lavu/tx: rewrite internal code as a tree-based codelet constructor

This commit rewrites the internal transform code into a constructor
that stitches transforms (codelets).
This allows for transforms to reuse arbitrary parts of other
transforms, and allows transforms to be stacked onto one
another (such as a full iMDCT using a half-iMDCT which in turn
uses an FFT). It also permits for each step to be individually
replaced by assembly or a custom implementation (such as an ASIC).
release/5.1
Lynne 3 years ago
parent c14976be04
commit ef4bd81615
No known key found for this signature in database
GPG Key ID: A2FEA5F03F034464
  1. 596
      libavutil/tx.c
  2. 4
      libavutil/tx.h
  3. 277
      libavutil/tx_priv.h
  4. 1407
      libavutil/tx_template.c
  5. 85
      libavutil/x86/tx_float.asm
  6. 160
      libavutil/x86/tx_float_init.c

@ -16,19 +16,16 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "cpu.h"
#include "qsort.h"
#include "bprint.h"
#include "tx_priv.h"
int ff_tx_type_is_mdct(enum AVTXType type)
{
switch (type) {
case AV_TX_FLOAT_MDCT:
case AV_TX_DOUBLE_MDCT:
case AV_TX_INT32_MDCT:
return 1;
default:
return 0;
}
}
#define TYPE_IS(type, x) \
(((x) == AV_TX_FLOAT_ ## type) || \
((x) == AV_TX_DOUBLE_ ## type) || \
((x) == AV_TX_INT32_ ## type))
/* Calculates the modular multiplicative inverse */
static av_always_inline int mulinv(int n, int m)
@ -42,22 +39,26 @@ static av_always_inline int mulinv(int n, int m)
}
/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s)
int ff_tx_gen_compound_mapping(AVTXContext *s, int n, int m)
{
int *in_map, *out_map;
const int n = s->n;
const int m = s->m;
const int inv = s->inv;
const int len = n*m;
const int m_inv = mulinv(m, n);
const int n_inv = mulinv(n, m);
const int mdct = ff_tx_type_is_mdct(s->type);
if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab))))
const int inv = s->inv;
const int len = n*m; /* Will not be equal to s->len for MDCTs */
const int mdct = TYPE_IS(MDCT, s->type);
int m_inv, n_inv;
/* Make sure the numbers are coprime */
if (av_gcd(n, m) != 1)
return AVERROR(EINVAL);
m_inv = mulinv(m, n);
n_inv = mulinv(n, m);
if (!(s->map = av_malloc(2*len*sizeof(*s->map))))
return AVERROR(ENOMEM);
in_map = s->pfatab;
out_map = s->pfatab + n*m;
in_map = s->map;
out_map = s->map + len;
/* Ruritanian map for input, CRT map for output, can be swapped */
for (int j = 0; j < m; j++) {
@ -92,48 +93,50 @@ int ff_tx_gen_compound_mapping(AVTXContext *s)
return 0;
}
static inline int split_radix_permutation(int i, int m, int inverse)
static inline int split_radix_permutation(int i, int len, int inv)
{
m >>= 1;
if (m <= 1)
len >>= 1;
if (len <= 1)
return i & 1;
if (!(i & m))
return split_radix_permutation(i, m, inverse) * 2;
m >>= 1;
return split_radix_permutation(i, m, inverse) * 4 + 1 - 2*(!(i & m) ^ inverse);
if (!(i & len))
return split_radix_permutation(i, len, inv) * 2;
len >>= 1;
return split_radix_permutation(i, len, inv) * 4 + 1 - 2*(!(i & len) ^ inv);
}
int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup)
{
const int m = s->m, inv = s->inv;
int len = s->len;
if (!(s->revtab = av_malloc(s->m*sizeof(*s->revtab))))
return AVERROR(ENOMEM);
if (!(s->revtab_c = av_malloc(m*sizeof(*s->revtab_c))))
if (!(s->map = av_malloc(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
/* Default */
for (int i = 0; i < m; i++) {
int k = -split_radix_permutation(i, m, inv) & (m - 1);
if (invert_lookup)
s->revtab[i] = s->revtab_c[i] = k;
else
s->revtab[i] = s->revtab_c[k] = i;
if (invert_lookup) {
for (int i = 0; i < s->len; i++)
s->map[i] = -split_radix_permutation(i, len, s->inv) & (len - 1);
} else {
for (int i = 0; i < s->len; i++)
s->map[-split_radix_permutation(i, len, s->inv) & (len - 1)] = i;
}
return 0;
}
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab)
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s)
{
int nb_inplace_idx = 0;
int *src_map, out_map_idx = 0, len = s->len;
if (!(s->inplace_idx = av_malloc(s->m*sizeof(*s->inplace_idx))))
if (!s->sub || !s->sub->map)
return AVERROR(EINVAL);
if (!(s->map = av_mallocz(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
src_map = s->sub->map;
/* The first coefficient is always already in-place */
for (int src = 1; src < s->m; src++) {
int dst = revtab[src];
for (int src = 1; src < s->len; src++) {
int dst = src_map[src];
int found = 0;
if (dst <= src)
@ -143,48 +146,53 @@ int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab)
* and if so, skips it, since to fully permute a loop we must only
* enter it once. */
do {
for (int j = 0; j < nb_inplace_idx; j++) {
if (dst == s->inplace_idx[j]) {
for (int j = 0; j < out_map_idx; j++) {
if (dst == s->map[j]) {
found = 1;
break;
}
}
dst = revtab[dst];
dst = src_map[dst];
} while (dst != src && !found);
if (!found)
s->inplace_idx[nb_inplace_idx++] = src;
s->map[out_map_idx++] = src;
}
s->inplace_idx[nb_inplace_idx++] = 0;
s->map[out_map_idx++] = 0;
return 0;
}
static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
int is_dual, int dual_high, int len,
int basis, int dual_stride)
int basis, int dual_stride, int inv_lookup)
{
len >>= 1;
if (len <= basis) {
int k1, k2, *even, *odd, stride;
int k1, k2, stride, even_idx, odd_idx;
is_dual = is_dual && dual_stride;
dual_high = is_dual & dual_high;
stride = is_dual ? FFMIN(dual_stride, len) : 0;
even = &revtab[offset + dual_high*(stride - 2*len)];
odd = &even[len + (is_dual && !dual_high)*len + dual_high*len];
even_idx = offset + dual_high*(stride - 2*len);
