Merge remote-tracking branch 'qatar/master'

* qatar/master: (38 commits)
  alac: cosmetics: general pretty-printing and comment clean up
  alac: calculate buffer size outside the loop in allocate_buffers()
  alac: change some data types to plain int
  alac: cosmetics: rename some variables and function names
  alac: multi-channel decoding support
  alac: split element parsing into a separate function
  alac: support a read sample size of up to 32
  alac: output in planar sample format
  alac: add 32-bit decoding support
  alac: simplify channel interleaving
  alac: use AVPacket fields directly in alac_decode_frame()
  alac: fix check for valid max_samples_per_frame
  alac: use get_sbits() to read LPC coefficients instead of casting
  alac: move the current samples per frame to the ALACContext
  alac: avoid using a double-negative when checking if the frame is compressed
  alac: factor out output_size check in predictor_decompress_fir_adapt()
  alac: factor out loading of next decoded sample in LPC prediction
  alac: use index into buffer_out instead of incrementing the pointer
  alac: simplify lpc coefficient adaptation
  alac: reduce the number of local variables needed in lpc prediction
  ...

Conflicts:
	libavcodec/alac.c
	libavformat/cafdec.c
	libavformat/mov.c

Merged-by: Michael Niedermayer <michaelni@gmx.at>
pull/59/head
Michael Niedermayer 13 years ago
commit e4c00aca96
  1. 642
      libavcodec/alac.c
  2. 3
      libavformat/aiffdec.c
  3. 55
      libavformat/cafdec.c
  4. 16
      libavformat/isom.c
  5. 2
      libavformat/isom.h
  6. 41
      libavformat/mov.c
  7. 46
      libavformat/mov_chan.c
  8. 19
      libavformat/mov_chan.h

@ -37,7 +37,7 @@
* 8bit sample size * 8bit sample size
* 8bit history mult (40) * 8bit history mult (40)
* 8bit initial history (14) * 8bit initial history (14)
* 8bit kmodifier (10) * 8bit rice param limit (10)
* 8bit channels * 8bit channels
* 16bit maxRun (255) * 16bit maxRun (255)
* 32bit max coded frame size (0 means unknown) * 32bit max coded frame size (0 means unknown)
@ -45,7 +45,7 @@
* 32bit samplerate * 32bit samplerate
*/ */
#include "libavutil/audioconvert.h"
#include "avcodec.h" #include "avcodec.h"
#include "get_bits.h" #include "get_bits.h"
#include "bytestream.h" #include "bytestream.h"
@ -53,46 +53,70 @@
#include "mathops.h" #include "mathops.h"
#define ALAC_EXTRADATA_SIZE 36 #define ALAC_EXTRADATA_SIZE 36
#define MAX_CHANNELS 2 #define MAX_CHANNELS 8
typedef struct { typedef struct {
AVCodecContext *avctx; AVCodecContext *avctx;
AVFrame frame; AVFrame frame;
GetBitContext gb; GetBitContext gb;
int channels;
int numchannels; int32_t *predict_error_buffer[2];
int32_t *output_samples_buffer[2];
int32_t *extra_bits_buffer[2];
/* buffers */ uint32_t max_samples_per_frame;
int32_t *predicterror_buffer[MAX_CHANNELS]; uint8_t sample_size;
uint8_t rice_history_mult;
uint8_t rice_initial_history;
uint8_t rice_limit;
int32_t *outputsamples_buffer[MAX_CHANNELS]; int extra_bits; /**< number of extra bits beyond 16-bit */
int nb_samples; /**< number of samples in the current frame */
} ALACContext;
int32_t *extra_bits_buffer[MAX_CHANNELS]; enum RawDataBlockType {
/* At the moment, only SCE, CPE, LFE, and END are recognized. */
TYPE_SCE,
TYPE_CPE,
TYPE_CCE,
TYPE_LFE,
TYPE_DSE,
TYPE_PCE,
TYPE_FIL,
TYPE_END
};
/* stuff from setinfo */ static const uint8_t alac_channel_layout_offsets[8][8] = {
uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */ { 0 },
uint8_t setinfo_sample_size; /* 0x10 */ { 0, 1 },
uint8_t setinfo_rice_historymult; /* 0x28 */ { 2, 0, 1 },
uint8_t setinfo_rice_initialhistory; /* 0x0a */ { 2, 0, 1, 3 },
uint8_t setinfo_rice_kmodifier; /* 0x0e */ { 2, 0, 1, 3, 4 },
/* end setinfo stuff */ { 2, 0, 1, 4, 5, 3 },
{ 2, 0, 1, 4, 5, 6, 3 },
{ 2, 6, 7, 0, 1, 4, 5, 3 }
};
int extra_bits; /**< number of extra bits beyond 16-bit */ static const uint16_t alac_channel_layouts[8] = {
} ALACContext; AV_CH_LAYOUT_MONO,
AV_CH_LAYOUT_STEREO,
AV_CH_LAYOUT_SURROUND,
AV_CH_LAYOUT_4POINT0,
AV_CH_LAYOUT_5POINT0_BACK,
AV_CH_LAYOUT_5POINT1_BACK,
AV_CH_LAYOUT_6POINT1_BACK,
AV_CH_LAYOUT_7POINT1_WIDE_BACK
};
static inline int decode_scalar(GetBitContext *gb, int k, int limit, int readsamplesize){ static inline unsigned int decode_scalar(GetBitContext *gb, int k, int bps)
/* read x - number of 1s before 0 represent the rice */ {
int x = get_unary_0_9(gb); unsigned int x = get_unary_0_9(gb);
if (x > 8) { /* RICE THRESHOLD */ if (x > 8) { /* RICE THRESHOLD */
/* use alternative encoding */ /* use alternative encoding */
x = get_bits(gb, readsamplesize); x = get_bits_long(gb, bps);
} else { } else if (k != 1) {
if (k >= limit)
k = limit;
if (k != 1) {
int extrabits = show_bits(gb, k); int extrabits = show_bits(gb, k);
/* multiply x by 2^k - 1, as part of their strange algorithm */ /* multiply x by 2^k - 1, as part of their strange algorithm */
@ -104,77 +128,60 @@ static inline int decode_scalar(GetBitContext *gb, int k, int limit, int readsam
} else } else
skip_bits(gb, k - 1); skip_bits(gb, k - 1);
} }
}
return x; return x;
} }
static int bastardized_rice_decompress(ALACContext *alac, static int rice_decompress(ALACContext *alac, int32_t *output_buffer,
int32_t *output_buffer, int nb_samples, int bps, int rice_history_mult)
int output_size,
