nlmeans_vulkan: parallelize workgroup invocations

pull/390/head
Lynne 1 year ago
parent 658b01b5ee
commit f31d0f1141
No known key found for this signature in database
GPG Key ID: A2FEA5F03F034464
  1. 3
      libavfilter/Makefile
  2. 438
      libavfilter/vf_nlmeans_vulkan.c
  3. 151
      libavfilter/vulkan/prefix_sum.comp

@ -395,8 +395,7 @@ OBJS-$(CONFIG_MULTIPLY_FILTER) += vf_multiply.o
OBJS-$(CONFIG_NEGATE_FILTER) += vf_negate.o OBJS-$(CONFIG_NEGATE_FILTER) += vf_negate.o
OBJS-$(CONFIG_NLMEANS_FILTER) += vf_nlmeans.o OBJS-$(CONFIG_NLMEANS_FILTER) += vf_nlmeans.o
OBJS-$(CONFIG_NLMEANS_OPENCL_FILTER) += vf_nlmeans_opencl.o opencl.o opencl/nlmeans.o OBJS-$(CONFIG_NLMEANS_OPENCL_FILTER) += vf_nlmeans_opencl.o opencl.o opencl/nlmeans.o
OBJS-$(CONFIG_NLMEANS_VULKAN_FILTER) += vf_nlmeans_vulkan.o vulkan.o vulkan_filter.o \ OBJS-$(CONFIG_NLMEANS_VULKAN_FILTER) += vf_nlmeans_vulkan.o vulkan.o vulkan_filter.o
vulkan/prefix_sum.o
OBJS-$(CONFIG_NNEDI_FILTER) += vf_nnedi.o OBJS-$(CONFIG_NNEDI_FILTER) += vf_nnedi.o
OBJS-$(CONFIG_NOFORMAT_FILTER) += vf_format.o OBJS-$(CONFIG_NOFORMAT_FILTER) += vf_format.o
OBJS-$(CONFIG_NOISE_FILTER) += vf_noise.o OBJS-$(CONFIG_NOISE_FILTER) += vf_noise.o

@ -38,9 +38,10 @@ typedef struct NLMeansVulkanContext {
VkSampler sampler; VkSampler sampler;
AVBufferPool *integral_buf_pool; AVBufferPool *integral_buf_pool;
AVBufferPool *state_buf_pool;
AVBufferPool *ws_buf_pool; AVBufferPool *ws_buf_pool;
FFVkBuffer xyoffsets_buf;
int pl_weights_rows; int pl_weights_rows;
FFVulkanPipeline pl_weights; FFVulkanPipeline pl_weights;
FFVkSPIRVShader shd_weights; FFVkSPIRVShader shd_weights;
@ -66,107 +67,97 @@ typedef struct NLMeansVulkanContext {
extern const char *ff_source_prefix_sum_comp; extern const char *ff_source_prefix_sum_comp;
static void insert_first(FFVkSPIRVShader *shd, int r, int horiz, int plane, int comp) static void insert_first(FFVkSPIRVShader *shd, int r, const char *off, int horiz, int plane, int comp)
{ {
GLSLF(2, s1 = texture(input_img[%i], ivec2(x + %i, y + %i))[%i]; GLSLF(4, s1 = texture(input_img[%i], pos + ivec2(%i + %s, %i + %s))[%i];
,plane, horiz ? r : 0, !horiz ? r : 0, comp); ,plane, horiz ? r : 0, horiz ? off : "0", !horiz ? r : 0, !horiz ? off : "0", comp);
if (TYPE_ELEMS == 4) { GLSLF(4, s2[0] = texture(input_img[%i], pos + offs[0] + ivec2(%i + %s, %i + %s))[%i];
GLSLF(2, s2[0] = texture(input_img[%i], ivec2(x + %i + xoffs[0], y + %i + yoffs[0]))[%i]; ,plane, horiz ? r : 0, horiz ? off : "0", !horiz ? r : 0, !horiz ? off : "0", comp);
,plane, horiz ? r : 0, !horiz ? r : 0, comp); GLSLF(4, s2[1] = texture(input_img[%i], pos + offs[1] + ivec2(%i + %s, %i + %s))[%i];
GLSLF(2, s2[1] = texture(input_img[%i], ivec2(x + %i + xoffs[1], y + %i + yoffs[1]))[%i]; ,plane, horiz ? r : 0, horiz ? off : "0", !horiz ? r : 0, !horiz ? off : "0", comp);
,plane, horiz ? r : 0, !horiz ? r : 0, comp); GLSLF(4, s2[2] = texture(input_img[%i], pos + offs[2] + ivec2(%i + %s, %i + %s))[%i];
GLSLF(2, s2[2] = texture(input_img[%i], ivec2(x + %i + xoffs[2], y + %i + yoffs[2]))[%i]; ,plane, horiz ? r : 0, horiz ? off : "0", !horiz ? r : 0, !horiz ? off : "0", comp);
,plane, horiz ? r : 0, !horiz ? r : 0, comp); GLSLF(4, s2[3] = texture(input_img[%i], pos + offs[3] + ivec2(%i + %s, %i + %s))[%i];
GLSLF(2, s2[3] = texture(input_img[%i], ivec2(x + %i + xoffs[3], y + %i + yoffs[3]))[%i]; ,plane, horiz ? r : 0, horiz ? off : "0", !horiz ? r : 0, !horiz ? off : "0", comp);
,plane, horiz ? r : 0, !horiz ? r : 0, comp);
} else { GLSLC(4, s2 = (s1 - s2) * (s1 - s2); );
for (int i = 0; i < 16; i++) {
GLSLF(2, s2[%i][%i] = texture(input_img[%i], ivec2(x + %i + xoffs[%i], y + %i + yoffs[%i]))[%i];
,i / 4, i % 4, plane, horiz ? r : 0, i, !horiz ? r : 0, i, comp);
}
}
GLSLC(2, s2 = (s1 - s2) * (s1 - s2); );
} }
static void insert_horizontal_pass(FFVkSPIRVShader *shd, int nb_rows, int first, int plane, int comp) static void insert_horizontal_pass(FFVkSPIRVShader *shd, int nb_rows, int first, int plane, int comp)
{ {
GLSLF(1, x = int(gl_GlobalInvocationID.x) * %i; ,nb_rows); GLSLF(1, pos.y = int(gl_GlobalInvocationID.x) * %i; ,nb_rows);
if (!first) { if (!first)
GLSLC(1, controlBarrier(gl_ScopeWorkgroup, gl_ScopeWorkgroup, GLSLC(1, barrier(); );
gl_StorageSemanticsBuffer, GLSLC(0, );
gl_SemanticsAcquireRelease | GLSLF(1, if (pos.y < height[%i]) { ,plane);
gl_SemanticsMakeAvailable | GLSLC(2, #pragma unroll(1) );
gl_SemanticsMakeVisible); ); GLSLF(2, for (r = 0; r < %i; r++) { ,nb_rows);
} GLSLC(3, prefix_sum = DTYPE(0); );
