Existing link is broken.
This patch updates the existing url with a working one.
Signed-off-by: Mina <minasamy_@hotmail.com>
Signed-off-by: Gyan Doshi <ffmpeg@gyani.pro>
Lensfun is a library that applies lens correction to an image using a
database of cameras/lenses (you provide the camera and lens models, and
it uses the corresponding database entry's parameters to apply lens
correction). It is licensed under LGPL3.
The lensfun filter utilizes the lensfun library to apply lens
correction to videos as well as images.
This filter was created out of necessity since I wanted to apply lens
correction to a video and the lenscorrection filter did not work for me.
While this filter requires little info from the user to apply lens
correction, the flaw is that lensfun is intended to be used on indvidual
images. When used on a video, the parameters such as focal length is
constant, so lens correction may fail on videos where the camera's focal
length changes (zooming in or out via zoom lens). To use this filter
correctly on videos where such parameters change, timeline editing may
be used since this filter supports it.
Note that valgrind shows a small memory leak which is not from this
filter but from the lensfun library (memory is allocated when loading
the lensfun database but it somehow isn't deallocated even during
cleanup; it is briefly created in the init function of the filter, and
destroyed before the init function returns). This may have been fixed by
the latest commit in the lensfun repository; the current latest release
of lensfun is almost 3 years ago.
Bi-Linear interpolation is used by default as lanczos interpolation
shows more artifacts in the corrected image in my tests.
The lanczos interpolation is derived from lenstool's implementation of
lanczos interpolation. Lenstool is an app within the lensfun repository
which is licensed under GPL3.
v2 of this patch fixes license notice in libavfilter/vf_lensfun.c
v3 of this patch fixes code style and dependency to gplv3 (thanks to
Paul B Mahol for pointing out the mentioned issues).
v4 of this patch fixes more code style issues that were missed in
v3.
v5 of this patch adds line breaks to some of the documentation in
doc/filters.texi (thanks to Gyan Doshi for pointing out the issue).
v6 of this patch fixes more problems (thanks to Moritz Barsnick for
pointing them out).
v7 of this patch fixes use of sqrt() (changed to sqrtf(); thanks to
Moritz Barsnick for pointing this out). Also should be rebased off of
latest master branch commits at this point.
Signed-off-by: Stephen Seo <seo.disparate@gmail.com>
Set make variable KEEP to non-zero value to preserve temp files
when a test has passed.
Helpful in diagnosing failed tests when test outfile is some type of
single hash and does not reveal differences in processed output.
A generic lavf flag for AAC LATM packetization for the RTP muxer was
added in ef409645f0 and then made inert 20 days later in 0832122880
when a private muxer option was added and the generic flag no longer
read.
If the user provides a valid timecode_format look for timecode of that
format in the capture and if found store it on the video avstream's
metadata.
Slightly modified by Marton Balint to capture per-frame timecode as well.
Signed-off-by: Marton Balint <cus@passwd.hu>
HMS is formatted as HH:MM:SS.mmm, but, HH part is not limited to
24 hours. For example, the the drawn text may look like this:
243029:20:30.342. To present the timestamp in more readable and
user friendly format, this patch provides an additional option
to limit the hour part in the range 0-23.
Note: Actually the above required format can be obtained with
format options 'localtime' and 'gmtime', but, milliseconds part
is not supported in those formats.
The producer reference time box supplies relative wall-clock times
at which movie fragments, or files containing movie fragments
(such as segments) were produced.
The box is mainly useful in live streaming use cases. A media player
can parse the box and utilize the time fields to measure and improve
the latency during real time playout.
Right now segment file format is chosen to be either mp4 or webm based on the codec format.
This patch makes that choice configurable by the user, instead of being decided by the muxer.
Also with this change per-stream choice segment file format(based on codec type) is not possible.
All the output audio and video streams should be in the same file format.
This new optional flag makes it easier to deal with mpegts
samples where the PMT is updated and elementary streams move
to different PIDs in the middle of playback.
Previously, new AVStreams were created per PID, and it was up
to the user to figure out which streams had migrated to a new PID
(by iterating over the list of AVProgram and making guesses), and
switch seamlessly to the new AVStream during playback.
Transcoding or remuxing these streams with ffmpeg on the CLI was
also quite painful, and the user would need to extract each set
of PIDs into a separate file and then stitch them back together.
With this new option, the mpegts demuxer will automatically detect
PMT changes and feed data from the new PID to the original AVStream
that was created for the orignal PID. For mpegts samples with
stream_identifier_descriptor available, the unique ID is used to
merge PIDs together. If the stream id is not available, the demuxer
attempts to map PIDs based on their position within the PMT.
