mirror of https://github.com/FFmpeg/FFmpeg.git
PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment. Official website: https://pytorch.org/. We call the C++ library of PyTorch as LibTorch, the same below. To build FFmpeg with LibTorch, please take following steps as reference: 1. download LibTorch C++ library in https://pytorch.org/get-started/locally/, please select C++/Java for language, and other options as your need. Please download cxx11 ABI version: (libtorch-cxx11-abi-shared-with-deps-*.zip). 2. unzip the file to your own dir, with command unzip libtorch-shared-with-deps-latest.zip -d your_dir 3. export libtorch_root/libtorch/include and libtorch_root/libtorch/include/torch/csrc/api/include to $PATH export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH 4. config FFmpeg with ../configure --enable-libtorch \ --extra-cflag=-I/libtorch_root/libtorch/include \ --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \ --extra-ldflags=-L/libtorch_root/libtorch/lib/ 5. make To run FFmpeg DNN inference with LibTorch backend: ./ffmpeg -i input.jpg -vf \ dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg The LibTorch_model.pt can be generated by Python with torch.jit.script() api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is pytorch official guide about how to convert and load torchscript model. Please note, torch.jit.trace() is not recommanded, since it does not support ambiguous input size. Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>release/7.0
parent
d24b136f53
commit
f4e0664fd1
7 changed files with 624 additions and 4 deletions
@ -0,0 +1,597 @@ |
||||
/*
|
||||
* Copyright (c) 2024 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN Torch backend implementation. |
||||
*/ |
||||
|
||||
#include <torch/torch.h> |
||||
#include <torch/script.h> |
||||
|
||||
extern "C" { |
||||
#include "../internal.h" |
||||
#include "dnn_io_proc.h" |
||||
#include "dnn_backend_common.h" |
||||
#include "libavutil/opt.h" |
||||
#include "queue.h" |
||||
#include "safe_queue.h" |
||||
} |
||||
|
||||
typedef struct THOptions{ |
||||
char *device_name; |
||||
int optimize; |
||||
} THOptions; |
||||
|
||||
typedef struct THContext { |
||||
const AVClass *c_class; |
||||
THOptions options; |
||||
} THContext; |
||||
|
||||
typedef struct THModel { |
||||
THContext ctx; |
||||
DNNModel *model; |
||||
torch::jit::Module *jit_model; |
||||
SafeQueue *request_queue; |
||||
Queue *task_queue; |
||||
Queue *lltask_queue; |
||||
} THModel; |
||||
|
||||
typedef struct THInferRequest { |
||||
torch::Tensor *output; |
||||
torch::Tensor *input_tensor; |
||||
} THInferRequest; |
||||
|
||||
typedef struct THRequestItem { |
||||
THInferRequest *infer_request; |
||||
LastLevelTaskItem *lltask; |
||||
DNNAsyncExecModule exec_module; |
||||
} THRequestItem; |
||||
|
||||
|
||||
#define OFFSET(x) offsetof(THContext, x) |
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM |
||||
static const AVOption dnn_th_options[] = { |
||||
{ "device", "device to run model", OFFSET(options.device_name), AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS }, |
||||
{ "optimize", "turn on graph executor optimization", OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS}, |
||||
{ NULL } |
||||
}; |
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_th); |
||||
|
||||
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue) |
||||
{ |
||||
THModel *th_model = (THModel *)task->model; |
||||
THContext *ctx = &th_model->ctx; |
||||
LastLevelTaskItem *lltask = (LastLevelTaskItem *)av_malloc(sizeof(*lltask)); |
||||
if (!lltask) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for LastLevelTaskItem\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
task->inference_todo = 1; |
||||
task->inference_done = 0; |
||||
lltask->task = task; |
||||
if (ff_queue_push_back(lltask_queue, lltask) < 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n"); |
||||
