render by the slice rather than the plane

Originally committed as revision 4290 to svn://svn.ffmpeg.org/ffmpeg/trunk
pull/126/head
Mike Melanson 20 years ago
parent d57b7316c5
commit dc4b78d9dd
  1. 260
      libavcodec/vp3.c

@ -2143,6 +2143,248 @@ static void reverse_dc_prediction(Vp3DecodeContext *s,
} }
} }
/*
* Perform the final rendering for a particular slice of data.
* The slice number ranges from 0..(macroblock_height - 1).
*/
static void render_slice(Vp3DecodeContext *s, int slice)
{
int x, y;
int m, n;
int i; /* indicates current fragment */
int16_t *dequantizer;
DCTELEM __align16 block[64];
unsigned char *output_plane;
unsigned char *last_plane;
unsigned char *golden_plane;
int stride;
int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
int upper_motion_limit, lower_motion_limit;
int motion_halfpel_index;
uint8_t *motion_source;
int plane;
int plane_width;
int plane_height;
int slice_height;
int current_macroblock_entry = slice * s->macroblock_width * 6;
if (slice >= s->macroblock_height)
return;
for (plane = 0; plane < 3; plane++) {
/* set up plane-specific parameters */
if (plane == 0) {
output_plane = s->current_frame.data[0];
last_plane = s->last_frame.data[0];
golden_plane = s->golden_frame.data[0];
stride = s->current_frame.linesize[0];
if (!s->flipped_image) stride = -stride;
upper_motion_limit = 7 * s->current_frame.linesize[0];
lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
y = slice * FRAGMENT_PIXELS * 2;
plane_width = s->width;
plane_height = s->height;
slice_height = y + FRAGMENT_PIXELS * 2;
i = s->macroblock_fragments[current_macroblock_entry + 0];
} else if (plane == 1) {
output_plane = s->current_frame.data[1];
last_plane = s->last_frame.data[1];
golden_plane = s->golden_frame.data[1];
stride = s->current_frame.linesize[1];
if (!s->flipped_image) stride = -stride;
upper_motion_limit = 7 * s->current_frame.linesize[1];
lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
y = slice * FRAGMENT_PIXELS;
plane_width = s->width / 2;
plane_height = s->height / 2;
slice_height = y + FRAGMENT_PIXELS;
i = s->macroblock_fragments[current_macroblock_entry + 4];
} else {
output_plane = s->current_frame.data[2];
last_plane = s->last_frame.data[2];
golden_plane = s->golden_frame.data[2];
stride = s->current_frame.linesize[2];
if (!s->flipped_image) stride = -stride;
upper_motion_limit = 7 * s->current_frame.linesize[2];
lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
y = slice * FRAGMENT_PIXELS;
plane_width = s->width / 2;
plane_height = s->height / 2;
slice_height = y + FRAGMENT_PIXELS;
i = s->macroblock_fragments[current_macroblock_entry + 5];
}
if(ABS(stride) > 2048)
return; //various tables are fixed size
/* for each fragment row in the slice (both of them)... */
for (; y < slice_height; y += 8) {
/* for each fragment in a row... */
for (x = 0; x < plane_width; x += 8, i++) {
if ((i < 0) || (i >= s->fragment_count)) {
av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
return;
}
/* transform if this block was coded */
if ((s->all_fragments[i].coding_method != MODE_COPY) &&
!((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
(s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
motion_source= golden_plane;
else
motion_source= last_plane;
motion_source += s->all_fragments[i].first_pixel;
motion_halfpel_index = 0;
/* sort out the motion vector if this fragment is coded
* using a motion vector method */
if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
(s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
int src_x, src_y;
motion_x = s->all_fragments[i].motion_x;
motion_y = s->all_fragments[i].motion_y;
if(plane){
motion_x= (motion_x>>1) | (motion_x&1);
motion_y= (motion_y>>1) | (motion_y&1);
}
src_x= (motion_x>>1) + x;
src_y= (motion_y>>1) + y;
if ((motion_x == 127) || (motion_y == 127))
av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
motion_halfpel_index = motion_x & 0x01;
motion_source += (motion_x >> 1);
motion_halfpel_index |= (motion_y & 0x01) << 1;
motion_source += ((motion_y >> 1) * stride);
if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
uint8_t *temp= s->edge_emu_buffer;
if(stride<0) temp -= 9*stride;
else temp += 9*stride;
ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
motion_source= temp;
}
}
/* first, take care of copying a block from either the
* previous or the golden frame */
if (s->all_fragments[i].coding_method != MODE_INTRA) {
/* Note, it is possible to implement all MC cases with
