Merge remote-tracking branch 'mans/ac3'

* mans/ac3:
  ac3enc: slightly faster quantize_mantissas_blk_ch()
  ac3enc: NEON optimised sum_square_butterfly_float
  ac3enc: neon optimised sum_square_butterfly_int32
  ac3enc: move inner loop of compute_rematrixing_strategy to ac3dsp

Conflicts:
	libavcodec/ac3enc_template.c

Merged-by: Michael Niedermayer <michaelni@gmx.at>
pull/2/head
Michael Niedermayer 13 years ago
commit d8cae42d72
  1. 45
      libavcodec/ac3dsp.c
  2. 6
      libavcodec/ac3dsp.h
  3. 11
      libavcodec/ac3enc.c
  4. 6
      libavcodec/ac3enc_fixed.c
  5. 6
      libavcodec/ac3enc_float.c
  6. 19
      libavcodec/ac3enc_template.c
  7. 10
      libavcodec/arm/ac3dsp_init_arm.c
  8. 44
      libavcodec/arm/ac3dsp_neon.S

@ -23,6 +23,7 @@
#include "avcodec.h"
#include "ac3.h"
#include "ac3dsp.h"
#include "mathops.h"
static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
{
@ -169,6 +170,48 @@ static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
}
}
static void ac3_sum_square_butterfly_int32_c(int64_t sum[4],
const int32_t *coef0,
const int32_t *coef1,
int len)
{
int i;
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for (i = 0; i < len; i++) {
int lt = coef0[i];
int rt = coef1[i];
int md = lt + rt;
int sd = lt - rt;
MAC64(sum[0], lt, lt);
MAC64(sum[1], rt, rt);
MAC64(sum[2], md, md);
MAC64(sum[3], sd, sd);
}
}
static void ac3_sum_square_butterfly_float_c(float sum[4],
const float *coef0,
const float *coef1,
int len)
{
int i;
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for (i = 0; i < len; i++) {
float lt = coef0[i];
float rt = coef1[i];
float md = lt + rt;
float sd = lt - rt;
sum[0] += lt * lt;
sum[1] += rt * rt;
sum[2] += md * md;
sum[3] += sd * sd;
}
}
av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
{
c->ac3_exponent_min = ac3_exponent_min_c;
@ -180,6 +223,8 @@ av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
c->update_bap_counts = ac3_update_bap_counts_c;
c->compute_mantissa_size = ac3_compute_mantissa_size_c;
c->extract_exponents = ac3_extract_exponents_c;
c->sum_square_butterfly_int32 = ac3_sum_square_butterfly_int32_c;
c->sum_square_butterfly_float = ac3_sum_square_butterfly_float_c;
if (ARCH_ARM)
ff_ac3dsp_init_arm(c, bit_exact);

@ -125,6 +125,12 @@ typedef struct AC3DSPContext {
int (*compute_mantissa_size)(uint16_t mant_cnt[6][16]);
void (*extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs);
void (*sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0,
const int32_t *coef1, int len);
void (*sum_square_butterfly_float)(float sum[4], const float *coef0,
const float *coef1, int len);
} AC3DSPContext;
void ff_ac3dsp_init (AC3DSPContext *c, int bit_exact);

@ -1163,14 +1163,11 @@ static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
int i;
for (i = start_freq; i < end_freq; i++) {
int v;
int c = fixed_coef[i];
int e = exp[i];
int b = bap[i];
switch (b) {
case 0:
v = 0;
break;
int v = bap[i];
if (v)
switch (v) {
case 1:
v = sym_quant(c, e, 3);
switch (s->mant1_cnt) {
@ -1239,7 +1236,7 @@ static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
v = asym_quant(c, e, 16);
break;
default:
v = asym_quant(c, e, b - 1);
v = asym_quant(c, e, v - 1);
break;
}
qmant[i] = v;

@ -103,6 +103,12 @@ static void scale_coefficients(AC3EncodeContext *s)
}
}
static void sum_square_butterfly(AC3EncodeContext *s, int64_t sum[4],
const int32_t *coef0, const int32_t *coef1,
int len)
{
s->ac3dsp.sum_square_butterfly_int32(sum, coef0, coef1, len);
}
/**
* Clip MDCT coefficients to allowable range.

@ -110,6 +110,12 @@ static void scale_coefficients(AC3EncodeContext *s)
chan_size * (s->channels + cpl));
}
static void sum_square_butterfly(AC3EncodeContext *s, float sum[4],
const float *coef0, const float *coef1,
int len)
{
s->ac3dsp.sum_square_butterfly_float(sum, coef0, coef1, len);
}
/**
* Clip MDCT coefficients to allowable range.