GLSLF(1, for (y = 0; y < height[%i]; y++) { ,plane); GLSLC(3, offset = uint64_t(int_stride)*(pos.y + r)*T_ALIGN; );
GLSLC(2, offset = uint64_t(int_stride)*y*T_ALIGN; ); GLSLC(3, dst = DataBuffer(uint64_t(integral_data) + offset); );
GLSLC(2, dst = DataBuffer(uint64_t(integral_data) + offset); ); GLSLC(0, );
GLSLC(0, ); GLSLF(3, for (pos.x = 0; pos.x < width[%i]; pos.x++) { ,plane);
if (first) { if (first)
for (int r = 0; r < nb_rows; r++) { insert_first(shd, 0, "r", 0, plane, comp);
insert_first(shd, r, 1, plane, comp); else
GLSLF(2, dst.v[x + %i] = s2; ,r); GLSLC(4, s2 = dst.v[pos.x]; );
GLSLC(0, ); GLSLC(4, dst.v[pos.x] = s2 + prefix_sum; );
} GLSLC(4, prefix_sum += s2; );
} GLSLC(3, } );
GLSLC(2, barrier(); ); GLSLC(2, } );
GLSLC(2, prefix_sum(dst, 1, dst, 1); ); GLSLC(1, } );
GLSLC(1, } ); GLSLC(0, );
GLSLC(0, );
} }
static void insert_vertical_pass(FFVkSPIRVShader *shd, int nb_rows, int first, int plane, int comp) static void insert_vertical_pass(FFVkSPIRVShader *shd, int nb_rows, int first, int plane, int comp)
{ {
GLSLF(1, y = int(gl_GlobalInvocationID.x) * %i; ,nb_rows); GLSLF(1, pos.x = int(gl_GlobalInvocationID.x) * %i; ,nb_rows);
if (!first) { GLSLC(1, #pragma unroll(1) );
GLSLC(1, controlBarrier(gl_ScopeWorkgroup, gl_ScopeWorkgroup, GLSLF(1, for (r = 0; r < %i; r++) ,nb_rows);
gl_StorageSemanticsBuffer, GLSLC(2, psum[r] = DTYPE(0); );
gl_SemanticsAcquireRelease | GLSLC(0, );
gl_SemanticsMakeAvailable | if (!first)
gl_SemanticsMakeVisible); ); GLSLC(1, barrier(); );
} GLSLC(0, );
GLSLF(1, for (x = 0; x < width[%i]; x++) { ,plane); GLSLF(1, if (pos.x < width[%i]) { ,plane);
GLSLC(2, dst = DataBuffer(uint64_t(integral_data) + x*T_ALIGN); ); GLSLF(2, for (pos.y = 0; pos.y < height[%i]; pos.y++) { ,plane);
GLSLC(3, offset = uint64_t(int_stride)*pos.y*T_ALIGN; );
for (int r = 0; r < nb_rows; r++) { GLSLC(3, dst = DataBuffer(uint64_t(integral_data) + offset); );
if (first) { GLSLC(0, );
insert_first(shd, r, 0, plane, comp); GLSLC(3, #pragma unroll(1) );
GLSLF(2, integral_data.v[(y + %i)*int_stride + x] = s2; ,r); GLSLF(3, for (r = 0; r < %i; r++) { ,nb_rows);
GLSLC(0, ); if (first)
} insert_first(shd, 0, "r", 1, plane, comp);
} else
GLSLC(4, s2 = dst.v[pos.x + r]; );
GLSLC(2, barrier(); ); GLSLC(4, dst.v[pos.x + r] = s2 + psum[r]; );
GLSLC(2, prefix_sum(dst, int_stride, dst, int_stride); ); GLSLC(4, psum[r] += s2; );
GLSLC(1, } ); GLSLC(3, } );
GLSLC(0, ); GLSLC(2, } );
GLSLC(1, } );
GLSLC(0, );
} }
static void insert_weights_pass(FFVkSPIRVShader *shd, int nb_rows, int vert, static void insert_weights_pass(FFVkSPIRVShader *shd, int nb_rows, int vert,
int t, int dst_comp, int plane, int comp) int t, int dst_comp, int plane, int comp)
{ {
GLSLF(1, p = patch_size[%i]; ,dst_comp); GLSLF(1, p = patch_size[%i]; ,dst_comp);
GLSLC(0, ); GLSLC(0, );
GLSLC(1, controlBarrier(gl_ScopeWorkgroup, gl_ScopeWorkgroup,
gl_StorageSemanticsBuffer,
gl_SemanticsAcquireRelease |
gl_SemanticsMakeAvailable |
gl_SemanticsMakeVisible); );
GLSLC(1, barrier(); ); GLSLC(1, barrier(); );
GLSLC(0, );
if (!vert) { if (!vert) {
GLSLF(1, for (y = 0; y < height[%i]; y++) { ,plane); GLSLF(1, for (pos.y = 0; pos.y < height[%i]; pos.y++) { ,plane);
GLSLF(2, if (gl_GlobalInvocationID.x*%i >= width[%i]) ,nb_rows, plane); GLSLF(2, if (gl_GlobalInvocationID.x*%i >= width[%i]) ,nb_rows, plane);
GLSLC(3, break; ); GLSLC(3, break; );
GLSLF(2, for (r = 0; r < %i; r++) { ,nb_rows); GLSLF(2, for (r = 0; r < %i; r++) { ,nb_rows);
GLSLF(3, x = int(gl_GlobalInvocationID.x) * %i + r; ,nb_rows); GLSLF(3, pos.x = int(gl_GlobalInvocationID.x) * %i + r; ,nb_rows);
} else { } else {
GLSLF(1, for (x = 0; x < width[%i]; x++) { ,plane); GLSLF(1, for (pos.x = 0; pos.x < width[%i]; pos.x++) { ,plane);
GLSLF(2, if (gl_GlobalInvocationID.x*%i >= height[%i]) ,nb_rows, plane); GLSLF(2, if (gl_GlobalInvocationID.x*%i >= height[%i]) ,nb_rows, plane);
GLSLC(3, break; ); GLSLC(3, break; );
GLSLF(2, for (r = 0; r < %i; r++) { ,nb_rows); GLSLF(2, for (r = 0; r < %i; r++) { ,nb_rows);
GLSLF(3, y = int(gl_GlobalInvocationID.x) * %i + r; ,nb_rows); GLSLF(3, pos.y = int(gl_GlobalInvocationID.x) * %i + r; ,nb_rows);
} }
GLSLC(0, ); GLSLC(0, );
GLSLC(3, a = DTYPE(0); ); GLSLC(3, a = DTYPE(0); );
@ -174,25 +165,25 @@ static void insert_weights_pass(FFVkSPIRVShader *shd, int nb_rows, int vert,
GLSLC(3, c = DTYPE(0); ); GLSLC(3, c = DTYPE(0); );
GLSLC(3, d = DTYPE(0); ); GLSLC(3, d = DTYPE(0); );
GLSLC(0, ); GLSLC(0, );
GLSLC(3, lt = ((x - p) < 0) || ((y - p) < 0); ); GLSLC(3, lt = ((pos.x - p) < 0) || ((pos.y - p) < 0); );
GLSLC(0, ); GLSLC(0, );