av_freep(&lltask); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
static void th_free_request(THInferRequest *request) |
||||
{ |
||||
if (!request) |
||||
return; |
||||
if (request->output) { |
||||
delete(request->output); |
||||
request->output = NULL; |
||||
} |
||||
if (request->input_tensor) { |
||||
delete(request->input_tensor); |
||||
request->input_tensor = NULL; |
||||
} |
||||
return; |
||||
} |
||||
|
||||
static inline void destroy_request_item(THRequestItem **arg) |
||||
{ |
||||
THRequestItem *item; |
||||
if (!arg || !*arg) { |
||||
return; |
||||
} |
||||
item = *arg; |
||||
th_free_request(item->infer_request); |
||||
av_freep(&item->infer_request); |
||||
av_freep(&item->lltask); |
||||
ff_dnn_async_module_cleanup(&item->exec_module); |
||||
av_freep(arg); |
||||
} |
||||
|
||||
static void dnn_free_model_th(DNNModel **model) |
||||
{ |
||||
THModel *th_model; |
||||
if (!model || !*model) |
||||
return; |
||||
|
||||
th_model = (THModel *) (*model)->model; |
||||
while (ff_safe_queue_size(th_model->request_queue) != 0) { |
||||
THRequestItem *item = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue); |
||||
destroy_request_item(&item); |
||||
} |
||||
ff_safe_queue_destroy(th_model->request_queue); |
||||
|
||||
while (ff_queue_size(th_model->lltask_queue) != 0) { |
||||
LastLevelTaskItem *item = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue); |
||||
av_freep(&item); |
||||
} |
||||
ff_queue_destroy(th_model->lltask_queue); |
||||
|
||||
while (ff_queue_size(th_model->task_queue) != 0) { |
||||
TaskItem *item = (TaskItem *)ff_queue_pop_front(th_model->task_queue); |
||||
av_frame_free(&item->in_frame); |
||||
av_frame_free(&item->out_frame); |
||||
av_freep(&item); |
||||
} |
||||
ff_queue_destroy(th_model->task_queue); |
||||
delete th_model->jit_model; |
||||
av_opt_free(&th_model->ctx); |
||||
av_freep(&th_model); |
||||
av_freep(model); |
||||
} |
||||
|
||||
static int get_input_th(void *model, DNNData *input, const char *input_name) |
||||
{ |
||||
input->dt = DNN_FLOAT; |
||||
input->order = DCO_RGB; |
||||
input->layout = DL_NCHW; |
||||
input->dims[0] = 1; |
||||
input->dims[1] = 3; |
||||
input->dims[2] = -1; |
||||
input->dims[3] = -1; |
||||
return 0; |
||||
} |
||||
|
||||
static void deleter(void *arg) |
||||
{ |
||||
av_freep(&arg); |
||||
} |
||||
|
||||
static int fill_model_input_th(THModel *th_model, THRequestItem *request) |
||||
{ |
||||
LastLevelTaskItem *lltask = NULL; |
||||
TaskItem *task = NULL; |
||||
THInferRequest *infer_request = NULL; |
||||
DNNData input = { 0 }; |
||||
THContext *ctx = &th_model->ctx; |
||||
int ret, width_idx, height_idx, channel_idx; |
||||
|
||||
lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue); |
||||
if (!lltask) { |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
request->lltask = lltask; |
||||
task = lltask->task; |
||||
infer_request = request->infer_request; |
||||
|
||||
ret = get_input_th(th_model, &input, NULL); |
||||
if ( ret != 0) { |
||||
goto err; |
||||
} |
||||
width_idx = dnn_get_width_idx_by_layout(input.layout); |
||||
height_idx = dnn_get_height_idx_by_layout(input.layout); |
||||
channel_idx = dnn_get_channel_idx_by_layout(input.layout); |
||||
input.dims[height_idx] = task->in_frame->height; |
||||
input.dims[width_idx] = task->in_frame->width; |
||||
input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] * |
||||
input.dims[channel_idx] * sizeof(float)); |
||||
if (!input.data) |
||||
return AVERROR(ENOMEM); |
||||
infer_request->input_tensor = new torch::Tensor(); |
||||
infer_request->output = new torch::Tensor(); |
||||
|
||||
switch (th_model->model->func_type) { |
||||
case DFT_PROCESS_FRAME: |
||||
input.scale = 255; |
||||
if (task->do_ioproc) { |
||||
if (th_model->model->frame_pre_proc != NULL) { |
||||
th_model->model->frame_pre_proc(task->in_frame, &input, th_model->model->filter_ctx); |
||||
} else { |
||||
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); |