int readsamplesize, /* arg_10 */
int rice_initialhistory, /* arg424->b */
int rice_kmodifier, /* arg424->d */
int rice_historymult, /* arg424->c */
int rice_kmodifier_mask /* arg424->e */
)
{ {
int output_count; int i;
unsigned int history = rice_initialhistory; unsigned int history = alac->rice_initial_history;
int sign_modifier = 0; int sign_modifier = 0;
for (output_count = 0; output_count < output_size; output_count++) { for (i = 0; i < nb_samples; i++) {
int32_t x; int k;
int32_t x_modified; unsigned int x;
int32_t final_val;
/* standard rice encoding */
int k; /* size of extra bits */
if(get_bits_left(&alac->gb) <= 0) if(get_bits_left(&alac->gb) <= 0)
return -1; return -1;
/* read k, that is bits as is */ /* calculate rice param and decode next value */
k = av_log2((history >> 9) + 3); k = av_log2((history >> 9) + 3);
x= decode_scalar(&alac->gb, k, rice_kmodifier, readsamplesize); k = FFMIN(k, alac->rice_limit);
x = decode_scalar(&alac->gb, k, bps);
x_modified = sign_modifier + x; x += sign_modifier;
final_val = (x_modified + 1) / 2;
if (x_modified & 1) final_val *= -1;
output_buffer[output_count] = final_val;
sign_modifier = 0; sign_modifier = 0;
output_buffer[i] = (x >> 1) ^ -(x & 1);
/* now update the history */ /* update the history */
history += x_modified * rice_historymult if (x > 0xffff)
- ((history * rice_historymult) >> 9);
if (x_modified > 0xffff)
history = 0xffff; history = 0xffff;
else
history += x * rice_history_mult -
((history * rice_history_mult) >> 9);
/* special case: there may be compressed blocks of 0 */ /* special case: there may be compressed blocks of 0 */
if ((history < 128) && (output_count+1 < output_size)) { if ((history < 128) && (i + 1 < nb_samples)) {
int k; int block_size;
unsigned int block_size;
sign_modifier = 1;
k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */); /* calculate rice param and decode block size */
k = 7 - av_log2(history) + ((history + 16) >> 6);
block_size= decode_scalar(&alac->gb, k, rice_kmodifier, 16); k = FFMIN(k, alac->rice_limit);
block_size = decode_scalar(&alac->gb, k, 16);
if (block_size > 0) { if (block_size > 0) {
if(block_size >= output_size - output_count){ if (block_size >= nb_samples - i) {
av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count); av_log(alac->avctx, AV_LOG_ERROR,
block_size= output_size - output_count - 1; "invalid zero block size of %d %d %d\n", block_size,
nb_samples, i);
block_size = nb_samples - i - 1;
} }
memset(&output_buffer[output_count+1], 0, block_size * 4); memset(&output_buffer[i + 1], 0,
output_count += block_size; block_size * sizeof(*output_buffer));
i += block_size;
} }
if (block_size <= 0xffff)
if (block_size > 0xffff) sign_modifier = 1;
sign_modifier = 0;
history = 0; history = 0;
} }
} }
@ -186,131 +193,82 @@ static inline int sign_only(int v)
return v ? FFSIGN(v) : 0; return v ? FFSIGN(v) : 0;
} }
static void predictor_decompress_fir_adapt(int32_t *error_buffer, static void lpc_prediction(int32_t *error_buffer, int32_t *buffer_out,
int32_t *buffer_out, int nb_samples, int bps, int16_t *lpc_coefs,
int output_size, int lpc_order, int lpc_quant)
int readsamplesize,
int16_t *predictor_coef_table,
int predictor_coef_num,
int predictor_quantitization)
{ {
int i; int i;
/* first sample always copies */ /* first sample always copies */
*buffer_out = *error_buffer; *buffer_out = *error_buffer;
if (!predictor_coef_num) { if (nb_samples <= 1)
if (output_size <= 1)
return; return;
memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4); if (!lpc_order) {
memcpy(&buffer_out[1], &error_buffer[1],
(nb_samples - 1) * sizeof(*buffer_out));
return; return;
} }
if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */ if (lpc_order == 31) {
/* second-best case scenario for fir decompression, /* simple 1st-order prediction */
* error describes a small difference from the previous sample only for (i = 1; i < nb_samples; i++) {
*/ buffer_out[i] = sign_extend(buffer_out[i - 1] + error_buffer[i],
if (output_size <= 1) bps);
return;
for (i = 0; i < output_size - 1; i++) {
int32_t prev_value;
int32_t error_value;
prev_value = buffer_out[i];
error_value = error_buffer[i+1];
buffer_out[i+1] =
sign_extend((prev_value + error_value), readsamplesize);
} }
return; return;
} }
/* read warm-up samples */ /* read warm-up samples */
if (predictor_coef_num > 0) for (i = 0; i < lpc_order; i++) {
for (i = 0; i < predictor_coef_num; i++) { buffer_out[i + 1] = sign_extend(buffer_out[i] + error_buffer[i + 1],
int32_t val; bps);
val = buffer_out[i] + error_buffer[i+1];
val = sign_extend(val, readsamplesize);
buffer_out[i+1] = val;
} }
/* 4 and 8 are very common cases (the only ones i've seen). these /* NOTE: 4 and 8 are very common cases that could be optimized. */
* should be unrolled and optimized
*/
/* general case */ for (i = lpc_order; i < nb_samples - 1; i++) {
if (predictor_coef_num > 0) {
for (i = predictor_coef_num + 1; i < output_size; i++) {
int j; int j;
int sum = 0; int val = 0;
int outval; int error_val = error_buffer[i + 1];
int error_val = error_buffer[i]; int error_sign;
int d = buffer_out[i - lpc_order];
for (j = 0; j < predictor_coef_num; j++) {
sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) * /* LPC prediction */
predictor_coef_table[j]; for (j = 0; j < lpc_order; j++)