With this change, I am able to playback and transcode/remux these
two samples which previously caused issues:
https://tmm1.s3.amazonaws.com/pmt-version-change.tshttps://kuroko.fushizen.eu/videos/pid_switch_sample.ts
I also have another longer sample in which the PMT changes
repeatedly and ES streams move to different pids three times
during playback:
https://tmm1.s3.amazonaws.com/multiple-pmt-change.ts
Demuxing this sample with the new option shows several new log
messages as the PMT changes are handled:
[mpegts] detected PMT change (program=1, version=3/6, pcr_pid=0xf98/0xfb7)
[mpegts] re-using existing video stream 0 (pid=0xf98) for new pid=0xfb7
[mpegts] re-using existing audio stream 1 (pid=0xf99) for new pid=0xfb8
[mpegts] re-using existing audio stream 2 (pid=0xf9a) for new pid=0xfb9
[mpegts] detected PMT change (program=1, version=6/3, pcr_pid=0xfb7/0xf98)
[mpegts] detected PMT change (program=1, version=3/4, pcr_pid=0xf98/0xf9b)
[mpegts] re-using existing video stream 0 (pid=0xf98) for new pid=0xf9b
[mpegts] re-using existing audio stream 1 (pid=0xf99) for new pid=0xf9c
[mpegts] re-using existing audio stream 2 (pid=0xf9a) for new pid=0xf9d
[mpegts] detected PMT change (program=1, version=4/5, pcr_pid=0xf9b/0xfa9)
[mpegts] re-using existing video stream 0 (pid=0xf98) for new pid=0xfa9
[mpegts] re-using existing audio stream 1 (pid=0xf99) for new pid=0xfaa
[mpegts] re-using existing audio stream 2 (pid=0xf9a) for new pid=0xfab
[mpegts] detected PMT change (program=1, version=5/6, pcr_pid=0xfa9/0xfb7)
Signed-off-by: Aman Gupta <aman@tmm1.net>
These fields will allow the mpegts demuxer to expose details about
the PMT/program which created the AVProgram and its AVStreams.
In mpegts, a PMT which advertises streams has a version number
which can be incremented at any time. When the version changes,
the pids which correspond to each of it's streams can also change.
Since ffmpeg creates a new AVStream per pid by default, an API user
needs the ability to (a) detect when the PMT changed, and (b) tell
which AVStream were added to replace earlier streams.
This has been a long-standing issue with ffmpeg's handling of mpegts
streams with PMT changes, and I found two related patches in the wild
that attempt to solve the same problem:
The first is in MythTV's ffmpeg fork, where they added a
void (*streams_changed)(void*); to AVFormatContext and call it from
their fork of the mpegts demuxer whenever the PMT changes.
The second was proposed by XBMC in
https://ffmpeg.org/pipermail/ffmpeg-devel/2012-December/135036.html,
where they created a new AVMEDIA_TYPE_DATA stream with id=0 and
attempted to send packets to it whenever the PMT changed.
Signed-off-by: Aman Gupta <aman@tmm1.net>
Some filtered mpegts streams may erroneously include PMTs for
programs that are not advertised in the PAT. This confuses ffmpeg
and most players because multiple audio/video streams are created
and it is unclear which ones actually contain data.
See for example https://tmm1.s3.amazonaws.com/unknown-pmts.ts
In this sample, the PAT advertises exactly one program. But the
pid it points to for the program's PMT contains PMTs for other
programs as well. This is because the broadcaster decided to
re-use the same pid for multiple program PMTs.
The hardware that filtered the original multi-program stream
into a single-program stream did so by rewriting the PAT to
contain only the program that was requested. But since it just
passed through the PMT pid referenced in the PAT, multiple PMTs
are still present for the other programs.
Before:
Input #0, mpegts, from 'unknown-pmts.ts':
Duration: 00:00:10.11, start: 80741.189700, bitrate: 9655 kb/s
Program 4
Stream #0:2[0x41]: Video: mpeg2video (Main) ([2][0][0][0] / 0x0002), yuv420p(tv, bt709, progressive), 1280x720 [SAR 1:1 DAR 16:9], Closed Captions, 11063 kb/s, 59.94 fps, 59.94 tbr, 90k tbn, 119.88 tbc
Stream #0:3[0x44](eng): Audio: ac3 (AC-3 / 0x332D4341), 48000 Hz, 5.1(side), fltp, 384 kb/s
Stream #0:4[0x45](spa): Audio: ac3 (AC-3 / 0x332D4341), 48000 Hz, stereo, fltp, 128 kb/s
No Program
Stream #0:0[0x31]: Video: mpeg2video ([2][0][0][0] / 0x0002), none(tv), 90k tbr, 90k tbn, 90k tbc
Stream #0:1[0x34](eng): Audio: ac3 (AC-3 / 0x332D4341), 0 channels, fltp
Stream #0:5[0x51]: Video: mpeg2video ([2][0][0][0] / 0x0002), none, 90k tbr, 90k tbn
Stream #0:6[0x54](eng): Audio: ac3 (AC-3 / 0x332D4341), 0 channels
With skip_unknown_pmt=1:
Input #0, mpegts, from 'unknown-pmts.ts':
Duration: 00:00:10.11, start: 80741.189700, bitrate: 9655 kb/s
Program 4
Stream #0:0[0x41]: Video: mpeg2video (Main) ([2][0][0][0] / 0x0002), yuv420p(tv, bt709, progressive), 1280x720 [SAR 1:1 DAR 16:9], Closed Captions, 11063 kb/s, 59.94 fps, 59.94 tbr, 90k tbn, 119.88 tbc
Stream #0:1[0x44](eng): Audio: ac3 (AC-3 / 0x332D4341), 48000 Hz, 5.1(side), fltp, 384 kb/s
Stream #0:2[0x45](spa): Audio: ac3 (AC-3 / 0x332D4341), 48000 Hz, stereo, fltp, 128 kb/s
Signed-off-by: Aman Gupta <aman@tmm1.net>
Generates color bar test patterns based on EBU PAL recommendations.
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Tobias Rapp <t.rapp@noa-archive.com>