if (TYPE_ELEMS == 4) { if (TYPE_ELEMS == 4) {
GLSLF(3, src[0] = texture(input_img[%i], ivec2(x + xoffs[0], y + yoffs[0]))[%i]; ,plane, comp); GLSLF(3, src[0] = texture(input_img[%i], pos + offs[0])[%i]; ,plane, comp);
GLSLF(3, src[1] = texture(input_img[%i], ivec2(x + xoffs[1], y + yoffs[1]))[%i]; ,plane, comp); GLSLF(3, src[1] = texture(input_img[%i], pos + offs[1])[%i]; ,plane, comp);
GLSLF(3, src[2] = texture(input_img[%i], ivec2(x + xoffs[2], y + yoffs[2]))[%i]; ,plane, comp); GLSLF(3, src[2] = texture(input_img[%i], pos + offs[2])[%i]; ,plane, comp);
GLSLF(3, src[3] = texture(input_img[%i], ivec2(x + xoffs[3], y + yoffs[3]))[%i]; ,plane, comp); GLSLF(3, src[3] = texture(input_img[%i], pos + offs[3])[%i]; ,plane, comp);
} else { } else {
for (int i = 0; i < 16; i++) for (int i = 0; i < 16; i++)
GLSLF(3, src[%i][%i] = texture(input_img[%i], ivec2(x + xoffs[%i], y + yoffs[%i]))[%i]; GLSLF(3, src[%i][%i] = texture(input_img[%i], pos + offs[%i])[%i];
,i / 4, i % 4, plane, i, i, comp); ,i / 4, i % 4, plane, i, comp);
} }
GLSLC(0, ); GLSLC(0, );
GLSLC(3, if (lt == false) { ); GLSLC(3, if (lt == false) { );
GLSLC(4, a = integral_data.v[(y - p)*int_stride + x - p]; ); GLSLC(4, a = integral_data.v[(pos.y - p)*int_stride + pos.x - p]; );
GLSLC(4, c = integral_data.v[(y - p)*int_stride + x + p]; ); GLSLC(4, c = integral_data.v[(pos.y - p)*int_stride + pos.x + p]; );
GLSLC(4, b = integral_data.v[(y + p)*int_stride + x - p]; ); GLSLC(4, b = integral_data.v[(pos.y + p)*int_stride + pos.x - p]; );
GLSLC(4, d = integral_data.v[(y + p)*int_stride + x + p]; ); GLSLC(4, d = integral_data.v[(pos.y + p)*int_stride + pos.x + p]; );
GLSLC(3, } ); GLSLC(3, } );
GLSLC(0, ); GLSLC(0, );
GLSLC(3, patch_diff = d + a - b - c; ); GLSLC(3, patch_diff = d + a - b - c; );
@ -212,27 +203,26 @@ static void insert_weights_pass(FFVkSPIRVShader *shd, int nb_rows, int vert,
} }
GLSLC(0, ); GLSLC(0, );
if (t > 1) { if (t > 1) {
GLSLF(3, atomicAdd(weights_%i[y*ws_stride[%i] + x], w_sum); ,dst_comp, dst_comp); GLSLF(3, atomicAdd(weights_%i[pos.y*ws_stride[%i] + pos.x], w_sum); ,dst_comp, dst_comp);
GLSLF(3, atomicAdd(sums_%i[y*ws_stride[%i] + x], sum); ,dst_comp, dst_comp); GLSLF(3, atomicAdd(sums_%i[pos.y*ws_stride[%i] + pos.x], sum); ,dst_comp, dst_comp);
} else { } else {
GLSLF(3, weights_%i[y*ws_stride[%i] + x] += w_sum; ,dst_comp, dst_comp); GLSLF(3, weights_%i[pos.y*ws_stride[%i] + pos.x] += w_sum; ,dst_comp, dst_comp);
GLSLF(3, sums_%i[y*ws_stride[%i] + x] += sum; ,dst_comp, dst_comp); GLSLF(3, sums_%i[pos.y*ws_stride[%i] + pos.x] += sum; ,dst_comp, dst_comp);
} }
GLSLC(2, } ); GLSLC(2, } );
GLSLC(1, } ); GLSLC(1, } );
} }
typedef struct HorizontalPushData { typedef struct HorizontalPushData {
VkDeviceAddress integral_data;
VkDeviceAddress state_data;
int32_t xoffs[TYPE_ELEMS];
int32_t yoffs[TYPE_ELEMS];
uint32_t width[4]; uint32_t width[4];
uint32_t height[4]; uint32_t height[4];
uint32_t ws_stride[4]; uint32_t ws_stride[4];
int32_t patch_size[4]; int32_t patch_size[4];
float strength[4]; float strength[4];
VkDeviceAddress integral_base;
uint32_t integral_size;
uint32_t int_stride; uint32_t int_stride;
uint32_t xyoffs_start;
} HorizontalPushData; } HorizontalPushData;
static av_cold int init_weights_pipeline(FFVulkanContext *vkctx, FFVkExecPool *exec, static av_cold int init_weights_pipeline(FFVulkanContext *vkctx, FFVkExecPool *exec,
@ -249,26 +239,18 @@ static av_cold int init_weights_pipeline(FFVulkanContext *vkctx, FFVkExecPool *e
FFVulkanDescriptorSetBinding *desc_set; FFVulkanDescriptorSetBinding *desc_set;
int max_dim = FFMAX(width, height); int max_dim = FFMAX(width, height);
uint32_t max_wg = vkctx->props.properties.limits.maxComputeWorkGroupSize[0]; uint32_t max_wg = vkctx->props.properties.limits.maxComputeWorkGroupSize[0];
int max_shm = vkctx->props.properties.limits.maxComputeSharedMemorySize;
int wg_size, wg_rows; int wg_size, wg_rows;
/* Round the max workgroup size to the previous power of two */ /* Round the max workgroup size to the previous power of two */
max_wg = 1 << (31 - ff_clz(max_wg));
wg_size = max_wg; wg_size = max_wg;
wg_rows = 1; wg_rows = 1;
if (max_wg > max_dim) { if (max_wg > max_dim) {
wg_size = max_wg / (max_wg / max_dim); wg_size = max_dim;
} else if (max_wg < max_dim) { } else if (max_wg < max_dim) {
/* First, make it fit */ /* Make it fit */
while (wg_size*wg_rows < max_dim) while (wg_size*wg_rows < max_dim)
wg_rows++; wg_rows++;
/* Second, make sure there's enough shared memory */
while ((wg_size * TYPE_SIZE + TYPE_SIZE + 2*4) > max_shm) {