} val += (buffer_out[i - j] - d) * lpc_coefs[j];
val = (val + (1 << (lpc_quant - 1))) >> lpc_quant;
outval = (1 << (predictor_quantitization-1)) + sum; val += d + error_val;
outval = outval >> predictor_quantitization; buffer_out[i + 1] = sign_extend(val, bps);
outval = outval + buffer_out[0] + error_val;
outval = sign_extend(outval, readsamplesize); /* adapt LPC coefficients */
error_sign = sign_only(error_val);
buffer_out[predictor_coef_num+1] = outval; if (error_sign) {
for (j = lpc_order - 1; j >= 0 && error_val * error_sign > 0; j--) {
if (error_val > 0) { int sign;
int predictor_num = predictor_coef_num - 1; val = d - buffer_out[i - j];
sign = sign_only(val) * error_sign;
while (predictor_num >= 0 && error_val > 0) { lpc_coefs[j] -= sign;
int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num]; val *= sign;
int sign = sign_only(val); error_val -= (val >> lpc_quant) * (lpc_order - j);
predictor_coef_table[predictor_num] -= sign;
val *= sign; /* absolute value */
error_val -= ((val >> predictor_quantitization) *
(predictor_coef_num - predictor_num));
predictor_num--;
}
} else if (error_val < 0) {
int predictor_num = predictor_coef_num - 1;
while (predictor_num >= 0 && error_val < 0) {
int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
int sign = - sign_only(val);
predictor_coef_table[predictor_num] -= sign;
val *= sign; /* neg value */
error_val -= ((val >> predictor_quantitization) *
(predictor_coef_num - predictor_num));
predictor_num--;
}
} }
buffer_out++;
} }
} }
} }
static void decorrelate_stereo(int32_t *buffer[MAX_CHANNELS], static void decorrelate_stereo(int32_t *buffer[2], int nb_samples,
int numsamples, uint8_t interlacing_shift, int decorr_shift, int decorr_left_weight)
uint8_t interlacing_leftweight)
{ {
int i; int i;
for (i = 0; i < numsamples; i++) { for (i = 0; i < nb_samples; i++) {
int32_t a, b; int32_t a, b;
a = buffer[0][i]; a = buffer[0][i];
b = buffer[1][i]; b = buffer[1][i];
a -= (b * interlacing_leftweight) >> interlacing_shift; a -= (b * decorr_left_weight) >> decorr_shift;
b += a; b += a;
buffer[0][i] = b; buffer[0][i] = b;
@ -318,141 +276,90 @@ static void decorrelate_stereo(int32_t *buffer[MAX_CHANNELS],
} }
} }
static void append_extra_bits(int32_t *buffer[MAX_CHANNELS], static void append_extra_bits(int32_t *buffer[2], int32_t *extra_bits_buffer[2],
int32_t *extra_bits_buffer[MAX_CHANNELS], int extra_bits, int channels, int nb_samples)
int extra_bits, int numchannels, int numsamples)
{ {
int i, ch; int i, ch;
for (ch = 0; ch < numchannels; ch++) for (ch = 0; ch < channels; ch++)
for (i = 0; i < numsamples; i++) for (i = 0; i < nb_samples; i++)
buffer[ch][i] = (buffer[ch][i] << extra_bits) | extra_bits_buffer[ch][i]; buffer[ch][i] = (buffer[ch][i] << extra_bits) | extra_bits_buffer[ch][i];
} }
static void interleave_stereo_16(int32_t *buffer[MAX_CHANNELS], static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
int16_t *buffer_out, int numsamples) int channels)
{
int i;
for (i = 0; i < numsamples; i++) {
*buffer_out++ = buffer[0][i];
*buffer_out++ = buffer[1][i];
}
}
static void interleave_stereo_24(int32_t *buffer[MAX_CHANNELS],
int32_t *buffer_out, int numsamples)
{ {
int i;
for (i = 0; i < numsamples; i++) {
*buffer_out++ = buffer[0][i] << 8;
*buffer_out++ = buffer[1][i] << 8;
}
}
static void interleave_stereo_32(int32_t *buffer[MAX_CHANNELS],
int32_t *buffer_out, int numsamples)
{
int i;
for (i = 0; i < numsamples; i++) {
*buffer_out++ = buffer[0][i];
*buffer_out++ = buffer[1][i];
}
}
static int alac_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *inbuffer = avpkt->data;
int input_buffer_size = avpkt->size;
ALACContext *alac = avctx->priv_data; ALACContext *alac = avctx->priv_data;
int has_size, bps, is_compressed, decorr_shift, decorr_left_weight, ret;
uint32_t output_samples;
int i, ch;
int channels; skip_bits(&alac->gb, 4); /* element instance tag */
unsigned int outputsamples; skip_bits(&alac->gb, 12); /* unused header bits */
int hassize;
unsigned int readsamplesize;
int isnotcompressed;
uint8_t interlacing_shift;
uint8_t interlacing_leftweight;
int i, ch, ret;
init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
channels = get_bits(&alac->gb, 3) + 1;
if (channels != avctx->channels) {
av_log(avctx, AV_LOG_ERROR, "frame header channel count mismatch\n");
return AVERROR_INVALIDDATA;
}
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
skip_bits(&alac->gb, 4);
skip_bits(&alac->gb, 12); /* unknown, skip 12 bits */
/* the output sample size is stored soon */ /* the number of output samples is stored in the frame */
hassize = get_bits1(&alac->gb); has_size = get_bits1(&alac->gb);
alac->extra_bits = get_bits(&alac->gb, 2) << 3; alac->extra_bits = get_bits(&alac->gb, 2) << 3;
bps = alac->sample_size - alac->extra_bits + channels - 1;
if (bps > 32) {
av_log(avctx, AV_LOG_ERROR, "bps is unsupported: %d\n", bps);
return AVERROR_PATCHWELCOME;
}
/* whether the frame is compressed */ /* whether the frame is compressed */
isnotcompressed = get_bits1(&alac->gb); is_compressed = !get_bits1(&alac->gb);
if (hassize) {
/* now read the number of samples as a 32bit integer */
outputsamples = get_bits_long(&alac->gb, 32);
if(outputsamples > alac->setinfo_max_samples_per_frame){
