libavfi/dnn: add LibTorch as one of DNN backend

PyTorch is an open source machine learning framework that accelerates
the path from research prototyping to production deployment. Official
website: https://pytorch.org/. We call the C++ library of PyTorch as
LibTorch, the same below.

To build FFmpeg with LibTorch, please take following steps as
reference:
1. download LibTorch C++ library in
 https://pytorch.org/get-started/locally/,
please select C++/Java for language, and other options as your need.
Please download cxx11 ABI version:
 (libtorch-cxx11-abi-shared-with-deps-*.zip).
2. unzip the file to your own dir, with command
unzip libtorch-shared-with-deps-latest.zip -d your_dir
3. export libtorch_root/libtorch/include and
libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
4. config FFmpeg with ../configure --enable-libtorch \
 --extra-cflag=-I/libtorch_root/libtorch/include \
 --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \
 --extra-ldflags=-L/libtorch_root/libtorch/lib/
5. make

To run FFmpeg DNN inference with LibTorch backend:
./ffmpeg -i input.jpg -vf \
dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg

The LibTorch_model.pt can be generated by Python with torch.jit.script()
api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is
pytorch official guide about how to convert and load torchscript model.
Please note, torch.jit.trace() is not recommanded, since it does
not support ambiguous input size.

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
Reviewed-by: Guo Yejun <yejun.guo@intel.com>
release/7.0
Wenbin Chen 10 months ago committed by Guo Yejun
parent d24b136f53
commit f4e0664fd1
  1. 5
      configure
  2. 1
      libavfilter/dnn/Makefile
  3. 597
      libavfilter/dnn/dnn_backend_torch.cpp
  4. 5
      libavfilter/dnn/dnn_interface.c
  5. 15
      libavfilter/dnn_filter_common.c
  6. 2
      libavfilter/dnn_interface.h
  7. 3
      libavfilter/vf_dnn_processing.c

5
configure vendored

@ -281,6 +281,7 @@ External library support:
--enable-libtheora enable Theora encoding via libtheora [no]
--enable-libtls enable LibreSSL (via libtls), needed for https support
if openssl, gnutls or mbedtls is not used [no]
--enable-libtorch enable Torch as one DNN backend [no]
--enable-libtwolame enable MP2 encoding via libtwolame [no]
--enable-libuavs3d enable AVS3 decoding via libuavs3d [no]
--enable-libv4l2 enable libv4l2/v4l-utils [no]
@ -1905,6 +1906,7 @@ EXTERNAL_LIBRARY_LIST="
libtensorflow
libtesseract
libtheora
libtorch
libtwolame
libuavs3d
libv4l2
@ -2785,7 +2787,7 @@ cbs_vp9_select="cbs"
deflate_wrapper_deps="zlib"
dirac_parse_select="golomb"
dovi_rpu_select="golomb"
dnn_suggest="libtensorflow libopenvino"
dnn_suggest="libtensorflow libopenvino libtorch"
dnn_deps="avformat swscale"
error_resilience_select="me_cmp"
evcparse_select="golomb"
@ -6884,6 +6886,7 @@ enabled libtensorflow && require libtensorflow tensorflow/c/c_api.h TF_Versi
enabled libtesseract && require_pkg_config libtesseract tesseract tesseract/capi.h TessBaseAPICreate
enabled libtheora && require libtheora theora/theoraenc.h th_info_init -ltheoraenc -ltheoradec -logg
enabled libtls && require_pkg_config libtls libtls tls.h tls_configure
enabled libtorch && check_cxxflags -std=c++17 && require_cpp libtorch torch/torch.h "torch::Tensor" -ltorch -lc10 -ltorch_cpu -lstdc++ -lpthread
enabled libtwolame && require libtwolame twolame.h twolame_init -ltwolame &&
{ check_lib libtwolame twolame.h twolame_encode_buffer_float32_interleaved -ltwolame ||
die "ERROR: libtwolame must be installed and version must be >= 0.3.10"; }

@ -6,5 +6,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o
DNN-OBJS-$(CONFIG_LIBTORCH) += dnn/dnn_backend_torch.o
OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes)