wg_size >>= 1;
wg_rows++;
}
} }
RET(ff_vk_shader_init(pl, shd, "nlmeans_weights", VK_SHADER_STAGE_COMPUTE_BIT, 0)); RET(ff_vk_shader_init(pl, shd, "nlmeans_weights", VK_SHADER_STAGE_COMPUTE_BIT, 0));
@ -278,33 +260,24 @@ static av_cold int init_weights_pipeline(FFVulkanContext *vkctx, FFVkExecPool *e
if (t > 1) if (t > 1)
GLSLC(0, #extension GL_EXT_shader_atomic_float : require ); GLSLC(0, #extension GL_EXT_shader_atomic_float : require );
GLSLC(0, #extension GL_ARB_gpu_shader_int64 : require ); GLSLC(0, #extension GL_ARB_gpu_shader_int64 : require );
GLSLC(0, #pragma use_vulkan_memory_model );
GLSLC(0, #extension GL_KHR_memory_scope_semantics : enable );
GLSLC(0, ); GLSLC(0, );
GLSLF(0, #define N_ROWS %i ,*nb_rows); GLSLF(0, #define DTYPE %s ,TYPE_NAME);
GLSLC(0, #define WG_SIZE (gl_WorkGroupSize.x) ); GLSLF(0, #define T_ALIGN %i ,TYPE_SIZE);
GLSLF(0, #define LG_WG_SIZE %i ,ff_log2(shd->local_size[0]));
GLSLC(0, #define PARTITION_SIZE (N_ROWS*WG_SIZE) );
GLSLF(0, #define DTYPE %s ,TYPE_NAME);
GLSLF(0, #define T_ALIGN %i ,TYPE_SIZE);
GLSLC(0, ); GLSLC(0, );
GLSLC(0, layout(buffer_reference, buffer_reference_align = T_ALIGN) coherent buffer DataBuffer { ); GLSLC(0, layout(buffer_reference, buffer_reference_align = T_ALIGN) buffer DataBuffer { );
GLSLC(1, DTYPE v[]; ); GLSLC(1, DTYPE v[]; );
GLSLC(0, }; ); GLSLC(0, }; );
GLSLC(0, ); GLSLC(0, );
GLSLC(0, layout(buffer_reference) buffer StateData; );
GLSLC(0, );
GLSLC(0, layout(push_constant, std430) uniform pushConstants { ); GLSLC(0, layout(push_constant, std430) uniform pushConstants { );
GLSLC(1, coherent DataBuffer integral_data; );
GLSLC(1, StateData state; );
GLSLF(1, uint xoffs[%i]; ,TYPE_ELEMS);
GLSLF(1, uint yoffs[%i]; ,TYPE_ELEMS);
GLSLC(1, uvec4 width; ); GLSLC(1, uvec4 width; );
GLSLC(1, uvec4 height; ); GLSLC(1, uvec4 height; );
GLSLC(1, uvec4 ws_stride; ); GLSLC(1, uvec4 ws_stride; );
GLSLC(1, ivec4 patch_size; ); GLSLC(1, ivec4 patch_size; );
GLSLC(1, vec4 strength; ); GLSLC(1, vec4 strength; );
GLSLC(1, DataBuffer integral_base; );
GLSLC(1, uint integral_size; );
GLSLC(1, uint int_stride; ); GLSLC(1, uint int_stride; );
GLSLC(1, uint xyoffs_start; );
GLSLC(0, }; ); GLSLC(0, }; );
GLSLC(0, ); GLSLC(0, );
@ -370,42 +343,65 @@ static av_cold int init_weights_pipeline(FFVulkanContext *vkctx, FFVkExecPool *e
}; };
RET(ff_vk_pipeline_descriptor_set_add(vkctx, pl, shd, desc_set, 1 + 2*desc->nb_components, 0, 0)); RET(ff_vk_pipeline_descriptor_set_add(vkctx, pl, shd, desc_set, 1 + 2*desc->nb_components, 0, 0));
GLSLD( ff_source_prefix_sum_comp ); desc_set = (FFVulkanDescriptorSetBinding []) {
GLSLC(0, ); {
GLSLC(0, void main() ); .name = "xyoffsets_buffer",
GLSLC(0, { ); .type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
GLSLC(1, uint64_t offset; ); .mem_quali = "readonly",
GLSLC(1, DataBuffer dst; ); .stages = VK_SHADER_STAGE_COMPUTE_BIT,
GLSLC(1, float s1; ); .buf_content = "ivec2 xyoffsets[];",
GLSLC(1, DTYPE s2; ); },
GLSLC(1, int r; ); };
GLSLC(1, int x; ); RET(ff_vk_pipeline_descriptor_set_add(vkctx, pl, shd, desc_set, 1, 1, 0));
GLSLC(1, int y; );
GLSLC(1, int p; ); GLSLC(0, );
GLSLC(0, ); GLSLC(0, void main() );
GLSLC(1, DTYPE a; ); GLSLC(0, { );
GLSLC(1, DTYPE b; ); GLSLC(1, uint64_t offset; );
GLSLC(1, DTYPE c; ); GLSLC(1, DataBuffer dst; );
GLSLC(1, DTYPE d; ); GLSLC(1, float s1; );
GLSLC(0, ); GLSLC(1, DTYPE s2; );
GLSLC(1, DTYPE patch_diff; ); GLSLC(1, DTYPE prefix_sum; );
GLSLF(1, DTYPE psum[%i]; ,*nb_rows);
GLSLC(1, int r; );
GLSLC(1, ivec2 pos; );
GLSLC(1, int p; );
GLSLC(0, );
GLSLC(1, DataBuffer integral_data; );
GLSLF(1, ivec2 offs[%i]; ,TYPE_ELEMS);
GLSLC(0, );
GLSLC(1, int invoc_idx = int(gl_WorkGroupID.z); );
GLSLC(1, offset = uint64_t(integral_size)*invoc_idx; );
GLSLC(1, dst = DataBuffer(uint64_t(integral_data) + offset); );
GLSLC(1, integral_data = DataBuffer(uint64_t(integral_base) + offset); );
for (int i = 0; i < TYPE_ELEMS*2; i += 2)
GLSLF(1, offs[%i] = xyoffsets[xyoffs_start + 2*%i*invoc_idx + %i]; ,i/2,TYPE_ELEMS,i);
GLSLC(0, );
GLSLC(1, DTYPE a; );
GLSLC(1, DTYPE b; );
GLSLC(1, DTYPE c; );
GLSLC(1, DTYPE d; );
GLSLC(0, );
GLSLC(1, DTYPE patch_diff; );
if (TYPE_ELEMS == 4) { if (TYPE_ELEMS == 4) {
GLSLC(1, vec4 src; ); GLSLC(1, vec4 src; );
GLSLC(1, vec4 w; ); GLSLC(1, vec4 w; );
} else { } else {
GLSLC(1, vec4 src[4]; ); GLSLC(1, vec4 src[4]; );
GLSLC(1, vec4 w[4]; ); GLSLC(1, vec4 w[4]; );
} }
GLSLC(1, float w_sum; ); GLSLC(1, float w_sum; );
GLSLC(1, float sum; ); GLSLC(1, float sum; );
GLSLC(0, ); GLSLC(0, );
GLSLC(1, bool lt; ); GLSLC(1, bool lt; );