av_log(avctx, AV_LOG_ERROR, "outputsamples %d > %d\n", outputsamples, alac->setinfo_max_samples_per_frame);
return -1;
}
} else
outputsamples = alac->setinfo_max_samples_per_frame;
/* get output buffer */ if (has_size)
if (outputsamples > INT32_MAX) { output_samples = get_bits_long(&alac->gb, 32);
av_log(avctx, AV_LOG_ERROR, "unsupported block size: %u\n", outputsamples); else
output_samples = alac->max_samples_per_frame;
if (!output_samples || output_samples > alac->max_samples_per_frame) {
av_log(avctx, AV_LOG_ERROR, "invalid samples per frame: %d\n",
output_samples);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
alac->frame.nb_samples = outputsamples; if (!alac->nb_samples) {
/* get output buffer */
alac->frame.nb_samples = output_samples;
if ((ret = avctx->get_buffer(avctx, &alac->frame)) < 0) { if ((ret = avctx->get_buffer(avctx, &alac->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret; return ret;
} }
if (alac->sample_size > 16) {
readsamplesize = alac->setinfo_sample_size - alac->extra_bits + channels - 1; for (ch = 0; ch < channels; ch++)
if (readsamplesize > MIN_CACHE_BITS) { alac->output_samples_buffer[ch] = (int32_t *)alac->frame.extended_data[ch_index + ch];
av_log(avctx, AV_LOG_ERROR, "readsamplesize too big (%d)\n", readsamplesize); }
return -1; } else if (output_samples != alac->nb_samples) {
av_log(avctx, AV_LOG_ERROR, "sample count mismatch: %u != %d\n",
output_samples, alac->nb_samples);
return AVERROR_INVALIDDATA;
} }
alac->nb_samples = output_samples;
if (!isnotcompressed) { if (is_compressed) {
/* so it is compressed */ int16_t lpc_coefs[2][32];
int16_t predictor_coef_table[MAX_CHANNELS][32]; int lpc_order[2];
int predictor_coef_num[MAX_CHANNELS]; int prediction_type[2];
int prediction_type[MAX_CHANNELS]; int lpc_quant[2];
int prediction_quantitization[MAX_CHANNELS]; int rice_history_mult[2];
int ricemodifier[MAX_CHANNELS];
interlacing_shift = get_bits(&alac->gb, 8); decorr_shift = get_bits(&alac->gb, 8);
interlacing_leftweight = get_bits(&alac->gb, 8); decorr_left_weight = get_bits(&alac->gb, 8);
for (ch = 0; ch < channels; ch++) { for (ch = 0; ch < channels; ch++) {
prediction_type[ch] = get_bits(&alac->gb, 4); prediction_type[ch] = get_bits(&alac->gb, 4);
prediction_quantitization[ch] = get_bits(&alac->gb, 4); lpc_quant[ch] = get_bits(&alac->gb, 4);
rice_history_mult[ch] = get_bits(&alac->gb, 3);
ricemodifier[ch] = get_bits(&alac->gb, 3); lpc_order[ch] = get_bits(&alac->gb, 5);
predictor_coef_num[ch] = get_bits(&alac->gb, 5);
/* read the predictor table */ /* read the predictor table */
for (i = 0; i < predictor_coef_num[ch]; i++) for (i = 0; i < lpc_order[ch]; i++)
predictor_coef_table[ch][i] = (int16_t)get_bits(&alac->gb, 16); lpc_coefs[ch][i] = get_sbits(&alac->gb, 16);
} }
if (alac->extra_bits) { if (alac->extra_bits) {
for (i = 0; i < outputsamples; i++) { for (i = 0; i < alac->nb_samples; i++) {
if(get_bits_left(&alac->gb) <= 0) if(get_bits_left(&alac->gb) <= 0)
return -1; return -1;
for (ch = 0; ch < channels; ch++) for (ch = 0; ch < channels; ch++)
@ -460,14 +367,9 @@ static int alac_decode_frame(AVCodecContext *avctx, void *data,
} }
} }
for (ch = 0; ch < channels; ch++) { for (ch = 0; ch < channels; ch++) {
int ret = bastardized_rice_decompress(alac, int ret=rice_decompress(alac, alac->predict_error_buffer[ch],
alac->predicterror_buffer[ch], alac->nb_samples, bps,
outputsamples, rice_history_mult[ch] * alac->rice_history_mult / 4);
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier[ch] * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
if(ret<0) if(ret<0)
return ret; return ret;
@ -480,89 +382,106 @@ static int alac_decode_frame(AVCodecContext *avctx, void *data,
* However, this prediction type is not currently used by the * However, this prediction type is not currently used by the
* reference encoder. * reference encoder.
*/ */
predictor_decompress_fir_adapt(alac->predicterror_buffer[ch], lpc_prediction(alac->predict_error_buffer[ch],
alac->predicterror_buffer[ch], alac->predict_error_buffer[ch],
outputsamples, readsamplesize, alac->nb_samples, bps, NULL, 31, 0);
NULL, 31, 0);
} else if (prediction_type[ch] > 0) { } else if (prediction_type[ch] > 0) {
av_log(avctx, AV_LOG_WARNING, "unknown prediction type: %i\n", av_log(avctx, AV_LOG_WARNING, "unknown prediction type: %i\n",
prediction_type[ch]); prediction_type[ch]);
} }
predictor_decompress_fir_adapt(alac->predicterror_buffer[ch], lpc_prediction(alac->predict_error_buffer[ch],
alac->outputsamples_buffer[ch], alac->output_samples_buffer[ch], alac->nb_samples,
outputsamples, readsamplesize, bps, lpc_coefs[ch], lpc_order[ch], lpc_quant[ch]);
predictor_coef_table[ch],
predictor_coef_num[ch],
prediction_quantitization[ch]);
} }
} else { } else {
/* not compressed, easy case */ /* not compressed, easy case */
for (i = 0; i < outputsamples; i++) { for (i = 0; i < alac->nb_samples; i++) {
if(get_bits_left(&alac->gb) <= 0) if(get_bits_left(&alac->gb) <= 0)
return -1; return -1;
for (ch = 0; ch < channels; ch++) { for (ch = 0; ch < channels; ch++) {
alac->outputsamples_buffer[ch][i] = get_sbits_long(&alac->gb, alac->output_samples_buffer[ch][i] =
alac->setinfo_sample_size); get_sbits_long(&alac->gb, alac->sample_size);
} }
} }
alac->extra_bits = 0; alac->extra_bits = 0;
interlacing_shift = 0; decorr_shift = 0;
