|
|
|
@ -57,81 +57,90 @@ typedef struct TheadData { |
|
|
|
|
int height; |
|
|
|
|
} ThreadData; |
|
|
|
|
|
|
|
|
|
static int unsharp_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
|
|
|
{ |
|
|
|
|
ThreadData *td = arg; |
|
|
|
|
UnsharpFilterParam *fp = td->fp; |
|
|
|
|
uint32_t **sc = fp->sc; |
|
|
|
|
uint32_t *sr = fp->sr; |
|
|
|
|
const uint8_t *src2 = NULL; //silence a warning
|
|
|
|
|
const int amount = fp->amount; |
|
|
|
|
const int steps_x = fp->steps_x; |
|
|
|
|
const int steps_y = fp->steps_y; |
|
|
|
|
const int scalebits = fp->scalebits; |
|
|
|
|
const int32_t halfscale = fp->halfscale; |
|
|
|
|
|
|
|
|
|
uint8_t *dst = td->dst; |
|
|
|
|
const uint8_t *src = td->src; |
|
|
|
|
const int dst_stride = td->dst_stride; |
|
|
|
|
const int src_stride = td->src_stride; |
|
|
|
|
const int width = td->width; |
|
|
|
|
const int height = td->height; |
|
|
|
|
const int sc_offset = jobnr * 2 * steps_y; |
|
|
|
|
const int sr_offset = jobnr * (MAX_MATRIX_SIZE - 1); |
|
|
|
|
const int slice_start = (height * jobnr) / nb_jobs; |
|
|
|
|
const int slice_end = (height * (jobnr+1)) / nb_jobs; |
|
|
|
|
|
|
|
|
|
int32_t res; |
|
|
|
|
int x, y, z; |
|
|
|
|
uint32_t tmp1, tmp2; |
|
|
|
|
|
|
|
|
|
if (!amount) { |
|
|
|
|
av_image_copy_plane(dst + slice_start * dst_stride, dst_stride, |
|
|
|
|
src + slice_start * src_stride, src_stride, |
|
|
|
|
width, slice_end - slice_start); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (y = 0; y < 2 * steps_y; y++) |
|
|
|
|
memset(sc[sc_offset + y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x)); |
|
|
|
|
|
|
|
|
|
// if this is not the first tile, we start from (slice_start - steps_y),
|
|
|
|
|
// so we can get smooth result at slice boundary
|
|
|
|
|
if (slice_start > steps_y) { |
|
|
|
|
src += (slice_start - steps_y) * src_stride; |
|
|
|
|
dst += (slice_start - steps_y) * dst_stride; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (y = -steps_y + slice_start; y < steps_y + slice_end; y++) { |
|
|
|
|
if (y < height) |
|
|
|
|
src2 = src; |
|
|
|
|
|
|
|
|
|
memset(sr + sr_offset, 0, sizeof(sr[0]) * (2 * steps_x - 1)); |
|
|
|
|
for (x = -steps_x; x < width + steps_x; x++) { |
|
|
|
|
tmp1 = x <= 0 ? src2[0] : x >= width ? src2[width-1] : src2[x]; |
|
|
|
|
for (z = 0; z < steps_x * 2; z += 2) { |
|
|
|
|
tmp2 = sr[sr_offset + z + 0] + tmp1; sr[sr_offset + z + 0] = tmp1; |
|
|
|
|
tmp1 = sr[sr_offset + z + 1] + tmp2; sr[sr_offset + z + 1] = tmp2; |
|
|
|
|
} |
|
|
|
|
for (z = 0; z < steps_y * 2; z += 2) { |
|
|
|
|
tmp2 = sc[sc_offset + z + 0][x + steps_x] + tmp1; sc[sc_offset + z + 0][x + steps_x] = tmp1; |
|
|
|
|
tmp1 = sc[sc_offset + z + 1][x + steps_x] + tmp2; sc[sc_offset + z + 1][x + steps_x] = tmp2; |