odd_idx = even_idx + len + (is_dual && !dual_high)*len + dual_high*len;
for (int i = 0; i < len; i++) {
k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1);
k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1);
*even++ = k1;
*odd++ = k2;
if (inv_lookup) {
revtab[even_idx++] = k1;
revtab[odd_idx++] = k2;
} else {
revtab[k1] = even_idx++;
revtab[k2] = odd_idx++;
}
if (stride && !((i + 1) % stride)) {
even += stride;
odd += stride;
even_idx += stride;
odd_idx += stride;
}
}
@ -192,22 +200,52 @@ static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
}
parity_revtab_generator(revtab, n, inv, offset,
0, 0, len >> 0, basis, dual_stride);
0, 0, len >> 0, basis, dual_stride, inv_lookup);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0),
1, 0, len >> 1, basis, dual_stride);
1, 0, len >> 1, basis, dual_stride, inv_lookup);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1),
1, 1, len >> 1, basis, dual_stride);
1, 1, len >> 1, basis, dual_stride, inv_lookup);
}
void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv,
int basis, int dual_stride)
int ff_tx_gen_split_radix_parity_revtab(AVTXContext *s, int invert_lookup,
int basis, int dual_stride)
{
int len = s->len;
int inv = s->inv;
if (!(s->map = av_mallocz(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
basis >>= 1;
if (len < basis)
return;
return AVERROR(EINVAL);
av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1)));
av_assert0(dual_stride <= basis);
parity_revtab_generator(revtab, len, inv, 0, 0, 0, len, basis, dual_stride);
parity_revtab_generator(s->map, len, inv, 0, 0, 0, len,
basis, dual_stride, invert_lookup);
return 0;
}
static void reset_ctx(AVTXContext *s)
{
if (!s)
return;
if (s->sub)
for (int i = 0; i < s->nb_sub; i++)
reset_ctx(&s->sub[i]);
if (s->cd_self->uninit)
s->cd_self->uninit(s);
av_freep(&s->sub);
av_freep(&s->map);
av_freep(&s->exp);
av_freep(&s->tmp);
memset(s, 0, sizeof(*s));
}
av_cold void av_tx_uninit(AVTXContext **ctx)
@ -215,53 +253,401 @@ av_cold void av_tx_uninit(AVTXContext **ctx)
if (!(*ctx))
return;
av_free((*ctx)->pfatab);
av_free((*ctx)->exptab);
av_free((*ctx)->revtab);
av_free((*ctx)->revtab_c);
av_free((*ctx)->inplace_idx);
av_free((*ctx)->tmp);
reset_ctx(*ctx);
av_freep(ctx);
}
static av_cold int ff_tx_null_init(AVTXContext *s, const FFTXCodelet *cd,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale)
{
/* Can only handle one sample+type to one sample+type transforms */
if (TYPE_IS(MDCT, s->type))
return AVERROR(EINVAL);
return 0;
}
/* Null transform when the length is 1 */
static void ff_tx_null(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride)
{
memcpy(_out, _in, stride);
}
static const FFTXCodelet ff_tx_null_def = {
.name = "null",
.function = ff_tx_null,
.type = TX_TYPE_ANY,
.flags = AV_TX_UNALIGNED | FF_TX_ALIGNED |
FF_TX_OUT_OF_PLACE | AV_TX_INPLACE,
.factors[0] = TX_FACTOR_ANY,
.min_len = 1,
.max_len = 1,
.init = ff_tx_null_init,
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MAX,
};
static const FFTXCodelet * const ff_tx_null_list[] = {
&ff_tx_null_def,
NULL,
};
static void print_flags(AVBPrint *bp, uint64_t f)
{
int prev = 0;
const char *sep = ", ";
av_bprintf(bp, "flags: [");
if ((f & FF_TX_ALIGNED) && ++prev)
av_bprintf(bp, "aligned");
if ((f & AV_TX_UNALIGNED) && ++prev)
av_bprintf(bp, "%sunaligned", prev > 1 ? sep : "");
if ((f & AV_TX_INPLACE) && ++prev)
av_bprintf(bp, "%sinplace", prev > 1 ? sep : "");
if ((f & FF_TX_OUT_OF_PLACE) && ++prev)
av_bprintf(bp, "%sout_of_place", prev > 1 ? sep : "");
if ((f & FF_TX_FORWARD_ONLY) && ++prev)
av_bprintf(bp, "%sfwd_only", prev > 1 ? sep : "");
if ((f & FF_TX_INVERSE_ONLY) && ++prev)
av_bprintf(bp, "%sinv_only", prev > 1 ? sep : "");
if ((f & FF_TX_PRESHUFFLE) && ++prev)
av_bprintf(bp, "%spreshuf", prev > 1 ? sep : "");
if ((f & AV_TX_FULL_IMDCT) && ++prev)
av_bprintf(bp, "%simdct_full", prev > 1 ? sep : "");
av_bprintf(bp, "]");
}
static void print_type(AVBPrint *bp, enum AVTXType type)
{
av_bprintf(bp, "%s",
type == TX_TYPE_ANY ? "any" :
type == AV_TX_FLOAT_FFT ? "fft_float" :
type == AV_TX_FLOAT_MDCT ? "mdct_float" :
type == AV_TX_DOUBLE_FFT ? "fft_double" :
type == AV_TX_DOUBLE_MDCT ? "mdct_double" :
type == AV_TX_INT32_FFT ? "fft_int32" :
type == AV_TX_INT32_MDCT ? "mdct_int32" :
"unknown");
}
static void print_cd_info(const FFTXCodelet *cd, int prio, int print_prio)
{
AVBPrint bp = { 0 };
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&bp, "%s - type: ", cd->name);
print_type(&bp, cd->type);
av_bprintf(&bp, ", len: ");
if (cd->min_len != cd->max_len)
av_bprintf(&bp, "[%i, ", cd->min_len);
if (cd->max_len == TX_LEN_UNLIMITED)
av_bprintf(&bp, "");
else
av_bprintf(&bp, "%i", cd->max_len);
av_bprintf(&bp, "%s, factors: [", cd->min_len != cd->max_len ? "]" : "");
for (int i = 0; i < TX_MAX_SUB; i++) {
if (i && cd->factors[i])
av_bprintf(&bp, ", ");
if (cd->factors[i] == TX_FACTOR_ANY)
av_bprintf(&bp, "any");
else if (cd->factors[i])
av_bprintf(&bp, "%i", cd->factors[i]);
else
break;
}
av_bprintf(&bp, "], ");
print_flags(&bp, cd->flags);
if (print_prio)
av_bprintf(&bp, ", prio: %i", prio);
av_log(NULL, AV_LOG_VERBOSE, "%s\n", bp.str);
}
typedef struct TXCodeletMatch {
const FFTXCodelet *cd;
int prio;
} TXCodeletMatch;
static int cmp_matches(TXCodeletMatch *a, TXCodeletMatch *b)
{
return FFDIFFSIGN(b->prio, a->prio);
}
/* We want all factors to completely cover the length */
static inline int check_cd_factors(const FFTXCodelet *cd, int len)
{
int all_flag = 0;
for (int i = 0; i < TX_MAX_SUB; i++) {