interlacing_leftweight = 0; decorr_left_weight = 0;
} }
if (get_bits(&alac->gb, 3) != 7)
av_log(avctx, AV_LOG_ERROR, "Error : Wrong End Of Frame\n");
if (channels == 2 && interlacing_leftweight) { if (channels == 2 && decorr_left_weight) {
decorrelate_stereo(alac->outputsamples_buffer, outputsamples, decorrelate_stereo(alac->output_samples_buffer, alac->nb_samples,
interlacing_shift, interlacing_leftweight); decorr_shift, decorr_left_weight);
} }
if (alac->extra_bits) { if (alac->extra_bits) {
append_extra_bits(alac->outputsamples_buffer, alac->extra_bits_buffer, append_extra_bits(alac->output_samples_buffer, alac->extra_bits_buffer,
alac->extra_bits, alac->numchannels, outputsamples); alac->extra_bits, channels, alac->nb_samples);
} }
switch(alac->setinfo_sample_size) { switch(alac->sample_size) {
case 16: case 16: {
if (channels == 2) { for (ch = 0; ch < channels; ch++) {
interleave_stereo_16(alac->outputsamples_buffer, int16_t *outbuffer = (int16_t *)alac->frame.extended_data[ch_index + ch];
(int16_t *)alac->frame.data[0], outputsamples); for (i = 0; i < alac->nb_samples; i++)
} else { *outbuffer++ = alac->output_samples_buffer[ch][i];
int16_t *outbuffer = (int16_t *)alac->frame.data[0]; }}
for (i = 0; i < outputsamples; i++) {
outbuffer[i] = alac->outputsamples_buffer[0][i];
}
}
break; break;
case 24: case 24: {
if (channels == 2) { for (ch = 0; ch < channels; ch++) {
interleave_stereo_24(alac->outputsamples_buffer, for (i = 0; i < alac->nb_samples; i++)
(int32_t *)alac->frame.data[0], outputsamples); alac->output_samples_buffer[ch][i] <<= 8;
} else { }}
int32_t *outbuffer = (int32_t *)alac->frame.data[0];
for (i = 0; i < outputsamples; i++)
outbuffer[i] = alac->outputsamples_buffer[0][i] << 8;
}
break; break;
case 32:
if (channels == 2) {
interleave_stereo_32(alac->outputsamples_buffer,
(int32_t *)alac->frame.data[0], outputsamples);
} else {
int32_t *outbuffer = (int32_t *)alac->frame.data[0];
for (i = 0; i < outputsamples; i++)
outbuffer[i] = alac->outputsamples_buffer[0][i];
} }
return 0;
}
static int alac_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
ALACContext *alac = avctx->priv_data;
enum RawDataBlockType element;
int channels;
int ch, ret;
init_get_bits(&alac->gb, avpkt->data, avpkt->size * 8);
alac->nb_samples = 0;
ch = 0;
while (get_bits_left(&alac->gb)) {
element = get_bits(&alac->gb, 3);
if (element == TYPE_END)
break; break;
if (element > TYPE_CPE && element != TYPE_LFE) {
av_log(avctx, AV_LOG_ERROR, "syntax element unsupported: %d", element);
return AVERROR_PATCHWELCOME;
}
channels = (element == TYPE_CPE) ? 2 : 1;
if (ch + channels > alac->channels) {
av_log(avctx, AV_LOG_ERROR, "invalid element channel count\n");
return AVERROR_INVALIDDATA;
} }
if (input_buffer_size * 8 - get_bits_count(&alac->gb) > 8) ret = decode_element(avctx, data,
av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n", input_buffer_size * 8 - get_bits_count(&alac->gb)); alac_channel_layout_offsets[alac->channels - 1][ch],
channels);
if (ret < 0)
return ret;
ch += channels;
}
if (avpkt->size * 8 - get_bits_count(&alac->gb) > 8) {
av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n",
avpkt->size * 8 - get_bits_count(&alac->gb));
}
*got_frame_ptr = 1; *got_frame_ptr = 1;
*(AVFrame *)data = alac->frame; *(AVFrame *)data = alac->frame;
return input_buffer_size; return avpkt->size;
} }
static av_cold int alac_decode_close(AVCodecContext *avctx) static av_cold int alac_decode_close(AVCodecContext *avctx)
@ -570,9 +489,10 @@ static av_cold int alac_decode_close(AVCodecContext *avctx)
ALACContext *alac = avctx->priv_data; ALACContext *alac = avctx->priv_data;
int ch; int ch;
for (ch = 0; ch < alac->numchannels; ch++) { for (ch = 0; ch < FFMIN(alac->channels, 2); ch++) {
av_freep(&alac->predicterror_buffer[ch]); av_freep(&alac->predict_error_buffer[ch]);
av_freep(&alac->outputsamples_buffer[ch]); if (alac->sample_size == 16)
av_freep(&alac->output_samples_buffer[ch]);
av_freep(&alac->extra_bits_buffer[ch]); av_freep(&alac->extra_bits_buffer[ch]);
} }
@ -582,14 +502,16 @@ static av_cold int alac_decode_close(AVCodecContext *avctx)
static int allocate_buffers(ALACContext *alac) static int allocate_buffers(ALACContext *alac)
{ {
int ch; int ch;
for (ch = 0; ch < alac->numchannels; ch++) { int buf_size = alac->max_samples_per_frame * sizeof(int32_t);
int buf_size = alac->setinfo_max_samples_per_frame * sizeof(int32_t);
FF_ALLOC_OR_GOTO(alac->avctx, alac->predicterror_buffer[ch], for (ch = 0; ch < FFMIN(alac->channels, 2); ch++) {
FF_ALLOC_OR_GOTO(alac->avctx, alac->predict_error_buffer[ch],
buf_size, buf_alloc_fail); buf_size, buf_alloc_fail);
FF_ALLOC_OR_GOTO(alac->avctx, alac->outputsamples_buffer[ch], if (alac->sample_size == 16) {
FF_ALLOC_OR_GOTO(alac->avctx, alac->output_samples_buffer[ch],
buf_size, buf_alloc_fail); buf_size, buf_alloc_fail);
}
FF_ALLOC_OR_GOTO(alac->avctx, alac->extra_bits_buffer[ch], FF_ALLOC_OR_GOTO(alac->avctx, alac->extra_bits_buffer[ch],
buf_size, buf_alloc_fail); buf_size, buf_alloc_fail);
@ -609,19 +531,18 @@ static int alac_set_info(ALACContext *alac)
bytestream2_skipu(&gb, 12); // size:4, alac:4, version:4 bytestream2_skipu(&gb, 12); // size:4, alac:4, version:4
/* buffer size / 2 ? */ alac->max_samples_per_frame = bytestream2_get_be32u(&gb);