@ -43,6 +43,9 @@ static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len)
static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
static void sum_square_butterfly(AC3EncodeContext *s, CoefSumType sum[4],
const CoefType *coef0, const CoefType *coef1,
int len);
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
{
@ -334,7 +337,7 @@ static void apply_channel_coupling(AC3EncodeContext *s)
static void compute_rematrixing_strategy(AC3EncodeContext *s)
{
int nb_coefs;
int blk, bnd, i;
int blk, bnd;
AC3Block *block, *av_uninit(block0);
if (s->channel_mode != AC3_CHMODE_STEREO)
@ -362,17 +365,9 @@ static void compute_rematrixing_strategy(AC3EncodeContext *s)
/* calculate calculate sum of squared coeffs for one band in one block */
int start = ff_ac3_rematrix_band_tab[bnd];
int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
CoefSumType sum[4] = {0,};
for (i = start; i < end; i++) {
CoefType lt = block->mdct_coef[1][i];
CoefType rt = block->mdct_coef[2][i];
CoefType md = lt + rt;
CoefType sd = lt - rt;
MAC_COEF(sum[0], lt, lt);
MAC_COEF(sum[1], rt, rt);
MAC_COEF(sum[2], md, md);
MAC_COEF(sum[3], sd, sd);
}
CoefSumType sum[4];
sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
block->mdct_coef[2] + start, end - start);
/* compare sums to determine if rematrixing will be used for this band */
if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))

@ -29,6 +29,14 @@ void ff_ac3_lshift_int16_neon(int16_t *src, unsigned len, unsigned shift);
void ff_ac3_rshift_int32_neon(int32_t *src, unsigned len, unsigned shift);
void ff_float_to_fixed24_neon(int32_t *dst, const float *src, unsigned int len);
void ff_ac3_extract_exponents_neon(uint8_t *exp, int32_t *coef, int nb_coefs);
void ff_ac3_sum_square_butterfly_int32_neon(int64_t sum[4],
const int32_t *coef0,
const int32_t *coef1,
int len);
void ff_ac3_sum_square_butterfly_float_neon(float sum[4],
const float *coef0,
const float *coef1,
int len);
void ff_ac3_bit_alloc_calc_bap_armv6(int16_t *mask, int16_t *psd,
int start, int end,
@ -52,5 +60,7 @@ av_cold void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact)
c->ac3_rshift_int32 = ff_ac3_rshift_int32_neon;
c->float_to_fixed24 = ff_float_to_fixed24_neon;
c->extract_exponents = ff_ac3_extract_exponents_neon;
c->sum_square_butterfly_int32 = ff_ac3_sum_square_butterfly_int32_neon;
c->sum_square_butterfly_float = ff_ac3_sum_square_butterfly_float_neon;
}
}

@ -108,3 +108,47 @@ function ff_ac3_extract_exponents_neon, export=1
bgt 1b
bx lr
endfunc
function ff_ac3_sum_square_butterfly_int32_neon, export=1
vmov.i64 q0, #0
vmov.i64 q1, #0
vmov.i64 q2, #0
vmov.i64 q3, #0
1:
vld1.32 {d16}, [r1]!
vld1.32 {d17}, [r2]!
vadd.s32 d18, d16, d17
vsub.s32 d19, d16, d17
vmlal.s32 q0, d16, d16
vmlal.s32 q1, d17, d17
vmlal.s32 q2, d18, d18
vmlal.s32 q3, d19, d19
subs r3, r3, #2
bgt 1b
vadd.s64 d0, d0, d1
vadd.s64 d1, d2, d3
vadd.s64 d2, d4, d5
vadd.s64 d3, d6, d7
vst1.64 {q0-q1}, [r0]
bx lr
endfunc
function ff_ac3_sum_square_butterfly_float_neon, export=1
vmov.f32 q0, #0.0
vmov.f32 q1, #0.0
1:
vld1.32 {d16}, [r1]!
vld1.32 {d17}, [r2]!
vadd.f32 d18, d16, d17
vsub.f32 d19, d16, d17
vmla.f32 d0, d16, d16
vmla.f32 d1, d17, d17
vmla.f32 d2, d18, d18
vmla.f32 d3, d19, d19
subs r3, r3, #2
bgt 1b
vpadd.f32 d0, d0, d1
vpadd.f32 d1, d2, d3
vst1.32 {q0}, [r0]
bx lr
endfunc

Loading…
Cancel
Save