|
|
|
|
} |
|
|
|
|
if (x >= steps_x && y >= (steps_y + slice_start)) { |
|
|
|
|
const uint8_t *srx = src - steps_y * src_stride + x - steps_x; |
|
|
|
|
uint8_t *dsx = dst - steps_y * dst_stride + x - steps_x; |
|
|
|
|
|
|
|
|
|
res = (int32_t)*srx + ((((int32_t) * srx - (int32_t)((tmp1 + halfscale) >> scalebits)) * amount) >> 16); |
|
|
|
|
*dsx = av_clip_uint8(res); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (y >= 0) { |
|
|
|
|
dst += dst_stride; |
|
|
|
|
src += src_stride; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
#define DEF_UNSHARP_SLICE_FUNC(name, nbits) \ |
|
|
|
|
static int name##_##nbits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
|
|
|
|
|
{ \
|
|
|
|
|
ThreadData *td = arg; \
|
|
|
|
|
UnsharpFilterParam *fp = td->fp; \
|
|
|
|
|
UnsharpContext *s = ctx->priv; \
|
|
|
|
|
uint32_t **sc = fp->sc; \
|
|
|
|
|
uint32_t *sr = fp->sr; \
|
|
|
|
|
const uint##nbits##_t *src2 = NULL; \
|
|
|
|
|
const int amount = fp->amount; \
|
|
|
|
|
const int steps_x = fp->steps_x; \
|
|
|
|
|
const int steps_y = fp->steps_y; \
|
|
|
|
|
const int scalebits = fp->scalebits; \
|
|
|
|
|
const int32_t halfscale = fp->halfscale; \
|
|
|
|
|
\
|
|
|
|
|
uint##nbits##_t *dst = (uint##nbits##_t*)td->dst; \
|
|
|
|
|
const uint##nbits##_t *src = (const uint##nbits##_t *)td->src; \
|
|
|
|
|
int dst_stride = td->dst_stride; \
|
|
|
|
|
int src_stride = td->src_stride; \
|
|
|
|
|
const int width = td->width; \
|
|
|
|
|
const int height = td->height; \
|
|
|
|
|
const int sc_offset = jobnr * 2 * steps_y; \
|
|
|
|
|
const int sr_offset = jobnr * (MAX_MATRIX_SIZE - 1); \
|
|
|
|
|
const int slice_start = (height * jobnr) / nb_jobs; \
|
|
|
|
|
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
|
|
|
|
|
\
|
|
|
|
|
int32_t res; \
|
|
|
|
|
int x, y, z; \
|
|
|
|
|
uint32_t tmp1, tmp2; \
|
|
|
|
|
\
|
|
|
|
|
if (!amount) { \
|
|
|
|
|
av_image_copy_plane(td->dst + slice_start * dst_stride, dst_stride, \
|
|
|
|
|
td->src + slice_start * src_stride, src_stride, \
|
|
|
|
|
width * s->bps, slice_end - slice_start); \
|
|
|
|
|
return 0; \
|
|
|
|
|
} \
|
|
|
|
|
\
|
|
|
|
|
for (y = 0; y < 2 * steps_y; y++) \
|
|
|
|
|
memset(sc[sc_offset + y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x)); \
|
|
|
|
|
\
|
|
|
|
|
dst_stride = dst_stride / s->bps; \
|
|
|
|
|
src_stride = src_stride / s->bps; \
|
|
|
|
|
/* if this is not the first tile, we start from (slice_start - steps_y) */ \
|
|
|
|
|
/* so we can get smooth result at slice boundary */ \
|
|
|
|
|
if (slice_start > steps_y) { \
|
|
|
|
|
src += (slice_start - steps_y) * src_stride; \
|
|
|
|
|
dst += (slice_start - steps_y) * dst_stride; \