alac->setinfo_max_samples_per_frame = bytestream2_get_be32u(&gb); if (!alac->max_samples_per_frame || alac->max_samples_per_frame > INT_MAX) {
if (alac->setinfo_max_samples_per_frame >= UINT_MAX/4){ av_log(alac->avctx, AV_LOG_ERROR, "max samples per frame invalid: %u\n",
av_log(alac->avctx, AV_LOG_ERROR, alac->max_samples_per_frame);
"setinfo_max_samples_per_frame too large\n");
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
bytestream2_skipu(&gb, 1); // compatible version bytestream2_skipu(&gb, 1); // compatible version
alac->setinfo_sample_size = bytestream2_get_byteu(&gb); alac->sample_size = bytestream2_get_byteu(&gb);
alac->setinfo_rice_historymult = bytestream2_get_byteu(&gb); alac->rice_history_mult = bytestream2_get_byteu(&gb);
alac->setinfo_rice_initialhistory = bytestream2_get_byteu(&gb); alac->rice_initial_history = bytestream2_get_byteu(&gb);
alac->setinfo_rice_kmodifier = bytestream2_get_byteu(&gb); alac->rice_limit = bytestream2_get_byteu(&gb);
alac->numchannels = bytestream2_get_byteu(&gb); alac->channels = bytestream2_get_byteu(&gb);
bytestream2_get_be16u(&gb); // maxRun bytestream2_get_be16u(&gb); // maxRun
bytestream2_get_be32u(&gb); // max coded frame size bytestream2_get_be32u(&gb); // max coded frame size
bytestream2_get_be32u(&gb); // average bitrate bytestream2_get_be32u(&gb); // average bitrate
@ -647,31 +568,32 @@ static av_cold int alac_decode_init(AVCodecContext * avctx)
return -1; return -1;
} }
switch (alac->setinfo_sample_size) { switch (alac->sample_size) {
case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16; case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
break; break;
case 32: case 24:
case 24: avctx->sample_fmt = AV_SAMPLE_FMT_S32; case 32: avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
break; break;
default: av_log_ask_for_sample(avctx, "Sample depth %d is not supported.\n", default: av_log_ask_for_sample(avctx, "Sample depth %d is not supported.\n",
alac->setinfo_sample_size); alac->sample_size);
return AVERROR_PATCHWELCOME; return AVERROR_PATCHWELCOME;
} }
if (alac->numchannels < 1) { if (alac->channels < 1) {
av_log(avctx, AV_LOG_WARNING, "Invalid channel count\n"); av_log(avctx, AV_LOG_WARNING, "Invalid channel count\n");
alac->numchannels = avctx->channels; alac->channels = avctx->channels;
} else { } else {
if (alac->numchannels > MAX_CHANNELS) if (alac->channels > MAX_CHANNELS)
alac->numchannels = avctx->channels; alac->channels = avctx->channels;
else else
avctx->channels = alac->numchannels; avctx->channels = alac->channels;
} }
if (avctx->channels > MAX_CHANNELS) { if (avctx->channels > MAX_CHANNELS) {
av_log(avctx, AV_LOG_ERROR, "Unsupported channel count: %d\n", av_log(avctx, AV_LOG_ERROR, "Unsupported channel count: %d\n",
avctx->channels); avctx->channels);
return AVERROR_PATCHWELCOME; return AVERROR_PATCHWELCOME;
} }
avctx->channel_layout = alac_channel_layouts[alac->channels - 1];
if ((ret = allocate_buffers(alac)) < 0) { if ((ret = allocate_buffers(alac)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error allocating buffers\n"); av_log(avctx, AV_LOG_ERROR, "Error allocating buffers\n");

@ -275,9 +275,8 @@ static int aiff_read_header(AVFormatContext *s)
avio_read(pb, st->codec->extradata, size); avio_read(pb, st->codec->extradata, size);
break; break;
case MKTAG('C','H','A','N'): case MKTAG('C','H','A','N'):
if (size < 12) if(ff_mov_read_chan(s, st, size) < 0)
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
ff_mov_read_chan(s, size, st->codec);
break; break;
default: /* Jump */ default: /* Jump */
if (size & 1) /* Always even aligned */ if (size & 1) /* Always even aligned */

@ -29,6 +29,7 @@
#include "internal.h" #include "internal.h"
#include "riff.h" #include "riff.h"
#include "isom.h" #include "isom.h"
#include "mov_chan.h"
#include "libavutil/intreadwrite.h" #include "libavutil/intreadwrite.h"
#include "libavutil/intfloat.h" #include "libavutil/intfloat.h"
#include "libavutil/dict.h" #include "libavutil/dict.h"
@ -122,27 +123,39 @@ static int read_kuki_chunk(AVFormatContext *s, int64_t size)
#define ALAC_PREAMBLE 12 #define ALAC_PREAMBLE 12
#define ALAC_HEADER 36 #define ALAC_HEADER 36
#define ALAC_NEW_KUKI 24 #define ALAC_NEW_KUKI 24
if (size == ALAC_NEW_KUKI) { uint8_t preamble[12];
st->codec->extradata = av_mallocz(ALAC_HEADER + FF_INPUT_BUFFER_PADDING_SIZE); if (size < ALAC_NEW_KUKI || size > ALAC_PREAMBLE + ALAC_HEADER) {
if (!st->codec->extradata)
return AVERROR(ENOMEM);
memcpy(st->codec->extradata, "\0\0\0\24alac", 8);
avio_read(pb, st->codec->extradata + ALAC_HEADER - ALAC_NEW_KUKI, ALAC_NEW_KUKI);
st->codec->extradata_size = ALAC_HEADER;
} else {
if (size < ALAC_PREAMBLE + ALAC_HEADER) {
av_log(s, AV_LOG_ERROR, "invalid ALAC magic cookie\n"); av_log(s, AV_LOG_ERROR, "invalid ALAC magic cookie\n");
avio_skip(pb, size); avio_skip(pb, size);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
avio_skip(pb, ALAC_PREAMBLE); avio_read(pb, preamble, ALAC_PREAMBLE);
st->codec->extradata = av_mallocz(ALAC_HEADER + FF_INPUT_BUFFER_PADDING_SIZE); st->codec->extradata = av_mallocz(ALAC_HEADER + FF_INPUT_BUFFER_PADDING_SIZE);
if (!st->codec->extradata) if (!st->codec->extradata)
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
/* For the old style cookie, we skip 12 bytes, then read 36 bytes.