||||
} |
||||
} |
||||
break; |
||||
default: |
||||
avpriv_report_missing_feature(NULL, "model function type %d", th_model->model->func_type); |
||||
break; |
||||
} |
||||
*infer_request->input_tensor = torch::from_blob(input.data, |
||||
{1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]}, |
||||
deleter, torch::kFloat32); |
||||
return 0; |
||||
|
||||
err: |
||||
th_free_request(infer_request); |
||||
return ret; |
||||
} |
||||
|
||||
static int th_start_inference(void *args) |
||||
{ |
||||
THRequestItem *request = (THRequestItem *)args; |
||||
THInferRequest *infer_request = NULL; |
||||
LastLevelTaskItem *lltask = NULL; |
||||
TaskItem *task = NULL; |
||||
THModel *th_model = NULL; |
||||
THContext *ctx = NULL; |
||||
std::vector<torch::jit::IValue> inputs; |
||||
torch::NoGradGuard no_grad; |
||||
|
||||
if (!request) { |
||||
av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
infer_request = request->infer_request; |
||||
lltask = request->lltask; |
||||
task = lltask->task; |
||||
th_model = (THModel *)task->model; |
||||
ctx = &th_model->ctx; |
||||
|
||||
if (ctx->options.optimize) |
||||
torch::jit::setGraphExecutorOptimize(true); |
||||
else |
||||
torch::jit::setGraphExecutorOptimize(false); |
||||
|
||||
if (!infer_request->input_tensor || !infer_request->output) { |
||||
av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n"); |
||||
return DNN_GENERIC_ERROR; |
||||
} |
||||
inputs.push_back(*infer_request->input_tensor); |
||||
|
||||
*infer_request->output = th_model->jit_model->forward(inputs).toTensor(); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static void infer_completion_callback(void *args) { |
||||
THRequestItem *request = (THRequestItem*)args; |
||||
LastLevelTaskItem *lltask = request->lltask; |
||||
TaskItem *task = lltask->task; |
||||
DNNData outputs = { 0 }; |
||||
THInferRequest *infer_request = request->infer_request; |
||||
THModel *th_model = (THModel *)task->model; |
||||
torch::Tensor *output = infer_request->output; |
||||
|
||||
c10::IntArrayRef sizes = output->sizes(); |
||||
outputs.order = DCO_RGB; |
||||
outputs.layout = DL_NCHW; |
||||
outputs.dt = DNN_FLOAT; |
||||
if (sizes.size() == 4) { |
||||
// 4 dimensions: [batch_size, channel, height, width]
|
||||
// this format of data is normally used for video frame SR
|
||||
outputs.dims[0] = sizes.at(0); // N
|
||||
outputs.dims[1] = sizes.at(1); // C
|
||||
outputs.dims[2] = sizes.at(2); // H
|
||||
outputs.dims[3] = sizes.at(3); // W
|
||||
} else { |
||||
avpriv_report_missing_feature(&th_model->ctx, "Support of this kind of model"); |
||||
goto err; |
||||
} |
||||
|
||||
switch (th_model->model->func_type) { |
||||
case DFT_PROCESS_FRAME: |
||||
if (task->do_ioproc) { |
||||
outputs.scale = 255; |
||||
outputs.data = output->data_ptr(); |
||||
if (th_model->model->frame_post_proc != NULL) { |
||||
th_model->model->frame_post_proc(task->out_frame, &outputs, th_model->model->filter_ctx); |
||||
} else { |
||||
ff_proc_from_dnn_to_frame(task->out_frame, &outputs, &th_model->ctx); |
||||
} |
||||
} else { |
||||
task->out_frame->width = outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)]; |
||||
task->out_frame->height = outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)]; |
||||
} |
||||
break; |
||||
default: |
||||
avpriv_report_missing_feature(&th_model->ctx, "model function type %d", th_model->model->func_type); |
||||
goto err; |
||||
} |
||||
task->inference_done++; |
||||
av_freep(&request->lltask); |
||||
err: |
||||
th_free_request(infer_request); |
||||
|
||||
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) { |
||||
destroy_request_item(&request); |
||||
av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue when failed to start inference.\n"); |
||||
} |
||||
} |
||||
|
||||
static int execute_model_th(THRequestItem *request, Queue *lltask_queue) |
||||
{ |
||||
THModel *th_model = NULL; |
||||
LastLevelTaskItem *lltask; |