put_no_rnd_pixels_l2 which would look more like the
VP3 source but this would be slower as
put_no_rnd_pixels_tab is better optimzed */
if(motion_halfpel_index != 3){
s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
output_plane + s->all_fragments[i].first_pixel,
motion_source, stride, 8);
}else{
int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
s->dsp.put_no_rnd_pixels_l2[1](
output_plane + s->all_fragments[i].first_pixel,
motion_source - d,
motion_source + stride + 1 + d,
stride, 8);
}
dequantizer = s->inter_dequant;
}else{
if (plane == 0)
dequantizer = s->intra_y_dequant;
else
dequantizer = s->intra_c_dequant;
}
/* dequantize the DCT coefficients */
debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
i, s->all_fragments[i].coding_method,
DC_COEFF(i), dequantizer[0]);
if(s->avctx->idct_algo==FF_IDCT_VP3){
Coeff *coeff= s->coeffs + i;
memset(block, 0, sizeof(block));
while(coeff->next){
block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
coeff= coeff->next;
}
}else{
Coeff *coeff= s->coeffs + i;
memset(block, 0, sizeof(block));
while(coeff->next){
block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
coeff= coeff->next;
}
}
/* invert DCT and place (or add) in final output */
if (s->all_fragments[i].coding_method == MODE_INTRA) {
if(s->avctx->idct_algo!=FF_IDCT_VP3)
block[0] += 128<<3;
s->dsp.idct_put(
output_plane + s->all_fragments[i].first_pixel,
stride,
block);
} else {
s->dsp.idct_add(
output_plane + s->all_fragments[i].first_pixel,
stride,
block);
}
debug_idct("block after idct_%s():\n",
(s->all_fragments[i].coding_method == MODE_INTRA)?
"put" : "add");
for (m = 0; m < 8; m++) {
for (n = 0; n < 8; n++) {
debug_idct(" %3d", *(output_plane +
s->all_fragments[i].first_pixel + (m * stride + n)));
}
debug_idct("\n");
}
debug_idct("\n");
} else {
/* copy directly from the previous frame */
s->dsp.put_pixels_tab[1][0](
output_plane + s->all_fragments[i].first_pixel,
last_plane + s->all_fragments[i].first_pixel,
stride, 8);
}
}
}
}
/* future loop filter logic goes here... */
/* algorithm:
* if (slice != 0)
* run filter on 1st row of Y slice
* run filter on U slice
* run filter on V slice
* run filter on 2nd row of Y slice
*/
/* this looks like a good place for slice dispatch... */
/* algorithm:
* if (slice > 0)
* dispatch (slice - 1);
* if (slice == s->macroblock_height - 1)
* dispatch (slice); // handle last slice
*/
emms_c();
}
/* /*
* This function performs the final rendering of each fragment's data * This function performs the final rendering of each fragment's data
* onto the output frame. * onto the output frame.
@ -2774,6 +3016,7 @@ static int vp3_decode_frame(AVCodecContext *avctx,
Vp3DecodeContext *s = avctx->priv_data; Vp3DecodeContext *s = avctx->priv_data;
GetBitContext gb; GetBitContext gb;
static int counter = 0; static int counter = 0;
int i;
init_get_bits(&gb, buf, buf_size * 8); init_get_bits(&gb, buf, buf_size * 8);
@ -2917,22 +3160,29 @@ if (!s->keyframe) {
{START_TIMER {START_TIMER
reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height); reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
STOP_TIMER("reverse_dc_prediction")}
{START_TIMER
render_fragments(s, 0, s->width, s->height, 0);
STOP_TIMER("render_fragments")}
if ((avctx->flags & CODEC_FLAG_GRAY) == 0) { if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
reverse_dc_prediction(s, s->u_fragment_start, reverse_dc_prediction(s, s->u_fragment_start,
s->fragment_width / 2, s->fragment_height / 2); s->fragment_width / 2, s->fragment_height / 2);
reverse_dc_prediction(s, s->v_fragment_start, reverse_dc_prediction(s, s->v_fragment_start,
s->fragment_width / 2, s->fragment_height / 2); s->fragment_width / 2, s->fragment_height / 2);
}
STOP_TIMER("reverse_dc_prediction")}
{START_TIMER
#if 1
for (i = 0; i < s->macroblock_height; i++)
render_slice(s, i);
#else
render_fragments(s, 0, s->width, s->height, 0);
if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1); render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2); render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
} else { } else {
memset(s->current_frame.data[1], 0x80, s->width * s->height / 4); memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
memset(s->current_frame.data[2], 0x80, s->width * s->height / 4); memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
} }
#endif
STOP_TIMER("render_fragments")}
{START_TIMER {START_TIMER
apply_loop_filter(s); apply_loop_filter(s);

Loading…
Cancel
Save