@ -0,0 +1,597 @@
/*
* Copyright (c) 2024
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN Torch backend implementation.
*/
#include <torch/torch.h>
#include <torch/script.h>
extern "C" {
#include "../internal.h"
#include "dnn_io_proc.h"
#include "dnn_backend_common.h"
#include "libavutil/opt.h"
#include "queue.h"
#include "safe_queue.h"
}
typedef struct THOptions{
char *device_name;
int optimize;
} THOptions;
typedef struct THContext {
const AVClass *c_class;
THOptions options;
} THContext;
typedef struct THModel {
THContext ctx;
DNNModel *model;
torch::jit::Module *jit_model;
SafeQueue *request_queue;
Queue *task_queue;
Queue *lltask_queue;
} THModel;
typedef struct THInferRequest {
torch::Tensor *output;
torch::Tensor *input_tensor;
} THInferRequest;
typedef struct THRequestItem {
THInferRequest *infer_request;
LastLevelTaskItem *lltask;
DNNAsyncExecModule exec_module;
} THRequestItem;
#define OFFSET(x) offsetof(THContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_th_options[] = {
{ "device", "device to run model", OFFSET(options.device_name), AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS },
{ "optimize", "turn on graph executor optimization", OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
{ NULL }
};
AVFILTER_DEFINE_CLASS(dnn_th);
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
{
THModel *th_model = (THModel *)task->model;
THContext *ctx = &th_model->ctx;
LastLevelTaskItem *lltask = (LastLevelTaskItem *)av_malloc(sizeof(*lltask));
if (!lltask) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for LastLevelTaskItem\n");
return AVERROR(ENOMEM);
}
task->inference_todo = 1;
task->inference_done = 0;
lltask->task = task;
if (ff_queue_push_back(lltask_queue, lltask) < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
av_freep(&lltask);
return AVERROR(ENOMEM);
}
return 0;
}
static void th_free_request(THInferRequest *request)
{
if (!request)
return;
if (request->output) {
delete(request->output);
request->output = NULL;
}
if (request->input_tensor) {
delete(request->input_tensor);
request->input_tensor = NULL;
}
return;
}
static inline void destroy_request_item(THRequestItem **arg)
{
THRequestItem *item;
if (!arg || !*arg) {
return;
}
item = *arg;
th_free_request(item->infer_request);
av_freep(&item->infer_request);
av_freep(&item->lltask);
ff_dnn_async_module_cleanup(&item->exec_module);
av_freep(arg);
}
static void dnn_free_model_th(DNNModel **model)
{
THModel *th_model;
if (!model || !*model)
return;
th_model = (THModel *) (*model)->model;
while (ff_safe_queue_size(th_model->request_queue) != 0) {
THRequestItem *item = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
destroy_request_item(&item);
}
ff_safe_queue_destroy(th_model->request_queue);
while (ff_queue_size(th_model->lltask_queue) != 0) {
LastLevelTaskItem *item = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
av_freep(&item);
}
ff_queue_destroy(th_model->lltask_queue);
while (ff_queue_size(th_model->task_queue) != 0) {
TaskItem *item = (TaskItem *)ff_queue_pop_front(th_model->task_queue);
av_frame_free(&item->in_frame);
av_frame_free(&item->out_frame);
av_freep(&item);
}
ff_queue_destroy(th_model->task_queue);
delete th_model->jit_model;
av_opt_free(&th_model->ctx);
av_freep(&th_model);
av_freep(model);
}
static int get_input_th(void *model, DNNData *input, const char *input_name)
{
input->dt = DNN_FLOAT;
input->order = DCO_RGB;
input->layout = DL_NCHW;
input->dims[0] = 1;
input->dims[1] = 3;
input->dims[2] = -1;
input->dims[3] = -1;
return 0;
}
static void deleter(void *arg)
{
av_freep(&arg);
}
static int fill_model_input_th(THModel *th_model, THRequestItem *request)
{
LastLevelTaskItem *lltask = NULL;
TaskItem *task = NULL;
THInferRequest *infer_request = NULL;
DNNData input = { 0 };
THContext *ctx = &th_model->ctx;
int ret, width_idx, height_idx, channel_idx;
lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
if (!lltask) {
ret = AVERROR(EINVAL);
goto err;
}
request->lltask = lltask;
task = lltask->task;
infer_request = request->infer_request;
ret = get_input_th(th_model, &input, NULL);
if ( ret != 0) {
goto err;
}
width_idx = dnn_get_width_idx_by_layout(input.layout);
height_idx = dnn_get_height_idx_by_layout(input.layout);
channel_idx = dnn_get_channel_idx_by_layout(input.layout);
input.dims[height_idx] = task->in_frame->height;
input.dims[width_idx] = task->in_frame->width;
input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
input.dims[channel_idx] * sizeof(float));
if (!input.data)
return AVERROR(ENOMEM);
infer_request->input_tensor = new torch::Tensor();
infer_request->output = new torch::Tensor();
switch (th_model->model->func_type) {
case DFT_PROCESS_FRAME:
input.scale = 255;
if (task->do_ioproc) {
if (th_model->model->frame_pre_proc != NULL) {