||||
TaskItem *task = NULL; |
||||
int ret = 0; |
||||
|
||||
if (ff_queue_size(lltask_queue) == 0) { |
||||
destroy_request_item(&request); |
||||
return 0; |
||||
} |
||||
|
||||
lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue); |
||||
if (lltask == NULL) { |
||||
av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n"); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
task = lltask->task; |
||||
th_model = (THModel *)task->model; |
||||
|
||||
ret = fill_model_input_th(th_model, request); |
||||
if ( ret != 0) { |
||||
goto err; |
||||
} |
||||
if (task->async) { |
||||
avpriv_report_missing_feature(&th_model->ctx, "LibTorch async"); |
||||
} else { |
||||
ret = th_start_inference((void *)(request)); |
||||
if (ret != 0) { |
||||
goto err; |
||||
} |
||||
infer_completion_callback(request); |
||||
return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR; |
||||
} |
||||
|
||||
err: |
||||
th_free_request(request->infer_request); |
||||
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) { |
||||
destroy_request_item(&request); |
||||
} |
||||
return ret; |
||||
} |
||||
|
||||
static int get_output_th(void *model, const char *input_name, int input_width, int input_height, |
||||
const char *output_name, int *output_width, int *output_height) |
||||
{ |
||||
int ret = 0; |
||||
THModel *th_model = (THModel*) model; |
||||
THContext *ctx = &th_model->ctx; |
||||
TaskItem task = { 0 }; |
||||
THRequestItem *request = NULL; |
||||
DNNExecBaseParams exec_params = { |
||||
.input_name = input_name, |
||||
.output_names = &output_name, |
||||
.nb_output = 1, |
||||
.in_frame = NULL, |
||||
.out_frame = NULL, |
||||
}; |
||||
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, th_model, input_height, input_width, ctx); |
||||
if ( ret != 0) { |
||||
goto err; |
||||
} |
||||
|
||||
ret = extract_lltask_from_task(&task, th_model->lltask_queue); |
||||
if ( ret != 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); |
||||
goto err; |
||||
} |
||||
|
||||
request = (THRequestItem*) ff_safe_queue_pop_front(th_model->request_queue); |
||||
if (!request) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
|
||||
ret = execute_model_th(request, th_model->lltask_queue); |
||||
*output_width = task.out_frame->width; |
||||
*output_height = task.out_frame->height; |
||||
|
||||
err: |
||||
av_frame_free(&task.out_frame); |
||||
av_frame_free(&task.in_frame); |
||||
return ret; |
||||
} |
||||
|
||||
static THInferRequest *th_create_inference_request(void) |
||||
{ |
||||
THInferRequest *request = (THInferRequest *)av_malloc(sizeof(THInferRequest)); |
||||
if (!request) { |
||||
return NULL; |
||||
} |
||||
request->input_tensor = NULL; |
||||
request->output = NULL; |
||||
return request; |
||||
} |
||||
|
||||
static DNNModel *dnn_load_model_th(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) |
||||
{ |
||||
DNNModel *model = NULL; |
||||
THModel *th_model = NULL; |
||||
THRequestItem *item = NULL; |
||||
THContext *ctx; |
||||
|
||||
model = (DNNModel *)av_mallocz(sizeof(DNNModel)); |
||||
if (!model) { |
||||
return NULL; |
||||
} |
||||
|
||||
th_model = (THModel *)av_mallocz(sizeof(THModel)); |
||||
if (!th_model) { |
||||
av_freep(&model); |
||||
return NULL; |
||||
} |
||||
th_model->model = model; |
||||
model->model = th_model; |
||||
th_model->ctx.c_class = &dnn_th_class; |
||||
ctx = &th_model->ctx; |
||||
//parse options
|
||||
av_opt_set_defaults(ctx); |
||||
if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); |
||||
return NULL; |
||||
} |
||||
|
||||
c10::Device device = c10::Device(ctx->options.device_name); |
||||
if (!device.is_cpu()) { |
||||
av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n", ctx->options.device_name); |
||||
goto fail; |
||||
} |
||||
|
||||
try { |
||||
th_model->jit_model = new torch::jit::Module; |
||||
(*th_model->jit_model) = torch::jit::load(model_filename); |
||||