int factor = cd->factors[i];
/* Conditions satisfied */
if (len == 1)
return 1;
/* No more factors */
if (!factor) {
break;
} else if (factor == TX_FACTOR_ANY) {
all_flag = 1;
continue;
}
if (factor == 2) { /* Fast path */
int bits_2 = ff_ctz(len);
if (!bits_2)
return 0; /* Factor not supported */
len >>= bits_2;
} else {
int res = len % factor;
if (res)
return 0; /* Factor not supported */
while (!res) {
len /= factor;
res = len % factor;
}
}
}
return all_flag || (len == 1);
}
av_cold int ff_tx_init_subtx(AVTXContext *s, enum AVTXType type,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale)
{
int ret = 0;
AVTXContext *sub = NULL;
TXCodeletMatch *cd_tmp, *cd_matches = NULL;
unsigned int cd_matches_size = 0;
int nb_cd_matches = 0;
AVBPrint bp = { 0 };
/* Array of all compiled codelet lists. Order is irrelevant. */
const FFTXCodelet * const * const codelet_list[] = {
ff_tx_codelet_list_float_c,
ff_tx_codelet_list_double_c,
ff_tx_codelet_list_int32_c,
ff_tx_null_list,
#if ARCH_X86
ff_tx_codelet_list_float_x86,
#endif
};
int codelet_list_num = FF_ARRAY_ELEMS(codelet_list);
/* We still accept functions marked with SLOW, even if the CPU is
* marked with the same flag, but we give them lower priority. */
const int cpu_flags = av_get_cpu_flags();
const int slow_mask = AV_CPU_FLAG_SSE2SLOW | AV_CPU_FLAG_SSE3SLOW |
AV_CPU_FLAG_ATOM | AV_CPU_FLAG_SSSE3SLOW |
AV_CPU_FLAG_AVXSLOW | AV_CPU_FLAG_SLOW_GATHER;
/* Flags the transform wants */
uint64_t req_flags = flags;
/* Unaligned codelets are compatible with the aligned flag */
if (req_flags & FF_TX_ALIGNED)
req_flags |= AV_TX_UNALIGNED;
/* If either flag is set, both are okay, so don't check for an exact match */
if ((req_flags & AV_TX_INPLACE) && (req_flags & FF_TX_OUT_OF_PLACE))
req_flags &= ~(AV_TX_INPLACE | FF_TX_OUT_OF_PLACE);
if ((req_flags & FF_TX_ALIGNED) && (req_flags & AV_TX_UNALIGNED))
req_flags &= ~(FF_TX_ALIGNED | AV_TX_UNALIGNED);
/* Flags the codelet may require to be present */
uint64_t inv_req_mask = AV_TX_FULL_IMDCT | FF_TX_PRESHUFFLE;
/* Loop through all codelets in all codelet lists to find matches
* to the requirements */
while (codelet_list_num--) {
const FFTXCodelet * const * list = codelet_list[codelet_list_num];
const FFTXCodelet *cd = NULL;
while ((cd = *list++)) {
int max_factor = 0;
/* Check if the type matches */
if (cd->type != TX_TYPE_ANY && type != cd->type)
continue;
/* Check direction for non-orthogonal codelets */
if (((cd->flags & FF_TX_FORWARD_ONLY) && inv) ||
((cd->flags & (FF_TX_INVERSE_ONLY | AV_TX_FULL_IMDCT)) && !inv))
continue;
/* Check if the requested flags match from both sides */
if (((req_flags & cd->flags) != (req_flags)) ||
((inv_req_mask & cd->flags) != (req_flags & inv_req_mask)))
continue;
/* Check if length is supported */
if ((len < cd->min_len) || (cd->max_len != -1 && (len > cd->max_len)))
continue;
/* Check if the CPU supports the required ISA */
if (!(!cd->cpu_flags || (cpu_flags & (cd->cpu_flags & ~slow_mask))))
continue;
/* Check for factors */
if (!check_cd_factors(cd, len))
continue;
/* Realloc array and append */
cd_tmp = av_fast_realloc(cd_matches, &cd_matches_size,
sizeof(*cd_tmp) * (nb_cd_matches + 1));
if (!cd_tmp) {
av_free(cd_matches);
return AVERROR(ENOMEM);
}
cd_matches = cd_tmp;
cd_matches[nb_cd_matches].cd = cd;
cd_matches[nb_cd_matches].prio = cd->prio;
/* If the CPU has a SLOW flag, and the instruction is also flagged
* as being slow for such, reduce its priority */
if ((cpu_flags & cd->cpu_flags) & slow_mask)
cd_matches[nb_cd_matches].prio -= 64;
/* Prioritize aligned-only codelets */
if ((cd->flags & FF_TX_ALIGNED) && !(cd->flags & AV_TX_UNALIGNED))
cd_matches[nb_cd_matches].prio += 64;
/* Codelets for specific lengths are generally faster */
if ((len == cd->min_len) && (len == cd->max_len))
cd_matches[nb_cd_matches].prio += 64;
/* Forward-only or inverse-only transforms are generally better */
if ((cd->flags & (FF_TX_FORWARD_ONLY | FF_TX_INVERSE_ONLY)))
cd_matches[nb_cd_matches].prio += 64;
/* Larger factors are generally better */
for (int i = 0; i < TX_MAX_SUB; i++)
max_factor = FFMAX(cd->factors[i], max_factor);
if (max_factor)
cd_matches[nb_cd_matches].prio += 16*max_factor;
nb_cd_matches++;
}
}
/* No matches found */
if (!nb_cd_matches)
return AVERROR(ENOSYS);
/* Sort the list */
AV_QSORT(cd_matches, nb_cd_matches, TXCodeletMatch, cmp_matches);
/* Print debugging info */
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&bp, "For transform of length %i, %s, ", len,
inv ? "inverse" : "forward");
print_type(&bp, type);
av_bprintf(&bp, ", ");
print_flags(&bp, flags);
av_bprintf(&bp, ", found %i matches:", nb_cd_matches);
av_log(NULL, AV_LOG_VERBOSE, "%s\n", bp.str);
for (int i = 0; i < nb_cd_matches; i++) {
av_log(NULL, AV_LOG_VERBOSE, " %i: ", i + 1);
print_cd_info(cd_matches[i].cd, cd_matches[i].prio, 1);
}
if (!s->sub)
s->sub = sub = av_mallocz(TX_MAX_SUB*sizeof(*sub));
/* Attempt to initialize each */
for (int i = 0; i < nb_cd_matches; i++) {
const FFTXCodelet *cd = cd_matches[i].cd;
AVTXContext *sctx = &s->sub[s->nb_sub];
sctx->len = len;
sctx->inv = inv;
sctx->type = type;
sctx->flags = flags;
sctx->cd_self = cd;
s->fn[s->nb_sub] = cd->function;
s->cd[s->nb_sub] = cd;
ret = 0;
if (cd->init)
ret = cd->init(sctx, cd, flags, opts, len, inv, scale);
if (ret >= 0) {
s->nb_sub++;
goto end;
}
s->fn[s->nb_sub] = NULL;
s->cd[s->nb_sub] = NULL;
reset_ctx(sctx);
if (ret == AVERROR(ENOMEM))
break;
}
av_free(sub);
if (ret >= 0)
ret = AVERROR(ENOSYS);
end:
av_free(cd_matches);