th_model->model->frame_pre_proc(task->in_frame, &input, th_model->model->filter_ctx);
} else {
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
}
}
break;
default:
avpriv_report_missing_feature(NULL, "model function type %d", th_model->model->func_type);
break;
}
*infer_request->input_tensor = torch::from_blob(input.data,
{1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]},
deleter, torch::kFloat32);
return 0;
err:
th_free_request(infer_request);
return ret;
}
static int th_start_inference(void *args)
{
THRequestItem *request = (THRequestItem *)args;
THInferRequest *infer_request = NULL;
LastLevelTaskItem *lltask = NULL;
TaskItem *task = NULL;
THModel *th_model = NULL;
THContext *ctx = NULL;
std::vector<torch::jit::IValue> inputs;
torch::NoGradGuard no_grad;
if (!request) {
av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
return AVERROR(EINVAL);
}
infer_request = request->infer_request;
lltask = request->lltask;
task = lltask->task;
th_model = (THModel *)task->model;
ctx = &th_model->ctx;
if (ctx->options.optimize)
torch::jit::setGraphExecutorOptimize(true);
else
torch::jit::setGraphExecutorOptimize(false);
if (!infer_request->input_tensor || !infer_request->output) {
av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
return DNN_GENERIC_ERROR;
}
inputs.push_back(*infer_request->input_tensor);
*infer_request->output = th_model->jit_model->forward(inputs).toTensor();
return 0;
}
static void infer_completion_callback(void *args) {
THRequestItem *request = (THRequestItem*)args;
LastLevelTaskItem *lltask = request->lltask;
TaskItem *task = lltask->task;
DNNData outputs = { 0 };
THInferRequest *infer_request = request->infer_request;
THModel *th_model = (THModel *)task->model;
torch::Tensor *output = infer_request->output;
c10::IntArrayRef sizes = output->sizes();
outputs.order = DCO_RGB;
outputs.layout = DL_NCHW;
outputs.dt = DNN_FLOAT;
if (sizes.size() == 4) {
// 4 dimensions: [batch_size, channel, height, width]
// this format of data is normally used for video frame SR
outputs.dims[0] = sizes.at(0); // N
outputs.dims[1] = sizes.at(1); // C
outputs.dims[2] = sizes.at(2); // H
outputs.dims[3] = sizes.at(3); // W
} else {
avpriv_report_missing_feature(&th_model->ctx, "Support of this kind of model");
goto err;
}
switch (th_model->model->func_type) {
case DFT_PROCESS_FRAME:
if (task->do_ioproc) {
outputs.scale = 255;
outputs.data = output->data_ptr();
if (th_model->model->frame_post_proc != NULL) {
th_model->model->frame_post_proc(task->out_frame, &outputs, th_model->model->filter_ctx);
} else {
ff_proc_from_dnn_to_frame(task->out_frame, &outputs, &th_model->ctx);
}
} else {
task->out_frame->width = outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)];
task->out_frame->height = outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)];
}
break;
default:
avpriv_report_missing_feature(&th_model->ctx, "model function type %d", th_model->model->func_type);
goto err;
}
task->inference_done++;
av_freep(&request->lltask);
err:
th_free_request(infer_request);
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
destroy_request_item(&request);
av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue when failed to start inference.\n");
}
}
static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
{
THModel *th_model = NULL;
LastLevelTaskItem *lltask;
TaskItem *task = NULL;
int ret = 0;
if (ff_queue_size(lltask_queue) == 0) {
destroy_request_item(&request);
return 0;
}
lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
if (lltask == NULL) {
av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
ret = AVERROR(EINVAL);
goto err;
}
task = lltask->task;
th_model = (THModel *)task->model;
ret = fill_model_input_th(th_model, request);
if ( ret != 0) {
goto err;
}
if (task->async) {
avpriv_report_missing_feature(&th_model->ctx, "LibTorch async");
} else {
ret = th_start_inference((void *)(request));
if (ret != 0) {
goto err;
}
infer_completion_callback(request);
return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
}
err:
th_free_request(request->infer_request);
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
destroy_request_item(&request);
}
return ret;
}
static int get_output_th(void *model, const char *input_name, int input_width, int input_height,
const char *output_name, int *output_width, int *output_height)
{
int ret = 0;
THModel *th_model = (THModel*) model;
THContext *ctx = &th_model->ctx;
TaskItem task = { 0 };
THRequestItem *request = NULL;
DNNExecBaseParams exec_params = {
.input_name = input_name,
.output_names = &output_name,
.nb_output = 1,
.in_frame = NULL,
.out_frame = NULL,
};
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, th_model, input_height, input_width, ctx);
if ( ret != 0) {
goto err;
}
ret = extract_lltask_from_task(&task, th_model->lltask_queue);
if ( ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
goto err;
}
request = (THRequestItem*) ff_safe_queue_pop_front(th_model->request_queue);
if (!request) {
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
ret = AVERROR(EINVAL);
goto err;
}
ret = execute_model_th(request, th_model->lltask_queue);
*output_width = task.out_frame->width;
*output_height = task.out_frame->height;
err:
av_frame_free(&task.out_frame);
av_frame_free(&task.in_frame);
return ret;
}
static THInferRequest *th_create_inference_request(void)
{
THInferRequest *request = (THInferRequest *)av_malloc(sizeof(THInferRequest));
if (!request) {
return NULL;
}
request->input_tensor = NULL;
request->output = NULL;
return request;
}
static DNNModel *dnn_load_model_th(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
{
DNNModel *model = NULL;
THModel *th_model = NULL;
THRequestItem *item = NULL;
THContext *ctx;
model = (DNNModel *)av_mallocz(sizeof(DNNModel));
if (!model) {
return NULL;
}
th_model = (THModel *)av_mallocz(sizeof(THModel));
if (!th_model) {
av_freep(&model);
return NULL;
}
th_model->model = model;
model->model = th_model;
th_model->ctx.c_class = &dnn_th_class;
ctx = &th_model->ctx;
//parse options
av_opt_set_defaults(ctx);
if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
return NULL;
}
c10::Device device = c10::Device(ctx->options.device_name);
if (!device.is_cpu()) {
av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n", ctx->options.device_name);
goto fail;
}
try {
th_model->jit_model = new torch::jit::Module;
(*th_model->jit_model) = torch::jit::load(model_filename);
} catch (const c10::Error& e) {
av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
goto fail;
}
th_model->request_queue = ff_safe_queue_create();
if (!th_model->request_queue) {
goto fail;
}
item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
if (!item) {
goto fail;
}
item->lltask = NULL;
item->infer_request = th_create_inference_request();
if (!item->infer_request) {
av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for Torch inference request\n");
goto fail;
}
item->exec_module.start_inference = &th_start_inference;
item->exec_module.callback = &infer_completion_callback;
item->exec_module.args = item;
if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
goto fail;
}
item = NULL;
th_model->task_queue = ff_queue_create();
if (!th_model->task_queue) {
goto fail;
}
th_model->lltask_queue = ff_queue_create();
if (!th_model->lltask_queue) {
goto fail;
}
model->get_input = &get_input_th;
model->get_output = &get_output_th;
model->options = NULL;
model->filter_ctx = filter_ctx;
model->func_type = func_type;
return model;
fail:
if (item) {
destroy_request_item(&item);
av_freep(&item);
}
dnn_free_model_th(&model);
return NULL;
}
static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params)
{
THModel *th_model = (THModel *)model->model;
THContext *ctx = &th_model->ctx;
TaskItem *task;
THRequestItem *request;
int ret = 0;
ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, exec_params);
if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
return ret;
}
task = (TaskItem *)av_malloc(sizeof(TaskItem));
if (!task) {
av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
return AVERROR(ENOMEM);
}
ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
if (ret != 0) {
av_freep(&task);
av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
return ret;
}
ret = ff_queue_push_back(th_model->task_queue, task);
if (ret < 0) {
av_freep(&task);
av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
return ret;
}
ret = extract_lltask_from_task(task, th_model->lltask_queue);
if (ret != 0) {
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
return ret;
}
request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
if (!request) {
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return AVERROR(EINVAL);
}
return execute_model_th(request, th_model->lltask_queue);
}
static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, AVFrame **in, AVFrame **out)
{
THModel *th_model = (THModel *)model->model;
return ff_dnn_get_result_common(th_model->task_queue, in, out);
}
static int dnn_flush_th(const DNNModel *model)
{
THModel *th_model = (THModel *)model->model;
THRequestItem *request;
if (ff_queue_size(th_model->lltask_queue) == 0)
// no pending task need to flush
return 0;
request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
if (!request) {
av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return AVERROR(EINVAL);
}
return execute_model_th(request, th_model->lltask_queue);
}
extern const DNNModule ff_dnn_backend_torch = {
.load_model = dnn_load_model_th,
.execute_model = dnn_execute_model_th,
.get_result = dnn_get_result_th,
.flush = dnn_flush_th,
.free_model = dnn_free_model_th,
};