* The new style cookie only contains the last 24 bytes of what was
* 36 bytes in the old style cookie, so we fabricate the first 12 bytes
* in that case to maintain compatibility. */
if (!memcmp(&preamble[4], "frmaalac", 8)) {
if (size < ALAC_PREAMBLE + ALAC_HEADER) {
av_log(s, AV_LOG_ERROR, "invalid ALAC magic cookie\n");
av_freep(&st->codec->extradata);
return AVERROR_INVALIDDATA;
}
avio_read(pb, st->codec->extradata, ALAC_HEADER); avio_read(pb, st->codec->extradata, ALAC_HEADER);
st->codec->extradata_size = ALAC_HEADER;
avio_skip(pb, size - ALAC_PREAMBLE - ALAC_HEADER); avio_skip(pb, size - ALAC_PREAMBLE - ALAC_HEADER);
} else {
AV_WB32(st->codec->extradata, 36);
memcpy(&st->codec->extradata[4], "alac", 4);
AV_WB32(&st->codec->extradata[8], 0);
memcpy(&st->codec->extradata[12], preamble, 12);
avio_read(pb, &st->codec->extradata[24], ALAC_NEW_KUKI - 12);
avio_skip(pb, size - ALAC_NEW_KUKI);
} }
st->codec->extradata_size = ALAC_HEADER;
} else { } else {
st->codec->extradata = av_mallocz(size + FF_INPUT_BUFFER_PADDING_SIZE); st->codec->extradata = av_mallocz(size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!st->codec->extradata) if (!st->codec->extradata)
@ -160,8 +173,8 @@ static int read_pakt_chunk(AVFormatContext *s, int64_t size)
AVIOContext *pb = s->pb; AVIOContext *pb = s->pb;
AVStream *st = s->streams[0]; AVStream *st = s->streams[0];
CaffContext *caf = s->priv_data; CaffContext *caf = s->priv_data;
int64_t pos = 0, ccount; int64_t pos = 0, ccount, num_packets;
int num_packets, i; int i;
ccount = avio_tell(pb); ccount = avio_tell(pb);
@ -180,10 +193,11 @@ static int read_pakt_chunk(AVFormatContext *s, int64_t size)
st->duration += caf->frames_per_packet ? caf->frames_per_packet : ff_mp4_read_descr_len(pb); st->duration += caf->frames_per_packet ? caf->frames_per_packet : ff_mp4_read_descr_len(pb);
} }
if (avio_tell(pb) - ccount != size) { if (avio_tell(pb) - ccount > size) {
av_log(s, AV_LOG_ERROR, "error reading packet table\n"); av_log(s, AV_LOG_ERROR, "error reading packet table\n");
return -1; return AVERROR_INVALIDDATA;
} }
avio_skip(pb, ccount + size - avio_tell(pb));
caf->num_bytes = pos; caf->num_bytes = pos;
return 0; return 0;
@ -253,6 +267,11 @@ static int read_header(AVFormatContext *s)
found_data = 1; found_data = 1;
break; break;
case MKBETAG('c','h','a','n'):
if ((ret = ff_mov_read_chan(s, st, size)) < 0)
return ret;
break;
/* magic cookie chunk */ /* magic cookie chunk */
case MKBETAG('k','u','k','i'): case MKBETAG('k','u','k','i'):
if (read_kuki_chunk(s, size)) if (read_kuki_chunk(s, size))
@ -269,12 +288,6 @@ static int read_header(AVFormatContext *s)
read_info_chunk(s, size); read_info_chunk(s, size);
break; break;
case MKBETAG('c','h','a','n'):
if (size < 12)
return AVERROR_INVALIDDATA;
ff_mov_read_chan(s, size, st->codec);
break;
default: default:
#define _(x) ((x) >= ' ' ? (x) : ' ') #define _(x) ((x) >= ' ' ? (x) : ' ')
av_log(s, AV_LOG_WARNING, "skipping CAF chunk: %08X (%c%c%c%c), size %"PRId64"\n", av_log(s, AV_LOG_WARNING, "skipping CAF chunk: %08X (%c%c%c%c), size %"PRId64"\n",

@ -499,25 +499,30 @@ static const MovChannelLayout mov_channel_layout[] = {
{ AV_CH_LAYOUT_4POINT0|AV_CH_LOW_FREQUENCY, (137<<16) | 5}, // kCAFChannelLayoutTag_DVD_11 { AV_CH_LAYOUT_4POINT0|AV_CH_LOW_FREQUENCY, (137<<16) | 5}, // kCAFChannelLayoutTag_DVD_11
{ 0, 0}, { 0, 0},
}; };
#if 0
void ff_mov_read_chan(AVFormatContext *s, int64_t size, AVCodecContext *codec) int ff_mov_read_chan(AVFormatContext *s, AVStream *st, int64_t size)
{ {
AVCodecContext *codec= st->codec;
uint32_t layout_tag; uint32_t layout_tag;
AVIOContext *pb = s->pb; AVIOContext *pb = s->pb;
const MovChannelLayout *layouts = mov_channel_layout; const MovChannelLayout *layouts = mov_channel_layout;
if (size < 12)
return AVERROR_INVALIDDATA;
layout_tag = avio_rb32(pb); layout_tag = avio_rb32(pb);
size -= 4; size -= 4;
if (layout_tag == 0) { // kCAFChannelLayoutTag_UseChannelDescriptions if (layout_tag == 0) { // kCAFChannelLayoutTag_UseChannelDescriptions
// Channel descriptions not implemented // Channel descriptions not implemented
av_log_ask_for_sample(s, "Unimplemented container channel layout.\n"); av_log_ask_for_sample(s, "Unimplemented container channel layout.\n");
avio_skip(pb, size); avio_skip(pb, size);
return; return 0;
} }
if (layout_tag == 0x10000) { // kCAFChannelLayoutTag_UseChannelBitmap if (layout_tag == 0x10000) { // kCAFChannelLayoutTag_UseChannelBitmap
codec->channel_layout = avio_rb32(pb); codec->channel_layout = avio_rb32(pb);
size -= 4; size -= 4;
avio_skip(pb, size); avio_skip(pb, size);
return; return 0;
} }
while (layouts->channel_layout) { while (layouts->channel_layout) {
if (layout_tag == layouts->layout_tag) { if (layout_tag == layouts->layout_tag) {
@ -529,7 +534,10 @@ void ff_mov_read_chan(AVFormatContext *s, int64_t size, AVCodecContext *codec)
if (!codec->channel_layout) if (!codec->channel_layout)
av_log(s, AV_LOG_WARNING, "Unknown container channel layout.\n"); av_log(s, AV_LOG_WARNING, "Unknown container channel layout.\n");
avio_skip(pb, size); avio_skip(pb, size);
return 0;
} }
#endif
void ff_mov_write_chan(AVIOContext *pb, int64_t channel_layout) void ff_mov_write_chan(AVIOContext *pb, int64_t channel_layout)
{ {

@ -197,7 +197,7 @@ int ff_mov_read_esds(AVFormatContext *fc, AVIOContext *pb, MOVAtom atom);