GLSLC(1, bool gt; ); GLSLC(1, bool gt; );
GLSLC(0, ); GLSLC(0, );
for (int i = 0; i < desc->nb_components; i++) { for (int i = 0; i < desc->nb_components; i++) {
int off = desc->comp[i].offset / (FFALIGN(desc->comp[i].depth, 8)/8); int off = desc->comp[i].offset / (FFALIGN(desc->comp[i].depth, 8)/8);
if (width > height) { if (width >= height) {
insert_horizontal_pass(shd, *nb_rows, 1, desc->comp[i].plane, off); insert_horizontal_pass(shd, *nb_rows, 1, desc->comp[i].plane, off);
insert_vertical_pass(shd, *nb_rows, 0, desc->comp[i].plane, off); insert_vertical_pass(shd, *nb_rows, 0, desc->comp[i].plane, off);
insert_weights_pass(shd, *nb_rows, 0, t, i, desc->comp[i].plane, off); insert_weights_pass(shd, *nb_rows, 0, t, i, desc->comp[i].plane, off);
@ -416,7 +412,7 @@ static av_cold int init_weights_pipeline(FFVulkanContext *vkctx, FFVkExecPool *e
} }
} }
GLSLC(0, } ); GLSLC(0, } );
RET(spv->compile_shader(spv, vkctx, shd, &spv_data, &spv_len, "main", &spv_opaque)); RET(spv->compile_shader(spv, vkctx, shd, &spv_data, &spv_len, "main", &spv_opaque));
RET(ff_vk_shader_create(vkctx, shd, spv_data, spv_len, "main")); RET(ff_vk_shader_create(vkctx, shd, spv_data, spv_len, "main"));
@ -584,6 +580,8 @@ static av_cold int init_filter(AVFilterContext *ctx)
FFVulkanContext *vkctx = &s->vkctx; FFVulkanContext *vkctx = &s->vkctx;
const int planes = av_pix_fmt_count_planes(s->vkctx.output_format); const int planes = av_pix_fmt_count_planes(s->vkctx.output_format);
FFVkSPIRVCompiler *spv; FFVkSPIRVCompiler *spv;
int *offsets_buf;
int offsets_dispatched = 0, nb_dispatches = 0;
const AVPixFmtDescriptor *desc; const AVPixFmtDescriptor *desc;
desc = av_pix_fmt_desc_get(vkctx->output_format); desc = av_pix_fmt_desc_get(vkctx->output_format);
@ -634,6 +632,20 @@ static av_cold int init_filter(AVFilterContext *ctx)
} }
} }
RET(ff_vk_create_buf(&s->vkctx, &s->xyoffsets_buf, 2*s->nb_offsets*sizeof(int32_t), NULL, NULL,
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT));
RET(ff_vk_map_buffer(&s->vkctx, &s->xyoffsets_buf, (uint8_t **)&offsets_buf, 0));
for (int i = 0; i < 2*s->nb_offsets; i += 2) {
offsets_buf[i + 0] = s->xoffsets[i >> 1];
offsets_buf[i + 1] = s->yoffsets[i >> 1];
}
RET(ff_vk_unmap_buffer(&s->vkctx, &s->xyoffsets_buf, 1));
s->opts.t = FFMIN(s->opts.t, (FFALIGN(s->nb_offsets, TYPE_ELEMS) / TYPE_ELEMS)); s->opts.t = FFMIN(s->opts.t, (FFALIGN(s->nb_offsets, TYPE_ELEMS) / TYPE_ELEMS));
if (!vkctx->atomic_float_feats.shaderBufferFloat32AtomicAdd) { if (!vkctx->atomic_float_feats.shaderBufferFloat32AtomicAdd) {
av_log(ctx, AV_LOG_WARNING, "Device doesn't support atomic float adds, " av_log(ctx, AV_LOG_WARNING, "Device doesn't support atomic float adds, "
@ -641,11 +653,6 @@ static av_cold int init_filter(AVFilterContext *ctx)
s->opts.t = 1; s->opts.t = 1;
} }
if (!vkctx->feats_12.vulkanMemoryModel) {
av_log(ctx, AV_LOG_ERROR, "Device doesn't support the Vulkan memory model!");
return AVERROR(EINVAL);;
}
spv = ff_vk_spirv_init(); spv = ff_vk_spirv_init();
if (!spv) { if (!spv) {
av_log(ctx, AV_LOG_ERROR, "Unable to initialize SPIR-V compiler!\n"); av_log(ctx, AV_LOG_ERROR, "Unable to initialize SPIR-V compiler!\n");
@ -663,8 +670,19 @@ static av_cold int init_filter(AVFilterContext *ctx)
RET(init_denoise_pipeline(vkctx, &s->e, &s->pl_denoise, &s->shd_denoise, s->sampler, RET(init_denoise_pipeline(vkctx, &s->e, &s->pl_denoise, &s->shd_denoise, s->sampler,
spv, desc, planes)); spv, desc, planes));
av_log(ctx, AV_LOG_VERBOSE, "Filter initialized, %i x/y offsets, %i dispatches, %i parallel\n", RET(ff_vk_set_descriptor_buffer(&s->vkctx, &s->pl_weights, NULL, 1, 0, 0,
s->nb_offsets, (FFALIGN(s->nb_offsets, TYPE_ELEMS) / TYPE_ELEMS) + 1, s->opts.t); s->xyoffsets_buf.address, s->xyoffsets_buf.size,
VK_FORMAT_UNDEFINED));
do {
int wg_invoc = FFMIN((s->nb_offsets - offsets_dispatched)/TYPE_ELEMS, s->opts.t);
wg_invoc = FFMIN(wg_invoc, vkctx->props.properties.limits.maxComputeWorkGroupCount[2]);
offsets_dispatched += wg_invoc * TYPE_ELEMS;
nb_dispatches++;
} while (offsets_dispatched < s->nb_offsets);
av_log(ctx, AV_LOG_VERBOSE, "Filter initialized, %i x/y offsets, %i dispatches\n",
s->nb_offsets, nb_dispatches);
s->initialized = 1; s->initialized = 1;
@ -736,18 +754,16 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
int plane_widths[4]; int plane_widths[4];
int plane_heights[4]; int plane_heights[4];
int offsets_dispatched = 0;
/* Integral */ /* Integral */
AVBufferRef *state_buf; AVBufferRef *integral_buf = NULL;
FFVkBuffer *state_vk;
AVBufferRef *integral_buf;
