Previously, all link-time dependencies were added for all libraries,
resulting in bogus link-time dependencies since not all dependencies
are shared across libraries. Also, in some cases like libavutil, not
all dependencies were taken into account, resulting in some cases of
underlinking.
To address all this mess a machinery is added for tracking which
dependency belongs to which library component and then leveraged
to determine correct dependencies for all individual libraries.
Supporting the system was a nice joke for the 9 release, but it has
run its course. Nowadays Plan 9 receives no testing and has no
practical usefulness.
Restore alphabetical order in lists, break overly long lines, do some
prettyprinting, add some explanatory section comments, group parts
together that belong together logically.
Now we no longer have to rely on function pointers intentionally
declared without specified argument types.
This makes it easier to support functions with floating point parameters
or return values as well as functions returning 64-bit values on 32-bit
architectures. It also avoids having to explicitly cast strides to
ptrdiff_t for example.
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Now we no longer have to rely on function pointers intentionally
declared without specified argument types.
This makes it easier to support functions with floating point parameters
or return values as well as functions returning 64-bit values on 32-bit
architectures. It also avoids having to explicitly cast strides to
ptrdiff_t for example.
It provides the following features:
* verify correctness by comparing output to the C version.
* detect failure to save and restore clobbered callee-saved registers.
* detect 32-bit parameters being used as if they were 64-bit in x86-64
(the upper halves are not guaranteed to be zero - but in practice
they very often are, which makes those bugs hard to spot otherwise).
* easy benchmarking.
Compile by running 'make checkasm'.
Execute by running 'tests/checkasm/checkasm'.
Optional arguments are '--bench' to run benchmarks for all functions,
'--bench=<pattern>' to run benchmarks for all functions that starts with
<pattern>, and '<integer>' to seed the PRNG for reproducible results.
Contains unit tests for most h264pred functions to get started, more tests
can be added afterwards using those as a reference.
Loosely based on code from x264. Currently only supports x86 and x86-64,
but additional architectures shouldn't be too much of an obstacle to add.
Note that functions with floating point parameters or floating point
return values are not supported. Some compiler-specific features or
preprocessor hacks would likely be required to add support for that.
Signed-off-by: Janne Grunau <janne-libav@jannau.net>