|
|
@ -84,6 +84,7 @@ static const AVOption v360_options[] = { |
|
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "in" }, |
|
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "in" }, |
|
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "in" }, |
|
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "in" }, |
|
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "in" }, |
|
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "in" }, |
|
|
|
|
|
|
|
{"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, "in" }, |
|
|
|
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" }, |
|
|
|
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" }, |
|
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
@ -114,6 +115,7 @@ static const AVOption v360_options[] = { |
|
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, "out" }, |
|
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "out" }, |
|
|
|
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, "out" }, |
|
|
|
|
|
|
|
{"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, "out" }, |
|
|
|
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" }, |
|
|
|
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" }, |
|
|
|
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, |
|
|
|
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, |
|
|
|
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, |
|
|
|
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, |
|
|
@ -3136,6 +3138,116 @@ static int xyz_to_cylindrical(const V360Context *s, |
|
|
|
return visible; |
|
|
|
return visible; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Prepare data for processing cylindrical equal area output format. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* @param ctx filter context |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* @return error code |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
static int prepare_cylindricalea_out(AVFilterContext *ctx) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
V360Context *s = ctx->priv; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s->flat_range[0] = s->h_fov * M_PI / 360.f; |
|
|
|
|
|
|
|
s->flat_range[1] = s->v_fov / 180.f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Prepare data for processing cylindrical equal area input format. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* @param ctx filter context |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* @return error code |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
static int prepare_cylindricalea_in(AVFilterContext *ctx) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
V360Context *s = ctx->priv; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s->iflat_range[0] = M_PI * s->ih_fov / 360.f; |
|
|
|
|
|
|
|
s->iflat_range[1] = s->iv_fov / 180.f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in cylindrical equal area format. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* @param s filter private context |
|
|
|
|
|
|
|
* @param i horizontal position on frame [0, width) |
|
|
|
|
|
|
|
* @param j vertical position on frame [0, height) |
|
|
|
|
|
|
|
* @param width frame width |
|
|
|
|
|
|
|
* @param height frame height |
|
|
|
|
|
|
|
* @param vec coordinates on sphere |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
static int cylindricalea_to_xyz(const V360Context *s, |
|
|
|
|
|
|
|
int i, int j, int width, int height, |
|
|
|
|
|
|
|
float *vec) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
const float uf = s->flat_range[0] * ((2.f * i + 1.f) / width - 1.f); |
|
|
|
|
|
|
|
const float vf = s->flat_range[1] * ((2.f * j + 1.f) / height - 1.f); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const float phi = uf; |
|
|
|
|
|
|
|
const float theta = asinf(vf); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const float sin_phi = sinf(phi); |
|
|
|
|
|
|
|
const float cos_phi = cosf(phi); |
|
|
|
|
|
|
|
const float sin_theta = sinf(theta); |
|
|
|
|
|
|
|
const float cos_theta = cosf(theta); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vec[0] = cos_theta * sin_phi; |
|
|
|
|
|
|
|
vec[1] = sin_theta; |
|
|
|
|
|
|
|
vec[2] = cos_theta * cos_phi; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
normalize_vector(vec); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 1; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Calculate frame position in cylindrical equal area format for corresponding 3D coordinates on sphere. |
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
* @param s filter private context |
|
|
|
|
|
|
|
* @param vec coordinates on sphere |
|
|
|
|
|
|
|
* @param width frame width |
|
|
|
|
|
|
|
* @param height frame height |
|
|
|
|
|
|
|
* @param us horizontal coordinates for interpolation window |
|
|
|
|
|
|
|
* @param vs vertical coordinates for interpolation window |
|
|
|
|
|
|
|
* @param du horizontal relative coordinate |
|
|
|
|
|
|
|
* @param dv vertical relative coordinate |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
static int xyz_to_cylindricalea(const V360Context *s, |
|
|
|
|
|
|
|
const float *vec, int width, int height, |
|
|
|
|
|
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0]; |
|
|
|
|
|
|
|
const float theta = asinf(vec[1]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const float uf = (phi + 1.f) * (width - 1) / 2.f; |
|
|
|
|
|
|
|
const float vf = (sinf(theta) / s->iflat_range[1] + 1.f) * height / 2.f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int ui = floorf(uf); |
|
|
|
|
|
|
|
const int vi = floorf(vf); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && |
|
|
|
|
|
|
|
theta <= M_PI * s->iv_fov / 180.f && |
|
|
|
|
|
|
|
theta >= -M_PI * s->iv_fov / 180.f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*du = uf - ui; |
|
|
|
|
|
|
|
*dv = vf - vi; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++) { |
|
|
|
|
|
|
|
for (int j = 0; j < 4; j++) { |
|
|
|
|
|
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
|
|
|
|
|
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return visible; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
/**
|
|
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in perspective format. |
|
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in perspective format. |
|
|
|
* |
|
|
|
* |
|
|
@ -4448,6 +4560,12 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
wf = w; |
|
|
|
wf = w; |
|
|
|
hf = h * 2.f; |
|
|
|
hf = h * 2.f; |
|
|
|
break; |
|
|
|
break; |
|
|
|
|
|
|
|
case CYLINDRICALEA: |
|
|
|
|
|
|
|
s->in_transform = xyz_to_cylindricalea; |
|
|
|
|
|
|
|
err = prepare_cylindricalea_in(ctx); |
|
|
|
|
|
|
|
wf = w; |
|
|
|
|
|
|
|
hf = h; |
|
|
|
|
|
|
|
break; |
|
|
|
case TETRAHEDRON: |
|
|
|
case TETRAHEDRON: |
|
|
|
s->in_transform = xyz_to_tetrahedron; |
|
|
|
s->in_transform = xyz_to_tetrahedron; |
|
|
|
err = 0; |
|
|
|
err = 0; |
|
|
@ -4596,6 +4714,12 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
w = lrintf(wf); |
|
|
|
w = lrintf(wf); |
|
|
|
h = lrintf(hf * 0.5f); |
|
|
|
h = lrintf(hf * 0.5f); |
|
|
|
break; |
|
|
|
break; |
|
|
|
|
|
|
|
case CYLINDRICALEA: |
|
|
|
|
|
|
|
s->out_transform = cylindricalea_to_xyz; |
|
|
|
|
|
|
|
prepare_out = prepare_cylindricalea_out; |
|
|
|
|
|
|
|
w = lrintf(wf); |
|
|
|
|
|
|
|
h = lrintf(hf); |
|
|
|
|
|
|
|
break; |
|
|
|
case PERSPECTIVE: |
|
|
|
case PERSPECTIVE: |
|
|
|
s->out_transform = perspective_to_xyz; |
|
|
|
s->out_transform = perspective_to_xyz; |
|
|
|
prepare_out = NULL; |
|
|
|
prepare_out = NULL; |
|
|
|