return ret;
}
static void print_tx_structure(AVTXContext *s, int depth)
{
const FFTXCodelet *cd = s->cd_self;
for (int i = 0; i <= depth; i++)
av_log(NULL, AV_LOG_VERBOSE, " ");
print_cd_info(cd, cd->prio, 0);
for (int i = 0; i < s->nb_sub; i++)
print_tx_structure(&s->sub[i], depth + 1);
}
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
int inv, int len, const void *scale, uint64_t flags)
{
int err;
AVTXContext *s = av_mallocz(sizeof(*s));
if (!s)
return AVERROR(ENOMEM);
int ret;
AVTXContext tmp = { 0 };
const double default_scale_d = 1.0;
const float default_scale_f = 1.0f;
switch (type) {
case AV_TX_FLOAT_FFT:
case AV_TX_FLOAT_MDCT:
if ((err = ff_tx_init_mdct_fft_float(s, tx, type, inv, len, scale, flags)))
goto fail;
if (ARCH_X86)
ff_tx_init_float_x86(s, tx);
break;
case AV_TX_DOUBLE_FFT:
case AV_TX_DOUBLE_MDCT:
if ((err = ff_tx_init_mdct_fft_double(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
case AV_TX_INT32_FFT:
case AV_TX_INT32_MDCT:
if ((err = ff_tx_init_mdct_fft_int32(s, tx, type, inv, len, scale, flags)))
goto fail;
break;
default:
err = AVERROR(EINVAL);
goto fail;
}
if (!len || type >= AV_TX_NB || !ctx || !tx)
return AVERROR(EINVAL);
*ctx = s;
if (!(flags & AV_TX_UNALIGNED))
flags |= FF_TX_ALIGNED;
if (!(flags & AV_TX_INPLACE))
flags |= FF_TX_OUT_OF_PLACE;
return 0;
if (!scale && ((type == AV_TX_FLOAT_MDCT) || (type == AV_TX_INT32_MDCT)))
scale = &default_scale_f;
else if (!scale && (type == AV_TX_DOUBLE_MDCT))
scale = &default_scale_d;
ret = ff_tx_init_subtx(&tmp, type, flags, NULL, len, inv, scale);
if (ret < 0)
return ret;
*ctx = &tmp.sub[0];
*tx = tmp.fn[0];
av_log(NULL, AV_LOG_VERBOSE, "Transform tree:\n");
print_tx_structure(*ctx, 0);
fail:
av_tx_uninit(&s);
*tx = NULL;
return err;
return ret;
}

@ -52,6 +52,7 @@ enum AVTXType {
* Standard MDCT with a sample data type of float, double or int32_t,
* respecively. For the float and int32 variants, the scale type is
* 'float', while for the double variant, it's 'double'.
* If scale is NULL, 1.0 will be used as a default.
*
* Length is the frame size, not the window size (which is 2x frame).
* For forward transforms, the stride specifies the spacing between each
@ -67,6 +68,9 @@ enum AVTXType {
AV_TX_FLOAT_MDCT = 1,
AV_TX_DOUBLE_MDCT = 3,
AV_TX_INT32_MDCT = 5,
/* Not part of the API, do not use */
AV_TX_NB,
};
/**

@ -25,36 +25,48 @@
#include "attributes.h"
#ifdef TX_FLOAT
#define TX_NAME(x) x ## _float
#define TX_TAB(x) x ## _float
#define TX_NAME(x) x ## _float_c
#define TX_NAME_STR(x) x "_float_c"
#define TX_TYPE(x) AV_TX_FLOAT_ ## x
#define MULT(x, m) ((x) * (m))
#define SCALE_TYPE float
typedef float FFTSample;
typedef AVComplexFloat FFTComplex;
typedef float TXSample;
typedef AVComplexFloat TXComplex;
#elif defined(TX_DOUBLE)
#define TX_NAME(x) x ## _double
#define TX_TAB(x) x ## _double
#define TX_NAME(x) x ## _double_c
#define TX_NAME_STR(x) x "_double_c"
#define TX_TYPE(x) AV_TX_DOUBLE_ ## x
#define MULT(x, m) ((x) * (m))
#define SCALE_TYPE double
typedef double FFTSample;
typedef AVComplexDouble FFTComplex;
typedef double TXSample;
typedef AVComplexDouble TXComplex;
#elif defined(TX_INT32)
#define TX_NAME(x) x ## _int32
#define TX_TAB(x) x ## _int32
#define TX_NAME(x) x ## _int32_c
#define TX_NAME_STR(x) x "_int32_c"
#define TX_TYPE(x) AV_TX_INT32_ ## x
#define MULT(x, m) (((((int64_t)(x)) * (int64_t)(m)) + 0x40000000) >> 31)
#define SCALE_TYPE float
typedef int32_t FFTSample;
typedef AVComplexInt32 FFTComplex;
typedef int32_t TXSample;
typedef AVComplexInt32 TXComplex;
#else
typedef void FFTComplex;
typedef void TXComplex;
#endif
#if defined(TX_FLOAT) || defined(TX_DOUBLE)
#define CMUL(dre, dim, are, aim, bre, bim) \
do { \
(dre) = (are) * (bre) - (aim) * (bim); \
(dim) = (are) * (bim) + (aim) * (bre); \
#define CMUL(dre, dim, are, aim, bre, bim) \
do { \
(dre) = (are) * (bre) - (aim) * (bim); \
(dim) = (are) * (bim) + (aim) * (bre); \
} while (0)
#define SMUL(dre, dim, are, aim, bre, bim) \
do { \
(dre) = (are) * (bre) - (aim) * (bim); \
(dim) = (are) * (bim) - (aim) * (bre); \
#define SMUL(dre, dim, are, aim, bre, bim) \
do { \
(dre) = (are) * (bre) - (aim) * (bim); \
(dim) = (are) * (bim) - (aim) * (bre); \
} while (0)
#define UNSCALE(x) (x)
@ -65,91 +77,167 @@ typedef void FFTComplex;
#elif defined(TX_INT32)
/* Properly rounds the result */
#define CMUL(dre, dim, are, aim, bre, bim) \
do { \
int64_t accu; \
(accu) = (int64_t)(bre) * (are); \
(accu) -= (int64_t)(bim) * (aim); \
(dre) = (int)(((accu) + 0x40000000) >> 31); \
(accu) = (int64_t)(bim) * (are); \
(accu) += (int64_t)(bre) * (aim); \
(dim) = (int)(((accu) + 0x40000000) >> 31); \
#define CMUL(dre, dim, are, aim, bre, bim) \
do { \
int64_t accu; \
(accu) = (int64_t)(bre) * (are); \
(accu) -= (int64_t)(bim) * (aim); \
(dre) = (int)(((accu) + 0x40000000) >> 31); \
(accu) = (int64_t)(bim) * (are); \
(accu) += (int64_t)(bre) * (aim); \
(dim) = (int)(((accu) + 0x40000000) >> 31); \
} while (0)
#define SMUL(dre, dim, are, aim, bre, bim) \
do { \
int64_t accu; \
(accu) = (int64_t)(bre) * (are); \
(accu) -= (int64_t)(bim) * (aim); \
(dre) = (int)(((accu) + 0x40000000) >> 31); \
(accu) = (int64_t)(bim) * (are); \
(accu) -= (int64_t)(bre) * (aim); \
(dim) = (int)(((accu) + 0x40000000) >> 31); \
#define SMUL(dre, dim, are, aim, bre, bim) \
do { \
int64_t accu; \
(accu) = (int64_t)(bre) * (are); \
(accu) -= (int64_t)(bim) * (aim); \
(dre) = (int)(((accu) + 0x40000000) >> 31); \
(accu) = (int64_t)(bim) * (are); \
(accu) -= (int64_t)(bre) * (aim); \
