Explicitly identify decoder/encoder wrappers with a common name. This
saves API users from guessing by the name suffix. For example, they
don't have to guess that "h264_qsv" is the h264 QSV implementation, and
instead they can just check the AVCodec .codec and .wrapper_name fields.
Explicitly mark AVCodec entries that are hardware decoders or most
likely hardware decoders with new AV_CODEC_CAPs. The purpose is allowing
API users listing hardware decoders in a more generic way. The proposed
AVCodecHWConfig does not provide this information fully, because it's
concerned with decoder configuration, not information about the fact
whether the hardware is used or not.
AV_CODEC_CAP_HYBRID exists specifically for QSV, which can have software
implementations in case the hardware is not capable.
Based on a patch by Philip Langdale <philipl@overt.org>.
Merges Libav commit 47687a2f8a.
Explicitly identify decoder/encoder wrappers with a common name. This
saves API users from guessing by the name suffix. For example, they
don't have to guess that "h264_qsv" is the h264 QSV implementation, and
instead they can just check the AVCodec .codec and .wrapper_name fields.
Explicitly mark AVCodec entries that are hardware decoders or most
likely hardware decoders with new AV_CODEC_CAPs. The purpose is allowing
API users listing hardware decoders in a more generic way. The proposed
AVCodecHWConfig does not provide this information fully, because it's
concerned with decoder configuration, not information about the fact
whether the hardware is used or not.
AV_CODEC_CAP_HYBRID exists specifically for QSV, which can have software
implementations in case the hardware is not capable.
Based on a patch by Philip Langdale <philipl@overt.org>.
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
This parameter can be used to inform the allocation code about how much
downsizing might occur, and can be used to optimize how to allocate the
packet
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
Allocating coded_frame is what most encoders do anyway, so it makes
sense to always allocate and free it in a single place. Moreover a lot
of encoders freed the frame with av_freep() instead of the correct API
av_frame_free().
This bring uniformity to encoder behaviour and prevents applications
from erroneusly accessing this field when not allocated. Additionally
this helps isolating encoders that export information with coded_frame,
and heavily simplifies its deprecation.
Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
Currently, the amount of padding inserted at the beginning by some audio
encoders, is exported through AVCodecContext.delay. However
- the term 'delay' is heavily overloaded and can have multiple different
meanings even in the case of audio encoding.
- this field has entirely different meanings, depending on whether the
codec context is used for encoding or decoding (and has yet another
different meaning for video), preventing generic handling of the codec
context.
Therefore, add a new field -- AVCodecContext.initial_padding. It could
conceivably be used for decoding as well at a later point.
The aix header math.h defines "extern int class()" for C.
This fixes compilation on aix with external libraries enabled.
Signed-off-by: Carl Eugen Hoyos <cehoyos@ag.or.at>
The library might provide an encoder in the future, so it's better to
check for the presence of the decoder rather than just the library.
CC: libav-stable@libav.org
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
This allows getting rid of redundant checks later in the codec
specific init functions.
Move the check to before actually initializing the decoder lib,
to simplify error handling.
This fixes a case of returning a value from a void function, present since
d40dab907.
Signed-off-by: Martin Storsjö <martin@martin.st>
Also break some long lines, remove codec function placeholder comments
and add spaces in sample/pixel format lists.
Signed-off-by: Martin Storsjö <martin@martin.st>
Use CODEC_CAP_DELAY and CODEC_CAP_SMALL_LAST_FRAME to properly pad and flush
the encoder at the end of encoding. This is needed in order to have all input
samples decoded.