FFVkBuffer *integral_vk; FFVkBuffer *integral_vk;
uint32_t int_stride; uint32_t int_stride;
size_t int_size; size_t int_size;
size_t state_size;
int t_offset = 0;
/* Weights/sums */ /* Weights/sums */
AVBufferRef *ws_buf; AVBufferRef *ws_buf = NULL;
FFVkBuffer *ws_vk; FFVkBuffer *ws_vk;
VkDeviceAddress weights_addr[4]; VkDeviceAddress weights_addr[4];
VkDeviceAddress sums_addr[4]; VkDeviceAddress sums_addr[4];
@ -773,7 +789,6 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
/* Integral image */ /* Integral image */
int_stride = s->pl_weights.wg_size[0]*s->pl_weights_rows; int_stride = s->pl_weights.wg_size[0]*s->pl_weights_rows;
int_size = int_stride * int_stride * TYPE_SIZE; int_size = int_stride * int_stride * TYPE_SIZE;
state_size = int_stride * 3 *TYPE_SIZE;
/* Plane dimensions */ /* Plane dimensions */
for (int i = 0; i < desc->nb_components; i++) { for (int i = 0; i < desc->nb_components; i++) {
@ -798,16 +813,6 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
return err; return err;
integral_vk = (FFVkBuffer *)integral_buf->data; integral_vk = (FFVkBuffer *)integral_buf->data;
err = ff_vk_get_pooled_buffer(&s->vkctx, &s->state_buf_pool, &state_buf,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
NULL,
s->opts.t * state_size,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
if (err < 0)
return err;
state_vk = (FFVkBuffer *)state_buf->data;
err = ff_vk_get_pooled_buffer(&s->vkctx, &s->ws_buf_pool, &ws_buf, err = ff_vk_get_pooled_buffer(&s->vkctx, &s->ws_buf_pool, &ws_buf,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
@ -844,9 +849,12 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
RET(ff_vk_exec_add_dep_frame(vkctx, exec, out, RET(ff_vk_exec_add_dep_frame(vkctx, exec, out,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)); VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT));
RET(ff_vk_exec_add_dep_buf(vkctx, exec, &integral_buf, 1, 0)); RET(ff_vk_exec_add_dep_buf(vkctx, exec, &integral_buf, 1, 0));
RET(ff_vk_exec_add_dep_buf(vkctx, exec, &state_buf, 1, 0)); integral_buf = NULL;
RET(ff_vk_exec_add_dep_buf(vkctx, exec, &ws_buf, 1, 0)); RET(ff_vk_exec_add_dep_buf(vkctx, exec, &ws_buf, 1, 0));
ws_buf = NULL;
/* Input frame prep */ /* Input frame prep */
RET(ff_vk_create_imageviews(vkctx, exec, in_views, in)); RET(ff_vk_create_imageviews(vkctx, exec, in_views, in));
@ -869,6 +877,7 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
VK_QUEUE_FAMILY_IGNORED); VK_QUEUE_FAMILY_IGNORED);
nb_buf_bar = 0;
buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) { buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2, .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,
.srcStageMask = ws_vk->stage, .srcStageMask = ws_vk->stage,
@ -881,6 +890,19 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
.size = ws_vk->size, .size = ws_vk->size,
.offset = 0, .offset = 0,
}; };
buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,
.srcStageMask = integral_vk->stage,
.dstStageMask = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
.srcAccessMask = integral_vk->access,
.dstAccessMask = VK_ACCESS_2_SHADER_STORAGE_READ_BIT |
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.buffer = integral_vk->buf,
.size = integral_vk->size,
.offset = 0,
};
vk->CmdPipelineBarrier2(exec->buf, &(VkDependencyInfo) { vk->CmdPipelineBarrier2(exec->buf, &(VkDependencyInfo) {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO, .sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
@ -891,10 +913,13 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
}); });
ws_vk->stage = buf_bar[0].dstStageMask; ws_vk->stage = buf_bar[0].dstStageMask;
ws_vk->access = buf_bar[0].dstAccessMask; ws_vk->access = buf_bar[0].dstAccessMask;
integral_vk->stage = buf_bar[1].dstStageMask;
integral_vk->access = buf_bar[1].dstAccessMask;
/* Weights/sums buffer zeroing */ /* Buffer zeroing */
vk->CmdFillBuffer(exec->buf, ws_vk->buf, 0, ws_vk->size, 0x0); vk->CmdFillBuffer(exec->buf, ws_vk->buf, 0, ws_vk->size, 0x0);
nb_buf_bar = 0;
buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) { buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2, .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,
.srcStageMask = ws_vk->stage, .srcStageMask = ws_vk->stage,
@ -948,29 +973,22 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
/* Weights pipeline */ /* Weights pipeline */
ff_vk_exec_bind_pipeline(vkctx, exec, &s->pl_weights); ff_vk_exec_bind_pipeline(vkctx, exec, &s->pl_weights);
for (int i = 0; i < s->nb_offsets; i += TYPE_ELEMS) { do {