(dim) = (int)(((accu) + 0x40000000) >> 31); \
} while (0)
#define UNSCALE(x) ((double)x/2147483648.0)
#define UNSCALE(x) ((double)(x)/2147483648.0)
#define RESCALE(x) (av_clip64(lrintf((x) * 2147483648.0), INT32_MIN, INT32_MAX))
#define FOLD(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)
#define FOLD(x, y) ((int32_t)((x) + (unsigned)(y) + 32) >> 6)
#endif
#endif /* TX_INT32 */
#define BF(x, y, a, b) \
do { \
x = (a) - (b); \
y = (a) + (b); \
#define BF(x, y, a, b) \
do { \
x = (a) - (b); \
y = (a) + (b); \
} while (0)
#define CMUL3(c, a, b) \
CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
#define CMUL3(c, a, b) CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
/* Codelet flags, used to pick codelets. Must be a superset of enum AVTXFlags,
* but if it runs out of bits, it can be made separate. */
typedef enum FFTXCodeletFlags {
FF_TX_OUT_OF_PLACE = (1ULL << 63), /* Can be OR'd with AV_TX_INPLACE */
FF_TX_ALIGNED = (1ULL << 62), /* Cannot be OR'd with AV_TX_UNALIGNED */
FF_TX_PRESHUFFLE = (1ULL << 61), /* Codelet expects permuted coeffs */
FF_TX_INVERSE_ONLY = (1ULL << 60), /* For non-orthogonal inverse-only transforms */
FF_TX_FORWARD_ONLY = (1ULL << 59), /* For non-orthogonal forward-only transforms */
} FFTXCodeletFlags;
typedef enum FFTXCodeletPriority {
FF_TX_PRIO_BASE = 0, /* Baseline priority */
/* For SIMD, set base prio to the register size in bits and increment in
* steps of 64 depending on faster/slower features, like FMA. */
FF_TX_PRIO_MIN = -131072, /* For naive implementations */
FF_TX_PRIO_MAX = 32768, /* For custom implementations/ASICs */
} FFTXCodeletPriority;
/* Codelet options */
typedef struct FFTXCodeletOptions {
int invert_lookup; /* If codelet is flagged as FF_TX_CODELET_PRESHUFFLE,
invert the lookup direction for the map generated */
} FFTXCodeletOptions;
/* Maximum amount of subtransform functions, subtransforms and factors. Arbitrary. */
#define TX_MAX_SUB 4
typedef struct FFTXCodelet {
const char *name; /* Codelet name, for debugging */
av_tx_fn function; /* Codelet function, != NULL */
enum AVTXType type; /* Type of codelet transform */
#define TX_TYPE_ANY INT32_MAX /* Special type to allow all types */
uint64_t flags; /* A combination of AVTXFlags and FFTXCodeletFlags
* that describe the codelet's properties. */
int factors[TX_MAX_SUB]; /* Length factors */
#define TX_FACTOR_ANY -1 /* When used alone, signals that the codelet
* supports all factors. Otherwise, if other
* factors are present, it signals that whatever
* remains will be supported, as long as the
* other factors are a component of the length */
int min_len; /* Minimum length of transform, must be >= 1 */
int max_len; /* Maximum length of transform */
#define TX_LEN_UNLIMITED -1 /* Special length value to permit all lengths */
#define COSTABLE(size) \
DECLARE_ALIGNED(32, FFTSample, TX_NAME(ff_cos_##size))[size/4 + 1]
int (*init)(AVTXContext *s, /* Optional callback for current context initialization. */
const struct FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale);
int (*uninit)(AVTXContext *s); /* Optional callback for uninitialization. */
int cpu_flags; /* CPU flags. If any negative flags like
* SLOW are present, will avoid picking.
* 0x0 to signal it's a C codelet */
#define FF_TX_CPU_FLAGS_ALL 0x0 /* Special CPU flag for C */
int prio; /* < 0 = least, 0 = no pref, > 0 = prefer */
} FFTXCodelet;
/* Used by asm, reorder with care */
struct AVTXContext {
int n; /* Non-power-of-two part */
int m; /* Power-of-two part */
int inv; /* Is inverse */
int type; /* Type */
uint64_t flags; /* Flags */
double scale; /* Scale */
FFTComplex *exptab; /* MDCT exptab */
FFTComplex *tmp; /* Temporary buffer needed for all compound transforms */
int *pfatab; /* Input/Output mapping for compound transforms */
int *revtab; /* Input mapping for power of two transforms */
int *inplace_idx; /* Required indices to revtab for in-place transforms */
int *revtab_c; /* Revtab for only the C transforms, needed because
* checkasm makes us reuse the same context. */
av_tx_fn top_tx; /* Used for computing transforms derived from other
* transforms, like full-length iMDCTs and RDFTs.
* NOTE: Do NOT use this to mix assembly with C code. */
/* Fields the root transform and subtransforms use or may use.
* NOTE: This section is used by assembly, do not reorder or change */
int len; /* Length of the transform */
int inv; /* If transform is inverse */
int *map; /* Lookup table(s) */
TXComplex *exp; /* Any non-pre-baked multiplication factors needed */
TXComplex *tmp; /* Temporary buffer, if needed */
AVTXContext *sub; /* Subtransform context(s), if needed */
av_tx_fn fn[TX_MAX_SUB]; /* Function(s) for the subtransforms */
int nb_sub; /* Number of subtransforms.
* The reason all of these are set here
* rather than in each separate context
* is to eliminate extra pointer
* dereferences. */
/* Fields mainly useul/applicable for the root transform or initialization.
* Fields below are not used by assembly code. */
const FFTXCodelet *cd[TX_MAX_SUB]; /* Subtransform codelets */
const FFTXCodelet *cd_self; /* Codelet for the current context */
enum AVTXType type; /* Type of transform */
uint64_t flags; /* A combination of AVTXFlags
and FFTXCodeletFlags flags
used when creating */
float scale_f;
double scale_d;
void *opaque; /* Free to use by implementations */
};
/* Checks if type is an MDCT */
int ff_tx_type_is_mdct(enum AVTXType type);
/* Create a subtransform in the current context with the given parameters.
