avfilter/f_ebur128: add support for any number of channels

release/5.1
Paul B Mahol 3 years ago
parent 01440e2588
commit df98e8e4b4
  1. 38
      libavfilter/f_ebur128.c

@ -42,8 +42,6 @@
#include "formats.h" #include "formats.h"
#include "internal.h" #include "internal.h"
#define MAX_CHANNELS 63
#define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
#define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum) #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
#define HIST_GRAIN 100 ///< defines histogram precision #define HIST_GRAIN 100 ///< defines histogram precision
@ -63,10 +61,10 @@ struct hist_entry {
}; };
struct integrator { struct integrator {
double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms) double **cache; ///< window of filtered samples (N ms)
int cache_pos; ///< focus on the last added bin in the cache array int cache_pos; ///< focus on the last added bin in the cache array
int cache_size; int cache_size;
double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content) double *sum; ///< sum of the last N ms filtered samples (cache content)
int filled; ///< 1 if the cache is completely filled, 0 otherwise int filled; ///< 1 if the cache is completely filled, 0 otherwise
double rel_threshold; ///< relative threshold double rel_threshold; ///< relative threshold
double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
@ -111,9 +109,9 @@ typedef struct EBUR128Context {
/* Filter caches. /* Filter caches.
* The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */ * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel double *x; ///< 3 input samples cache for each channel
double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel double *y; ///< 3 pre-filter samples cache for each channel
double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel double *z; ///< 3 RLB-filter samples cache for each channel
double pre_b[3]; ///< pre-filter numerator coefficients double pre_b[3]; ///< pre-filter numerator coefficients
double pre_a[3]; ///< pre-filter denominator coefficients double pre_a[3]; ///< pre-filter denominator coefficients
double rlb_b[3]; ///< rlb-filter numerator coefficients double rlb_b[3]; ///< rlb-filter numerator coefficients
@ -430,13 +428,24 @@ static int config_audio_output(AVFilterLink *outlink)
AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT) AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
ebur128->nb_channels = nb_channels; ebur128->nb_channels = nb_channels;
ebur128->x = av_calloc(nb_channels, 3 * sizeof(*ebur128->x));
ebur128->y = av_calloc(nb_channels, 3 * sizeof(*ebur128->y));
ebur128->z = av_calloc(nb_channels, 3 * sizeof(*ebur128->z));
ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting)); ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
if (!ebur128->ch_weighting) if (!ebur128->ch_weighting || !ebur128->x || !ebur128->y || !ebur128->z)
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
#define I400_BINS(x) ((x) * 4 / 10) #define I400_BINS(x) ((x) * 4 / 10)
#define I3000_BINS(x) ((x) * 3) #define I3000_BINS(x) ((x) * 3)
ebur128->i400.sum = av_calloc(nb_channels, sizeof(*ebur128->i400.sum));
ebur128->i3000.sum = av_calloc(nb_channels, sizeof(*ebur128->i3000.sum));
ebur128->i400.cache = av_calloc(nb_channels, sizeof(*ebur128->i400.cache));
ebur128->i3000.cache = av_calloc(nb_channels, sizeof(*ebur128->i3000.cache));
if (!ebur128->i400.sum || !ebur128->i3000.sum ||
!ebur128->i400.cache || !ebur128->i3000.cache)
return AVERROR(ENOMEM);
for (i = 0; i < nb_channels; i++) { for (i = 0; i < nb_channels; i++) {
/* channel weighting */ /* channel weighting */
const uint64_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i); const uint64_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
@ -993,16 +1002,25 @@ static av_cold void uninit(AVFilterContext *ctx)
av_log(ctx, AV_LOG_INFO, "\n"); av_log(ctx, AV_LOG_INFO, "\n");
av_freep(&ebur128->y_line_ref); av_freep(&ebur128->y_line_ref);
av_freep(&ebur128->x);
av_freep(&ebur128->y);
av_freep(&ebur128->z);
av_freep(&ebur128->ch_weighting); av_freep(&ebur128->ch_weighting);
av_freep(&ebur128->true_peaks); av_freep(&ebur128->true_peaks);
av_freep(&ebur128->sample_peaks); av_freep(&ebur128->sample_peaks);
av_freep(&ebur128->true_peaks_per_frame); av_freep(&ebur128->true_peaks_per_frame);
av_freep(&ebur128->i400.sum);
av_freep(&ebur128->i3000.sum);
av_freep(&ebur128->i400.histogram); av_freep(&ebur128->i400.histogram);
av_freep(&ebur128->i3000.histogram); av_freep(&ebur128->i3000.histogram);
for (i = 0; i < ebur128->nb_channels; i++) { for (i = 0; i < ebur128->nb_channels; i++) {
av_freep(&ebur128->i400.cache[i]); if (ebur128->i400.cache)
av_freep(&ebur128->i3000.cache[i]); av_freep(&ebur128->i400.cache[i]);
if (ebur128->i3000.cache)
av_freep(&ebur128->i3000.cache[i]);
} }
av_freep(&ebur128->i400.cache);
av_freep(&ebur128->i3000.cache);
av_frame_free(&ebur128->outpicref); av_frame_free(&ebur128->outpicref);
#if CONFIG_SWRESAMPLE #if CONFIG_SWRESAMPLE
av_freep(&ebur128->swr_buf); av_freep(&ebur128->swr_buf);

Loading…
Cancel
Save