int *xoffs = s->xoffsets + i; int wg_invoc;
int *yoffs = s->yoffsets + i;
HorizontalPushData pd = { HorizontalPushData pd = {
integral_vk->address + t_offset*int_size,
state_vk->address + t_offset*state_size,
{ 0 },
{ 0 },
{ plane_widths[0], plane_widths[1], plane_widths[2], plane_widths[3] }, { plane_widths[0], plane_widths[1], plane_widths[2], plane_widths[3] },
{ plane_heights[0], plane_heights[1], plane_heights[2], plane_heights[3] }, { plane_heights[0], plane_heights[1], plane_heights[2], plane_heights[3] },
{ ws_stride[0], ws_stride[1], ws_stride[2], ws_stride[3] }, { ws_stride[0], ws_stride[1], ws_stride[2], ws_stride[3] },
{ s->patch[0], s->patch[1], s->patch[2], s->patch[3] }, { s->patch[0], s->patch[1], s->patch[2], s->patch[3] },
{ s->strength[0], s->strength[1], s->strength[2], s->strength[2], }, { s->strength[0], s->strength[1], s->strength[2], s->strength[2], },
integral_vk->address,
int_size,
int_stride, int_stride,
offsets_dispatched * 2,
}; };
memcpy(pd.xoffs, xoffs, sizeof(pd.xoffs)); if (offsets_dispatched) {
memcpy(pd.yoffs, yoffs, sizeof(pd.yoffs));
/* Put a barrier once we run out of parallelism buffers */
if (!t_offset) {
nb_buf_bar = 0; nb_buf_bar = 0;
/* Buffer prep/sync */
buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) { buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2, .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,
.srcStageMask = integral_vk->stage, .srcStageMask = integral_vk->stage,
@ -984,39 +1002,28 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
.size = integral_vk->size, .size = integral_vk->size,
.offset = 0, .offset = 0,
}; };
buf_bar[nb_buf_bar++] = (VkBufferMemoryBarrier2) {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,
.srcStageMask = state_vk->stage,
.dstStageMask = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,
.srcAccessMask = state_vk->access,
.dstAccessMask = VK_ACCESS_2_SHADER_STORAGE_READ_BIT |
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.buffer = state_vk->buf,
.size = state_vk->size,
.offset = 0,
};
vk->CmdPipelineBarrier2(exec->buf, &(VkDependencyInfo) { vk->CmdPipelineBarrier2(exec->buf, &(VkDependencyInfo) {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO, .sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pBufferMemoryBarriers = buf_bar, .pBufferMemoryBarriers = buf_bar,
.bufferMemoryBarrierCount = nb_buf_bar, .bufferMemoryBarrierCount = nb_buf_bar,
}); });
integral_vk->stage = buf_bar[0].dstStageMask; integral_vk->stage = buf_bar[1].dstStageMask;
integral_vk->access = buf_bar[0].dstAccessMask; integral_vk->access = buf_bar[1].dstAccessMask;
state_vk->stage = buf_bar[1].dstStageMask;
state_vk->access = buf_bar[1].dstAccessMask;
} }
t_offset = (t_offset + 1) % s->opts.t;
/* Push data */ /* Push data */
ff_vk_update_push_exec(vkctx, exec, &s->pl_weights, VK_SHADER_STAGE_COMPUTE_BIT, ff_vk_update_push_exec(vkctx, exec, &s->pl_weights, VK_SHADER_STAGE_COMPUTE_BIT,
0, sizeof(pd), &pd); 0, sizeof(pd), &pd);
wg_invoc = FFMIN((s->nb_offsets - offsets_dispatched)/TYPE_ELEMS, s->opts.t);
wg_invoc = FFMIN(wg_invoc, vkctx->props.properties.limits.maxComputeWorkGroupCount[2]);
/* End of horizontal pass */ /* End of horizontal pass */
vk->CmdDispatch(exec->buf, 1, 1, 1); vk->CmdDispatch(exec->buf, 1, 1, wg_invoc);
}
offsets_dispatched += wg_invoc * TYPE_ELEMS;
} while (offsets_dispatched < s->nb_offsets);
RET(denoise_pass(s, exec, ws_vk, ws_stride)); RET(denoise_pass(s, exec, ws_vk, ws_stride));
@ -1033,6 +1040,8 @@ static int nlmeans_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
return ff_filter_frame(outlink, out); return ff_filter_frame(outlink, out);
fail: fail:
av_buffer_unref(&integral_buf);
av_buffer_unref(&ws_buf);
av_frame_free(&in); av_frame_free(&in);
av_frame_free(&out); av_frame_free(&out);
return err; return err;
@ -1051,7 +1060,6 @@ static void nlmeans_vulkan_uninit(AVFilterContext *avctx)
ff_vk_shader_free(vkctx, &s->shd_denoise); ff_vk_shader_free(vkctx, &s->shd_denoise);
av_buffer_pool_uninit(&s->integral_buf_pool); av_buffer_pool_uninit(&s->integral_buf_pool);
av_buffer_pool_uninit(&s->state_buf_pool);
av_buffer_pool_uninit(&s->ws_buf_pool); av_buffer_pool_uninit(&s->ws_buf_pool);
if (s->sampler) if (s->sampler)

@ -1,151 +0,0 @@
#extension GL_EXT_buffer_reference : require
#extension GL_EXT_buffer_reference2 : require
#define ACQUIRE gl_StorageSemanticsBuffer, gl_SemanticsAcquire
#define RELEASE gl_StorageSemanticsBuffer, gl_SemanticsRelease
// These correspond to X, A, P respectively in the prefix sum paper.