* The flags parameter from FFTXCodelet.init() should be preserved as much
* as that's possible.
* MUST be called during the sub() callback of each codelet. */
int ff_tx_init_subtx(AVTXContext *s, enum AVTXType type,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale);
/*
* Generates the PFA permutation table into AVTXContext->pfatab. The end table
* is appended to the start table.
*/
int ff_tx_gen_compound_mapping(AVTXContext *s);
int ff_tx_gen_compound_mapping(AVTXContext *s, int n, int m);
/*
* Generates a standard-ish (slightly modified) Split-Radix revtab into
* AVTXContext->revtab
* AVTXContext->map. Invert lookup changes how the mapping needs to be applied.
* If it's set to 0, it has to be applied like out[map[i]] = in[i], otherwise
* if it's set to 1, has to be applied as out[i] = in[map[i]]
*/
int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup);
/*
* Generates an index into AVTXContext->inplace_idx that if followed in the
* specific order, allows the revtab to be done in-place. AVTXContext->revtab
* must already exist.
* specific order, allows the revtab to be done in-place. The sub-transform
* and its map should already be initialized.
*/
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab);
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s);
/*
* This generates a parity-based revtab of length len and direction inv.
@ -179,25 +267,26 @@ int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab);
*
* If length is smaller than basis/2 this function will not do anything.
*/
void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv,
int basis, int dual_stride);
/* Templated init functions */
int ff_tx_init_mdct_fft_float(AVTXContext *s, av_tx_fn *tx,
enum AVTXType type, int inv, int len,
const void *scale, uint64_t flags);
int ff_tx_init_mdct_fft_double(AVTXContext *s, av_tx_fn *tx,
enum AVTXType type, int inv, int len,
const void *scale, uint64_t flags);
int ff_tx_init_mdct_fft_int32(AVTXContext *s, av_tx_fn *tx,
enum AVTXType type, int inv, int len,
const void *scale, uint64_t flags);
typedef struct CosTabsInitOnce {
void (*func)(void);
AVOnce control;
} CosTabsInitOnce;
void ff_tx_init_float_x86(AVTXContext *s, av_tx_fn *tx);
int ff_tx_gen_split_radix_parity_revtab(AVTXContext *s, int invert_lookup,
int basis, int dual_stride);
/* Typed init function to initialize shared tables. Will initialize all tables
* for all factors of a length. */
void ff_tx_init_tabs_float (int len);
void ff_tx_init_tabs_double(int len);
void ff_tx_init_tabs_int32 (int len);
/* Typed init function to initialize an MDCT exptab in a context. */
int ff_tx_mdct_gen_exp_float (AVTXContext *s);
int ff_tx_mdct_gen_exp_double(AVTXContext *s);
int ff_tx_mdct_gen_exp_int32 (AVTXContext *s);
/* Lists of codelets */
extern const FFTXCodelet * const ff_tx_codelet_list_float_c [];
extern const FFTXCodelet * const ff_tx_codelet_list_float_x86 [];
extern const FFTXCodelet * const ff_tx_codelet_list_double_c [];
extern const FFTXCodelet * const ff_tx_codelet_list_int32_c [];
#endif /* AVUTIL_TX_PRIV_H */

File diff suppressed because it is too large Load Diff

@ -31,6 +31,8 @@
%include "x86util.asm"
%define private_prefix ff_tx
%if ARCH_X86_64
%define ptr resq
%else
@ -39,25 +41,22 @@
%assign i 16
%rep 14
cextern cos_ %+ i %+ _float ; ff_cos_i_float...
cextern tab_ %+ i %+ _float ; ff_tab_i_float...
%assign i (i << 1)
%endrep
struc AVTXContext
.n: resd 1 ; Non-power-of-two part
.m: resd 1 ; Power-of-two part
.inv: resd 1 ; Is inverse
.type: resd 1 ; Type
.flags: resq 1 ; Flags
.scale: resq 1 ; Scale
.exptab: ptr 1 ; MDCT exptab
.tmp: ptr 1 ; Temporary buffer needed for all compound transforms
.pfatab: ptr 1 ; Input/Output mapping for compound transforms
.revtab: ptr 1 ; Input mapping for power of two transforms
.inplace_idx: ptr 1 ; Required indices to revtab for in-place transforms
.top_tx ptr 1 ; Used for transforms derived from other transforms
.len: resd 1 ; Length
.inv resd 1 ; Inverse flag
.map: ptr 1 ; Lookup table(s)
.exp: ptr 1 ; Exponentiation factors
.tmp: ptr 1 ; Temporary data
.sub: ptr 1 ; Subcontexts
.fn: ptr 4 ; Subcontext functions
.nb_sub: resd 1 ; Subcontext count
; Everything else is inaccessible
endstruc
SECTION_RODATA 32
@ -485,8 +484,8 @@ SECTION .text
movaps [outq + 10*mmsize], tx1_o0
movaps [outq + 14*mmsize], tx2_o0
movaps tw_e, [cos_64_float + mmsize]
vperm2f128 tw_o, tw_o, [cos_64_float + 64 - 4*7 - mmsize], 0x23
movaps tw_e, [tab_64_float + mmsize]
vperm2f128 tw_o, tw_o, [tab_64_float + 64 - 4*7 - mmsize], 0x23
movaps m0, [outq + 1*mmsize]
movaps m1, [outq + 3*mmsize]
@ -710,8 +709,7 @@ FFT4 inv, 1
INIT_XMM sse3
cglobal fft8_float, 4, 4, 6, ctx, out, in, tmp
mov ctxq, [ctxq + AVTXContext.revtab]
mov ctxq, [ctxq + AVTXContext.map]
LOAD64_LUT m0, inq, ctxq, (mmsize/2)*0, tmpq
