sub4_add_neon: 10813.5 8014.9 8518.3 6762.8
vp9_inv_dct_dct_32x32_sub8_add_neon: 11859.6 9313.0 9347.4 7514.5
vp9_inv_dct_dct_32x32_sub12_add_neon: 12946.6 10752.4 10192.2 8280.2
vp9_inv_dct_dct_32x32_sub16_add_neon: 14074.6 11946.5 11001.4 9008.6
vp9_inv_dct_dct_32x32_sub20_add_neon: 15269.9 13662.7 11816.1 9762.6
vp9_inv_dct_dct_32x32_sub24_add_neon: 16327.9 14940.1 12626.7 10516.0
vp9_inv_dct_dct_32x32_sub28_add_neon: 17462.7 15776.1 13446.2 11264.7
vp9_inv_dct_dct_32x32_sub32_add_neon: 18575.5 17157.0 14249.3 12015.1
I.e. in general a very minor overhead for the full subpartition case due
to the additional loads and cmps, but a significant speedup for the cases
when we only need to process a small part of the actual input data.
In common VP9 content in a few inspected clips, 70-90% of the non-dc-only
16x16 and 32x32 IDCTs only have nonzero coefficients in the upper left
8x8 or 16x16 subpartitions respectively.
Signed-off-by: Martin Storsjö <martin@martin.st>
This avoids reloading them if they haven't been clobbered, if the
first pass also was idct.
This is similar to what was done in the aarch64 version.
Signed-off-by: Martin Storsjö <martin@martin.st>
Since the same parameter is used for both input and output,
the name inout is more fitting.
This matches the naming used below in the dmbutterfly macro.
Signed-off-by: Martin Storsjö <martin@martin.st>
This work is sponsored by, and copyright, Google.
For the transforms up to 8x8, we can fit all the data (including
temporaries) in registers and just do a straightforward transform
of all the data. For 16x16, we do a transform of 4x16 pixels in
4 slices, using a temporary buffer. For 32x32, we transform 4x32
pixels at a time, in two steps of 4x16 pixels each.
Examples of relative speedup compared to the C version, from checkasm:
Cortex A7 A8 A9 A53
vp9_inv_adst_adst_4x4_add_neon: 3.39 5.83 4.17 4.01
vp9_inv_adst_adst_8x8_add_neon: 3.79 4.86 4.23 3.98
vp9_inv_adst_adst_16x16_add_neon: 3.33 4.36 4.11 4.16
vp9_inv_dct_dct_4x4_add_neon: 4.06 6.16 4.59 4.46
vp9_inv_dct_dct_8x8_add_neon: 4.61 6.01 4.98 4.86
vp9_inv_dct_dct_16x16_add_neon: 3.35 3.44 3.36 3.79
vp9_inv_dct_dct_32x32_add_neon: 3.89 3.50 3.79 4.42
vp9_inv_wht_wht_4x4_add_neon: 3.22 5.13 3.53 3.77
Thus, the speedup vs C code is around 3-6x.
This is mostly marginally faster than the corresponding routines
in libvpx on most cores, tested with their 32x32 idct (compared to
vpx_idct32x32_1024_add_neon). These numbers are slightly in libvpx's
favour since their version doesn't clear the input buffer like ours
do (although the effect of that on the total runtime probably is
negligible.)
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_32x32_add_neon: 18436.8 16874.1 14235.1 11988.9
libvpx vpx_idct32x32_1024_add_neon 20789.0 13344.3 15049.9 13030.5
Only on the Cortex A8, the libvpx function is faster. On the other cores,
ours is slightly faster even though ours has got source block clearing
integrated.
This is an adapted cherry-pick from libav commits
a67ae67083 and
52d196fb30.
Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
This work is sponsored by, and copyright, Google.
For the transforms up to 8x8, we can fit all the data (including
temporaries) in registers and just do a straightforward transform
of all the data. For 16x16, we do a transform of 4x16 pixels in
4 slices, using a temporary buffer. For 32x32, we transform 4x32
pixels at a time, in two steps of 4x16 pixels each.
Examples of relative speedup compared to the C version, from checkasm:
Cortex A7 A8 A9 A53
vp9_inv_adst_adst_4x4_add_neon: 3.39 5.83 4.17 4.01
vp9_inv_adst_adst_8x8_add_neon: 3.79 4.86 4.23 3.98
vp9_inv_adst_adst_16x16_add_neon: 3.33 4.36 4.11 4.16
vp9_inv_dct_dct_4x4_add_neon: 4.06 6.16 4.59 4.46
vp9_inv_dct_dct_8x8_add_neon: 4.61 6.01 4.98 4.86
vp9_inv_dct_dct_16x16_add_neon: 3.35 3.44 3.36 3.79
vp9_inv_dct_dct_32x32_add_neon: 3.89 3.50 3.79 4.42
vp9_inv_wht_wht_4x4_add_neon: 3.22 5.13 3.53 3.77
Thus, the speedup vs C code is around 3-6x.
This is mostly marginally faster than the corresponding routines
in libvpx on most cores, tested with their 32x32 idct (compared to
vpx_idct32x32_1024_add_neon). These numbers are slightly in libvpx's
favour since their version doesn't clear the input buffer like ours
do (although the effect of that on the total runtime probably is
negligible.)
Cortex A7 A8 A9 A53
vp9_inv_dct_dct_32x32_add_neon: 18436.8 16874.1 14235.1 11988.9
libvpx vpx_idct32x32_1024_add_neon 20789.0 13344.3 15049.9 13030.5
Only on the Cortex A8, the libvpx function is faster. On the other cores,
ours is slightly faster even though ours has got source block clearing
integrated.
Signed-off-by: Martin Storsjö <martin@martin.st>