enum CodecID ff_mov_get_lpcm_codec_id(int bps, int flags); enum CodecID ff_mov_get_lpcm_codec_id(int bps, int flags);
int ff_mov_read_stsd_entries(MOVContext *c, AVIOContext *pb, int entries); int ff_mov_read_stsd_entries(MOVContext *c, AVIOContext *pb, int entries);
void ff_mov_read_chan(AVFormatContext *s, int64_t size, AVCodecContext *codec); int ff_mov_read_chan(AVFormatContext *s, AVStream *st, int64_t size);
void ff_mov_write_chan(AVIOContext *pb, int64_t channel_layout); void ff_mov_write_chan(AVIOContext *pb, int64_t channel_layout);
#endif /* AVFORMAT_ISOM_H */ #endif /* AVFORMAT_ISOM_H */

@ -597,10 +597,6 @@ static int mov_read_dec3(MOVContext *c, AVIOContext *pb, MOVAtom atom)
static int mov_read_chan(MOVContext *c, AVIOContext *pb, MOVAtom atom) static int mov_read_chan(MOVContext *c, AVIOContext *pb, MOVAtom atom)
{ {
AVStream *st; AVStream *st;
uint8_t av_unused version;
uint32_t av_unused flags;
uint32_t layout_tag, bitmap, num_descr, label_mask;
int i;
if (c->fc->nb_streams < 1) if (c->fc->nb_streams < 1)
return 0; return 0;
@ -609,40 +605,7 @@ static int mov_read_chan(MOVContext *c, AVIOContext *pb, MOVAtom atom)
if (atom.size < 16) if (atom.size < 16)
return 0; return 0;
version = avio_r8(pb); ff_mov_read_chan(c->fc, st, atom.size - 4);
flags = avio_rb24(pb);
layout_tag = avio_rb32(pb);
bitmap = avio_rb32(pb);
num_descr = avio_rb32(pb);
if (atom.size < 16ULL + num_descr * 20ULL)
return 0;
av_dlog(c->fc, "chan: size=%" PRId64 " version=%u flags=%u layout=%u bitmap=%u num_descr=%u\n",
atom.size, version, flags, layout_tag, bitmap, num_descr);
label_mask = 0;
for (i = 0; i < num_descr; i++) {
uint32_t label;
label = avio_rb32(pb); // mChannelLabel
avio_rb32(pb); // mChannelFlags
avio_rl32(pb); // mCoordinates[0]
avio_rl32(pb); // mCoordinates[1]
avio_rl32(pb); // mCoordinates[2]
if (layout_tag == 0) {
uint32_t mask_incr = ff_mov_get_channel_label(label);
if (mask_incr == 0) {
label_mask = 0;
break;
}
label_mask |= mask_incr;
}
}
if (layout_tag == 0)
st->codec->channel_layout = label_mask;
else
st->codec->channel_layout = ff_mov_get_channel_layout(layout_tag, bitmap);
return 0; return 0;
} }
@ -2556,7 +2519,7 @@ static int mov_read_chan2(MOVContext *c, AVIOContext *pb, MOVAtom atom)
if (atom.size < 16) if (atom.size < 16)
return 0; return 0;
avio_skip(pb, 4); avio_skip(pb, 4);
ff_mov_read_chan(c->fc, atom.size - 4, c->fc->streams[0]->codec); ff_mov_read_chan(c->fc,c->fc->streams[0], atom.size - 4);
return 0; return 0;
} }

@ -477,7 +477,7 @@ uint64_t ff_mov_get_channel_layout(uint32_t tag, uint32_t bitmap)
return layout_map[i].layout; return layout_map[i].layout;
} }
uint32_t ff_mov_get_channel_label(uint32_t label) static uint32_t mov_get_channel_label(uint32_t label)
{ {
if (label == 0) if (label == 0)
return 0; return 0;
@ -542,3 +542,47 @@ uint32_t ff_mov_get_channel_layout_tag(enum CodecID codec_id,
return tag; return tag;
} }
int ff_mov_read_chan(AVFormatContext *s, AVStream *st, int64_t size)
{
AVIOContext *pb = s->pb;
uint32_t layout_tag, bitmap, num_descr, label_mask;
int i;
if (size < 12)
return AVERROR_INVALIDDATA;
layout_tag = avio_rb32(pb);
bitmap = avio_rb32(pb);
num_descr = avio_rb32(pb);
av_dlog(s, "chan: layout=%u bitmap=%u num_descr=%u\n",
layout_tag, bitmap, num_descr);
if (size < 12ULL + num_descr * 20ULL)
return 0;
label_mask = 0;
for (i = 0; i < num_descr; i++) {
uint32_t label;
label = avio_rb32(pb); // mChannelLabel
avio_rb32(pb); // mChannelFlags
avio_rl32(pb); // mCoordinates[0]
avio_rl32(pb); // mCoordinates[1]
avio_rl32(pb); // mCoordinates[2]
if (layout_tag == 0) {
uint32_t mask_incr = mov_get_channel_label(label);
if (mask_incr == 0) {
label_mask = 0;
break;
}
label_mask |= mask_incr;
}
}
if (layout_tag == 0)
st->codec->channel_layout = label_mask;
else
st->codec->channel_layout = ff_mov_get_channel_layout(layout_tag, bitmap);
return 0;
}

@ -29,6 +29,7 @@
#include <stdint.h> #include <stdint.h>
#include "libavcodec/avcodec.h" #include "libavcodec/avcodec.h"
#include "avformat.h"
/** /**
* Get the channel layout for the specified channel layout tag. * Get the channel layout for the specified channel layout tag.
@ -39,14 +40,6 @@
*/ */
uint64_t ff_mov_get_channel_layout(uint32_t tag, uint32_t bitmap); uint64_t ff_mov_get_channel_layout(uint32_t tag, uint32_t bitmap);
/**
* Get the channel layout for the specified channel label.
*
* @param[in] label channel label
* @return channel layout mask fragment
*/
uint32_t ff_mov_get_channel_label(uint32_t label);
/** /**
* Get the channel layout tag for the specified codec id and channel layout. * Get the channel layout tag for the specified codec id and channel layout.
* If the layout tag was not found, use a channel bitmap if possible. * If the layout tag was not found, use a channel bitmap if possible.
@ -60,4 +53,14 @@ uint32_t ff_mov_get_channel_layout_tag(enum CodecID codec_id,
uint64_t channel_layout, uint64_t channel_layout,
uint32_t *bitmap); uint32_t *bitmap);
/**
* Read 'chan' tag from the input stream.
*
* @param s AVFormatContext
* @param st The stream to set codec values for
* @param size Remaining size in the 'chan' tag
* @return 0 if ok, or negative AVERROR code on failure
*/
int ff_mov_read_chan(AVFormatContext *s, AVStream *st, int64_t size);
#endif /* AVFORMAT_MOV_CHAN_H */ #endif /* AVFORMAT_MOV_CHAN_H */

Loading…
Cancel
Save