LOAD64_LUT m1, inq, ctxq, (mmsize/2)*1, tmpq
LOAD64_LUT m2, inq, ctxq, (mmsize/2)*2, tmpq
@ -733,8 +731,7 @@ cglobal fft8_float, 4, 4, 6, ctx, out, in, tmp
INIT_YMM avx
cglobal fft8_float, 4, 4, 4, ctx, out, in, tmp
mov ctxq, [ctxq + AVTXContext.revtab]
mov ctxq, [ctxq + AVTXContext.map]
LOAD64_LUT m0, inq, ctxq, (mmsize/2)*0, tmpq, m2
LOAD64_LUT m1, inq, ctxq, (mmsize/2)*1, tmpq, m3
@ -754,7 +751,7 @@ cglobal fft8_float, 4, 4, 4, ctx, out, in, tmp
%macro FFT16_FN 1
INIT_YMM %1
cglobal fft16_float, 4, 4, 8, ctx, out, in, tmp
mov ctxq, [ctxq + AVTXContext.revtab]
mov ctxq, [ctxq + AVTXContext.map]
LOAD64_LUT m0, inq, ctxq, (mmsize/2)*0, tmpq, m4
LOAD64_LUT m1, inq, ctxq, (mmsize/2)*1, tmpq, m5
@ -786,7 +783,7 @@ FFT16_FN fma3
%macro FFT32_FN 1
INIT_YMM %1
cglobal fft32_float, 4, 4, 16, ctx, out, in, tmp
mov ctxq, [ctxq + AVTXContext.revtab]
mov ctxq, [ctxq + AVTXContext.map]
LOAD64_LUT m4, inq, ctxq, (mmsize/2)*4, tmpq, m8, m9
LOAD64_LUT m5, inq, ctxq, (mmsize/2)*5, tmpq, m10, m11
@ -800,8 +797,8 @@ cglobal fft32_float, 4, 4, 16, ctx, out, in, tmp
LOAD64_LUT m2, inq, ctxq, (mmsize/2)*2, tmpq, m12, m13
LOAD64_LUT m3, inq, ctxq, (mmsize/2)*3, tmpq, m14, m15
movaps m8, [cos_32_float]
vperm2f128 m9, m9, [cos_32_float + 4*8 - 4*7], 0x23
movaps m8, [tab_32_float]
vperm2f128 m9, m9, [tab_32_float + 4*8 - 4*7], 0x23
FFT16 m0, m1, m2, m3, m10, m11, m12, m13
@ -858,8 +855,8 @@ ALIGN 16
POP lenq
sub outq, (%1*4) + (%1*2) + (%1/2)
lea rtabq, [cos_ %+ %1 %+ _float]
lea itabq, [cos_ %+ %1 %+ _float + %1 - 4*7]
lea rtabq, [tab_ %+ %1 %+ _float]
lea itabq, [tab_ %+ %1 %+ _float + %1 - 4*7]
%if %0 > 1
cmp tgtq, %1
@ -883,9 +880,9 @@ ALIGN 16
%macro FFT_SPLIT_RADIX_FN 1
INIT_YMM %1
cglobal split_radix_fft_float, 4, 8, 16, 272, lut, out, in, len, tmp, itab, rtab, tgt
movsxd lenq, dword [lutq + AVTXContext.m]
mov lutq, [lutq + AVTXContext.revtab]
cglobal fft_sr_float, 4, 8, 16, 272, lut, out, in, len, tmp, itab, rtab, tgt
movsxd lenq, dword [lutq + AVTXContext.len]
mov lutq, [lutq + AVTXContext.map]
mov tgtq, lenq
; Bottom-most/32-point transform ===============================================
@ -903,8 +900,8 @@ ALIGN 16
LOAD64_LUT m2, inq, lutq, (mmsize/2)*2, tmpq, m12, m13
LOAD64_LUT m3, inq, lutq, (mmsize/2)*3, tmpq, m14, m15
movaps m8, [cos_32_float]
vperm2f128 m9, m9, [cos_32_float + 32 - 4*7], 0x23
movaps m8, [tab_32_float]
vperm2f128 m9, m9, [tab_32_float + 32 - 4*7], 0x23
FFT16 m0, m1, m2, m3, m10, m11, m12, m13
@ -961,8 +958,8 @@ ALIGN 16
FFT16 tx2_e0, tx2_e1, tx2_o0, tx2_o1, tmp1, tmp2, tw_e, tw_o
movaps tw_e, [cos_64_float]
vperm2f128 tw_o, tw_o, [cos_64_float + 64 - 4*7], 0x23
movaps tw_e, [tab_64_float]
vperm2f128 tw_o, tw_o, [tab_64_float + 64 - 4*7], 0x23
add lutq, (mmsize/2)*8
cmp tgtq, 64
@ -989,8 +986,8 @@ ALIGN 16
POP lenq
sub outq, 24*mmsize
lea rtabq, [cos_128_float]
lea itabq, [cos_128_float + 128 - 4*7]
lea rtabq, [tab_128_float]
lea itabq, [tab_128_float + 128 - 4*7]
cmp tgtq, 128
je .deinterleave
@ -1016,8 +1013,8 @@ ALIGN 16
POP lenq
sub outq, 48*mmsize
lea rtabq, [cos_256_float]
lea itabq, [cos_256_float + 256 - 4*7]
lea rtabq, [tab_256_float]
lea itabq, [tab_256_float + 256 - 4*7]
cmp tgtq, 256
je .deinterleave
@ -1044,8 +1041,8 @@ ALIGN 16
POP lenq
sub outq, 96*mmsize
lea rtabq, [cos_512_float]
lea itabq, [cos_512_float + 512 - 4*7]
lea rtabq, [tab_512_float]
lea itabq, [tab_512_float + 512 - 4*7]
cmp tgtq, 512
je .deinterleave
@ -1079,8 +1076,8 @@ ALIGN 16
POP lenq
sub outq, 192*mmsize
lea rtabq, [cos_1024_float]
lea itabq, [cos_1024_float + 1024 - 4*7]
lea rtabq, [tab_1024_float]
lea itabq, [tab_1024_float + 1024 - 4*7]
cmp tgtq, 1024
je .deinterleave
@ -1160,8 +1157,8 @@ FFT_SPLIT_RADIX_DEF 131072
vextractf128 [outq + 13*mmsize + 0], tw_e, 1
vextractf128 [outq + 13*mmsize + 16], tx2_e0, 1
movaps tw_e, [cos_64_float + mmsize]
vperm2f128 tw_o, tw_o, [cos_64_float + 64 - 4*7 - mmsize], 0x23
movaps tw_e, [tab_64_float + mmsize]
vperm2f128 tw_o, tw_o, [tab_64_float + 64 - 4*7 - mmsize], 0x23
movaps m0, [outq + 1*mmsize]
movaps m1, [outq + 3*mmsize]

@ -21,86 +21,106 @@
#include "libavutil/attributes.h"
#include "libavutil/x86/cpu.h"
void ff_fft2_float_sse3 (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft4_inv_float_sse2 (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft4_fwd_float_sse2 (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft8_float_sse3 (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft8_float_avx (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft16_float_avx (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft16_float_fma3 (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft32_float_avx (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_fft32_float_fma3 (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