} catch (const c10::Error& e) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n"); |
||||
goto fail; |
||||
} |
||||
|
||||
th_model->request_queue = ff_safe_queue_create(); |
||||
if (!th_model->request_queue) { |
||||
goto fail; |
||||
} |
||||
|
||||
item = (THRequestItem *)av_mallocz(sizeof(THRequestItem)); |
||||
if (!item) { |
||||
goto fail; |
||||
} |
||||
item->lltask = NULL; |
||||
item->infer_request = th_create_inference_request(); |
||||
if (!item->infer_request) { |
||||
av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for Torch inference request\n"); |
||||
goto fail; |
||||
} |
||||
item->exec_module.start_inference = &th_start_inference; |
||||
item->exec_module.callback = &infer_completion_callback; |
||||
item->exec_module.args = item; |
||||
|
||||
if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) { |
||||
goto fail; |
||||
} |
||||
item = NULL; |
||||
|
||||
th_model->task_queue = ff_queue_create(); |
||||
if (!th_model->task_queue) { |
||||
goto fail; |
||||
} |
||||
|
||||
th_model->lltask_queue = ff_queue_create(); |
||||
if (!th_model->lltask_queue) { |
||||
goto fail; |
||||
} |
||||
|
||||
model->get_input = &get_input_th; |
||||
model->get_output = &get_output_th; |
||||
model->options = NULL; |
||||
model->filter_ctx = filter_ctx; |
||||
model->func_type = func_type; |
||||
return model; |
||||
|
||||
fail: |
||||
if (item) { |
||||
destroy_request_item(&item); |
||||
av_freep(&item); |
||||
} |
||||
dnn_free_model_th(&model); |
||||
return NULL; |
||||
} |
||||
|
||||
static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params) |
||||
{ |
||||
THModel *th_model = (THModel *)model->model; |
||||
THContext *ctx = &th_model->ctx; |
||||
TaskItem *task; |
||||
THRequestItem *request; |
||||
int ret = 0; |
||||
|
||||
ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, exec_params); |
||||
if (ret != 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n"); |
||||
return ret; |
||||
} |
||||
|
||||
task = (TaskItem *)av_malloc(sizeof(TaskItem)); |
||||
if (!task) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1); |
||||
if (ret != 0) { |
||||
av_freep(&task); |
||||
av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n"); |
||||
return ret; |
||||
} |
||||
|
||||
ret = ff_queue_push_back(th_model->task_queue, task); |
||||
if (ret < 0) { |
||||
av_freep(&task); |
||||
av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n"); |
||||
return ret; |
||||
} |
||||
|
||||
ret = extract_lltask_from_task(task, th_model->lltask_queue); |
||||
if (ret != 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); |
||||
return ret; |
||||
} |
||||
|
||||
request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue); |
||||
if (!request) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
|
||||
return execute_model_th(request, th_model->lltask_queue); |
||||
} |
||||
|
||||
static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, AVFrame **in, AVFrame **out) |
||||
{ |
||||
THModel *th_model = (THModel *)model->model; |
||||
return ff_dnn_get_result_common(th_model->task_queue, in, out); |
||||
} |
||||
|
||||
static int dnn_flush_th(const DNNModel *model) |
||||
{ |
||||
THModel *th_model = (THModel *)model->model; |
||||
THRequestItem *request; |
||||
|
||||
if (ff_queue_size(th_model->lltask_queue) == 0) |
||||
// no pending task need to flush
|
||||
return 0; |
||||
|
||||
request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue); |
||||
if (!request) { |
||||
av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer request.\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
|
||||
return execute_model_th(request, th_model->lltask_queue); |
||||
} |
||||
|
||||
extern const DNNModule ff_dnn_backend_torch = { |
||||
.load_model = dnn_load_model_th, |
||||
.execute_model = dnn_execute_model_th, |
||||
.get_result = dnn_get_result_th, |
||||
.flush = dnn_flush_th, |
||||
.free_model = dnn_free_model_th, |
||||
}; |
Loading…
Reference in new issue