#define FLAG_NOT_READY 0u
#define FLAG_AGGREGATE_READY 1u
#define FLAG_PREFIX_READY 2u
layout(buffer_reference, buffer_reference_align = T_ALIGN) nonprivate buffer StateData {
DTYPE aggregate;
DTYPE prefix;
uint flag;
};
shared DTYPE sh_scratch[WG_SIZE];
shared DTYPE sh_prefix;
shared uint sh_part_ix;
shared uint sh_flag;
void prefix_sum(DataBuffer dst, uint dst_stride, DataBuffer src, uint src_stride)
{
DTYPE local[N_ROWS];
// Determine partition to process by atomic counter (described in Section 4.4 of prefix sum paper).
if (gl_GlobalInvocationID.x == 0)
sh_part_ix = gl_WorkGroupID.x;
// sh_part_ix = atomicAdd(part_counter, 1);
barrier();
uint part_ix = sh_part_ix;
uint ix = part_ix * PARTITION_SIZE + gl_LocalInvocationID.x * N_ROWS;
// TODO: gate buffer read? (evaluate whether shader check or CPU-side padding is better)
local[0] = src.v[ix*src_stride];
for (uint i = 1; i < N_ROWS; i++)
local[i] = local[i - 1] + src.v[(ix + i)*src_stride];
DTYPE agg = local[N_ROWS - 1];
sh_scratch[gl_LocalInvocationID.x] = agg;
for (uint i = 0; i < LG_WG_SIZE; i++) {
barrier();
if (gl_LocalInvocationID.x >= (1u << i))
agg += sh_scratch[gl_LocalInvocationID.x - (1u << i)];
barrier();
sh_scratch[gl_LocalInvocationID.x] = agg;
}
// Publish aggregate for this partition
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
state[part_ix].aggregate = agg;
if (part_ix == 0)
state[0].prefix = agg;
}
// Write flag with release semantics
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
uint flag = part_ix == 0 ? FLAG_PREFIX_READY : FLAG_AGGREGATE_READY;
atomicStore(state[part_ix].flag, flag, gl_ScopeDevice, RELEASE);
}
DTYPE exclusive = DTYPE(0);
if (part_ix != 0) {
// step 4 of paper: decoupled lookback
uint look_back_ix = part_ix - 1;
DTYPE their_agg;
uint their_ix = 0;
while (true) {
// Read flag with acquire semantics.
if (gl_LocalInvocationID.x == WG_SIZE - 1)
sh_flag = atomicLoad(state[look_back_ix].flag, gl_ScopeDevice, ACQUIRE);
// The flag load is done only in the last thread. However, because the
// translation of memoryBarrierBuffer to Metal requires uniform control
// flow, we broadcast it to all threads.
barrier();
uint flag = sh_flag;
barrier();
if (flag == FLAG_PREFIX_READY) {
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
DTYPE their_prefix = state[look_back_ix].prefix;
exclusive = their_prefix + exclusive;
}
break;
} else if (flag == FLAG_AGGREGATE_READY) {
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
their_agg = state[look_back_ix].aggregate;
exclusive = their_agg + exclusive;
}
look_back_ix--;
their_ix = 0;
continue;
} // else spins
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
// Unfortunately there's no guarantee of forward progress of other
// workgroups, so compute a bit of the aggregate before trying again.
// In the worst case, spinning stops when the aggregate is complete.
DTYPE m = src.v[(look_back_ix * PARTITION_SIZE + their_ix)*src_stride];
if (their_ix == 0)
their_agg = m;
else
their_agg += m;
their_ix++;
if (their_ix == PARTITION_SIZE) {
exclusive = their_agg + exclusive;
if (look_back_ix == 0) {
sh_flag = FLAG_PREFIX_READY;
} else {
look_back_ix--;
their_ix = 0;
}
}
}
barrier();
flag = sh_flag;
barrier();
if (flag == FLAG_PREFIX_READY)
break;
}
// step 5 of paper: compute inclusive prefix
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
DTYPE inclusive_prefix = exclusive + agg;
sh_prefix = exclusive;
state[part_ix].prefix = inclusive_prefix;
}
if (gl_LocalInvocationID.x == WG_SIZE - 1)
atomicStore(state[part_ix].flag, FLAG_PREFIX_READY, gl_ScopeDevice, RELEASE);
}
barrier();
if (part_ix != 0)
exclusive = sh_prefix;
DTYPE row = exclusive;
if (gl_LocalInvocationID.x > 0)
row += sh_scratch[gl_LocalInvocationID.x - 1];
// note - may overwrite
for (uint i = 0; i < N_ROWS; i++)
dst.v[(ix + i)*dst_stride] = row + local[i];
}
Loading…
Cancel
Save