#include "config.h"
void ff_split_radix_fft_float_avx (AVTXContext *s, void *out, void *in, ptrdiff_t stride);
void ff_split_radix_fft_float_avx2(AVTXContext *s, void *out, void *in, ptrdiff_t stride);
av_cold void ff_tx_init_float_x86(AVTXContext *s, av_tx_fn *tx)
{
int cpu_flags = av_get_cpu_flags();
int gen_revtab = 0, basis, revtab_interleave;
#define DECL_INIT_FN(basis, interleave) \
static av_cold int \
ff_tx_fft_sr_codelet_init_b ##basis## _i ##interleave## _x86 \
(AVTXContext *s, \
const FFTXCodelet *cd, \
uint64_t flags, \
FFTXCodeletOptions *opts, \
int len, int inv, \
const void *scale) \
{ \
const int inv_lookup = opts ? opts->invert_lookup : 1; \
ff_tx_init_tabs_float(len); \
return ff_tx_gen_split_radix_parity_revtab(s, inv_lookup, \
basis, interleave); \
}
if (s->flags & AV_TX_UNALIGNED)
return;
#define ff_tx_fft_sr_codelet_init_b0_i0_x86 NULL
DECL_INIT_FN(8, 0)
DECL_INIT_FN(8, 2)
if (ff_tx_type_is_mdct(s->type))
return;
#define DECL_SR_CD_DEF(fn_name, len, init_fn, fn_prio, cpu, fn_flags) \
void ff_tx_ ##fn_name(AVTXContext *s, void *out, void *in, ptrdiff_t stride); \
static const FFTXCodelet ff_tx_ ##fn_name## _def = { \
.name = #fn_name, \
.function = ff_tx_ ##fn_name, \
.type = TX_TYPE(FFT), \
.flags = FF_TX_OUT_OF_PLACE | FF_TX_ALIGNED | fn_flags, \
.factors[0] = 2, \
.min_len = len, \
.max_len = len, \
.init = ff_tx_fft_sr_codelet_init_ ##init_fn## _x86, \
.cpu_flags = AV_CPU_FLAG_ ##cpu, \
.prio = fn_prio, \
};
#define TXFN(fn, gentab, sr_basis, interleave) \
do { \
*tx = fn; \
gen_revtab = gentab; \
basis = sr_basis; \
revtab_interleave = interleave; \
} while (0)
DECL_SR_CD_DEF(fft2_float_sse3, 2, b0_i0, 128, SSE3, AV_TX_INPLACE)
DECL_SR_CD_DEF(fft4_fwd_float_sse2, 4, b0_i0, 128, SSE2, AV_TX_INPLACE | FF_TX_FORWARD_ONLY)
DECL_SR_CD_DEF(fft4_inv_float_sse2, 4, b0_i0, 128, SSE2, AV_TX_INPLACE | FF_TX_INVERSE_ONLY)
DECL_SR_CD_DEF(fft8_float_sse3, 8, b8_i0, 128, SSE3, AV_TX_INPLACE)
DECL_SR_CD_DEF(fft8_float_avx, 8, b8_i0, 256, AVX, AV_TX_INPLACE)
DECL_SR_CD_DEF(fft16_float_avx, 16, b8_i2, 256, AVX, AV_TX_INPLACE)
DECL_SR_CD_DEF(fft16_float_fma3, 16, b8_i2, 288, FMA3, AV_TX_INPLACE)
if (s->n == 1) {
if (EXTERNAL_SSE2(cpu_flags)) {
if (s->m == 4 && s->inv)
TXFN(ff_fft4_inv_float_sse2, 0, 0, 0);
else if (s->m == 4)
TXFN(ff_fft4_fwd_float_sse2, 0, 0, 0);
}
#if ARCH_X86_64
DECL_SR_CD_DEF(fft32_float_avx, 32, b8_i2, 256, AVX, AV_TX_INPLACE)
DECL_SR_CD_DEF(fft32_float_fma3, 32, b8_i2, 288, FMA3, AV_TX_INPLACE)
if (EXTERNAL_SSE3(cpu_flags)) {
if (s->m == 2)
TXFN(ff_fft2_float_sse3, 0, 0, 0);
else if (s->m == 8)
TXFN(ff_fft8_float_sse3, 1, 8, 0);
}
void ff_tx_fft_sr_float_avx(AVTXContext *s, void *out, void *in, ptrdiff_t stride);
const FFTXCodelet ff_tx_fft_sr_float_avx_def = {
.name = "fft_sr_float_avx",
.function = ff_tx_fft_sr_float_avx,
.type = TX_TYPE(FFT),
.flags = FF_TX_ALIGNED | FF_TX_OUT_OF_PLACE,
.factors[0] = 2,
.min_len = 64,
.max_len = 131072,
.init = ff_tx_fft_sr_codelet_init_b8_i2_x86,
.cpu_flags = AV_CPU_FLAG_AVX,
.prio = 256,
};
if (EXTERNAL_AVX_FAST(cpu_flags)) {
if (s->m == 8)
TXFN(ff_fft8_float_avx, 1, 8, 0);
else if (s->m == 16)
TXFN(ff_fft16_float_avx, 1, 8, 2);
#if ARCH_X86_64
else if (s->m == 32)
TXFN(ff_fft32_float_avx, 1, 8, 2);
else if (s->m >= 64 && s->m <= 131072 && !(s->flags & AV_TX_INPLACE))
TXFN(ff_split_radix_fft_float_avx, 1, 8, 2);
#if HAVE_AVX2_EXTERNAL
void ff_tx_fft_sr_float_avx2(AVTXContext *s, void *out, void *in, ptrdiff_t stride);
const FFTXCodelet ff_tx_fft_sr_float_avx2_def = {
.name = "fft_sr_float_avx2",
.function = ff_tx_fft_sr_float_avx2,
.type = TX_TYPE(FFT),
.flags = FF_TX_ALIGNED | FF_TX_OUT_OF_PLACE,
.factors[0] = 2,
.min_len = 64,
.max_len = 131072,
.init = ff_tx_fft_sr_codelet_init_b8_i2_x86,
.cpu_flags = AV_CPU_FLAG_AVX2,
.prio = 288,
};
#endif
}
if (EXTERNAL_FMA3_FAST(cpu_flags)) {
if (s->m == 16)
TXFN(ff_fft16_float_fma3, 1, 8, 2);
#if ARCH_X86_64
else if (s->m == 32)
TXFN(ff_fft32_float_fma3, 1, 8, 2);
#endif
}
const FFTXCodelet * const ff_tx_codelet_list_float_x86[] = {
/* Split-Radix codelets */
&ff_tx_fft2_float_sse3_def,
&ff_tx_fft4_fwd_float_sse2_def,
&ff_tx_fft4_inv_float_sse2_def,
&ff_tx_fft8_float_sse3_def,
&ff_tx_fft8_float_avx_def,
&ff_tx_fft16_float_avx_def,
&ff_tx_fft16_float_fma3_def,
#if ARCH_X86_64
if (EXTERNAL_AVX2_FAST(cpu_flags)) {
if (s->m >= 64 && s->m <= 131072 && !(s->flags & AV_TX_INPLACE))
TXFN(ff_split_radix_fft_float_avx2, 1, 8, 2);
}
#endif
}
&ff_tx_fft32_float_avx_def,
&ff_tx_fft32_float_fma3_def,
if (gen_revtab)
ff_tx_gen_split_radix_parity_revtab(s->revtab, s->m, s->inv, basis,
revtab_interleave);
/* Standalone transforms */
&ff_tx_fft_sr_float_avx_def,
#if HAVE_AVX2_EXTERNAL
&ff_tx_fft_sr_float_avx2_def,
#endif
#endif
#undef TXFN
}
NULL,
};

Loading…
Cancel
Save