|
|
|
|
|
} \
|
|
|
|
|
\
|
|
|
|
|
for (y = -steps_y + slice_start; y < steps_y + slice_end; y++) { \
|
|
|
|
|
if (y < height) \
|
|
|
|
|
src2 = src; \
|
|
|
|
|
\
|
|
|
|
|
memset(sr + sr_offset, 0, sizeof(sr[0]) * (2 * steps_x - 1)); \
|
|
|
|
|
for (x = -steps_x; x < width + steps_x; x++) { \
|
|
|
|
|
tmp1 = x <= 0 ? src2[0] : x >= width ? src2[width-1] : src2[x]; \
|
|
|
|
|
for (z = 0; z < steps_x * 2; z += 2) { \
|
|
|
|
|
tmp2 = sr[sr_offset + z + 0] + tmp1; sr[sr_offset + z + 0] = tmp1; \
|
|
|
|
|
tmp1 = sr[sr_offset + z + 1] + tmp2; sr[sr_offset + z + 1] = tmp2; \
|
|
|
|
|
} \
|
|
|
|
|
for (z = 0; z < steps_y * 2; z += 2) { \
|
|
|
|
|
tmp2 = sc[sc_offset + z + 0][x + steps_x] + tmp1; \
|
|
|
|
|
sc[sc_offset + z + 0][x + steps_x] = tmp1; \
|
|
|
|
|
tmp1 = sc[sc_offset + z + 1][x + steps_x] + tmp2; \
|
|
|
|
|
sc[sc_offset + z + 1][x + steps_x] = tmp2; \
|
|
|
|
|
} \
|
|
|
|
|
if (x >= steps_x && y >= (steps_y + slice_start)) { \
|
|
|
|
|
const uint##nbits##_t *srx = src - steps_y * src_stride + x - steps_x; \
|
|
|
|
|
uint##nbits##_t *dsx = dst - steps_y * dst_stride + x - steps_x; \
|
|
|
|
|
\
|
|
|
|
|
res = (int32_t)*srx + ((((int32_t) * srx - \
|
|
|
|
|
(int32_t)((tmp1 + halfscale) >> scalebits)) * amount) >> (8+nbits)); \
|
|
|
|
|
*dsx = av_clip_uint##nbits(res); \
|
|
|
|
|
} \
|
|
|
|
|
} \
|
|
|
|
|
if (y >= 0) { \
|
|
|
|
|
dst += dst_stride; \
|
|
|
|
|
src += src_stride; \
|
|
|
|
|
} \
|
|
|
|
|
} \
|
|
|
|
|
return 0; \
|
|
|
|
|
} |
|
|
|
|
DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 16); |
|
|
|
|
DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 8); |
|
|
|
|
|
|
|
|
|
static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out) |
|
|
|
|
{ |
|
|
|
@ -155,7 +164,7 @@ static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out) |
|
|
|
|
td.height = plane_h[i]; |
|
|
|
|
td.dst_stride = out->linesize[i]; |
|
|
|
|
td.src_stride = in->linesize[i]; |
|
|
|
|
ctx->internal->execute(ctx, unsharp_slice, &td, NULL, FFMIN(plane_h[i], s->nb_threads)); |
|
|
|
|
ctx->internal->execute(ctx, s->unsharp_slice, &td, NULL, FFMIN(plane_h[i], s->nb_threads)); |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
@ -238,6 +247,9 @@ static int config_input(AVFilterLink *inlink) |
|
|
|
|
|
|
|
|
|
s->hsub = desc->log2_chroma_w; |
|
|
|
|
s->vsub = desc->log2_chroma_h; |
|
|
|
|
s->bitdepth = desc->comp[0].depth; |
|
|
|
|
s->bps = s->bitdepth > 8 ? 2 : 1; |
|
|
|
|
s->unsharp_slice = s->bitdepth > 8 ? unsharp_slice_16 : unsharp_slice_8; |
|
|
|
|
|
|
|
|
|
// ensure (height / nb_threads) > 4 * steps_y,
|
|
|
|
|
// so that we don't have too much overlap between two threads
|
|
|
|
|