@ -28,6 +28,7 @@
extern const DNNModule ff_dnn_backend_openvino;
extern const DNNModule ff_dnn_backend_tf;
extern const DNNModule ff_dnn_backend_torch;
const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx)
{
@ -40,6 +41,10 @@ const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx)
case DNN_OV:
return &ff_dnn_backend_openvino;
#endif
#if (CONFIG_LIBTORCH == 1)
case DNN_TH:
return &ff_dnn_backend_torch;
#endif
default:
av_log(log_ctx, AV_LOG_ERROR,
"Module backend_type %d is not supported or enabled.\n",

@ -53,12 +53,22 @@ static char **separate_output_names(const char *expr, const char *val_sep, int *
int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx)
{
DNNBackendType backend = ctx->backend_type;
if (!ctx->model_filename) {
av_log(filter_ctx, AV_LOG_ERROR, "model file for network is not specified\n");
return AVERROR(EINVAL);
}
if (ctx->backend_type == DNN_TF) {
if (backend == DNN_TH) {
if (ctx->model_inputname)
av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do not require inputname, "\
"inputname will be ignored.\n");
if (ctx->model_outputnames)
av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do not require outputname(s), "\
"all outputname(s) will be ignored.\n");
ctx->nb_outputs = 1;
} else if (backend == DNN_TF) {
if (!ctx->model_inputname) {
av_log(filter_ctx, AV_LOG_ERROR, "input name of the model network is not specified\n");
return AVERROR(EINVAL);
@ -115,7 +125,8 @@ int ff_dnn_get_input(DnnContext *ctx, DNNData *input)
int ff_dnn_get_output(DnnContext *ctx, int input_width, int input_height, int *output_width, int *output_height)
{
char * output_name = ctx->model_outputnames ? ctx->model_outputnames[0] : NULL;
char * output_name = ctx->model_outputnames && ctx->backend_type != DNN_TH ?
ctx->model_outputnames[0] : NULL;
return ctx->model->get_output(ctx->model->model, ctx->model_inputname, input_width, input_height,
(const char *)output_name, output_width, output_height);
}

@ -32,7 +32,7 @@
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;

@ -50,6 +50,9 @@ static const AVOption dnn_processing_options[] = {
#endif
#if (CONFIG_LIBOPENVINO == 1)
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, .unit = "backend" },
#endif
#if (CONFIG_LIBTORCH == 1)
{ "torch", "torch backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_TH }, 0, 0, FLAGS, "backend" },
#endif
DNN_COMMON_OPTIONS
{ NULL }

Loading…
Cancel
Save