mirror of https://github.com/FFmpeg/FFmpeg.git
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>pull/288/head
parent
ddf6ff9dc6
commit
d8c0bbb0aa
9 changed files with 3262 additions and 9 deletions
@ -0,0 +1,309 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN tensorflow backend implementation. |
||||
*/ |
||||
|
||||
#include "dnn_backend_tf.h" |
||||
#include "dnn_srcnn.h" |
||||
#include "libavformat/avio.h" |
||||
|
||||
#include <tensorflow/c/c_api.h> |
||||
|
||||
typedef struct TFModel{ |
||||
TF_Graph* graph; |
||||
TF_Session* session; |
||||
TF_Status* status; |
||||
TF_Output input, output; |
||||
TF_Tensor* input_tensor; |
||||
TF_Tensor* output_tensor; |
||||
const DNNData* input_data; |
||||
const DNNData* output_data; |
||||
} TFModel; |
||||
|
||||
static void free_buffer(void* data, size_t length) |
||||
{ |
||||
av_freep(&data); |
||||
} |
||||
|
||||
static TF_Buffer* read_graph(const char* model_filename) |
||||
{ |
||||
TF_Buffer* graph_buf; |
||||
unsigned char* graph_data = NULL; |
||||
AVIOContext* model_file_context; |
||||
long size, bytes_read; |
||||
|
||||
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ |
||||
return NULL; |
||||
} |
||||
|
||||
size = avio_size(model_file_context); |
||||
|
||||
graph_data = av_malloc(size); |
||||
if (!graph_data){ |
||||
avio_closep(&model_file_context); |
||||
return NULL; |
||||
} |
||||
bytes_read = avio_read(model_file_context, graph_data, size); |
||||
avio_closep(&model_file_context); |
||||
if (bytes_read != size){ |
||||
av_freep(&graph_data); |
||||
return NULL; |
||||
} |
||||
|
||||
graph_buf = TF_NewBuffer(); |
||||
graph_buf->data = (void*)graph_data; |
||||
graph_buf->length = size; |
||||
graph_buf->data_deallocator = free_buffer; |
||||
|
||||
return graph_buf; |
||||
} |
||||
|
||||
static DNNReturnType set_input_output_tf(void* model, const DNNData* input, const DNNData* output) |
||||
{ |
||||
TFModel* tf_model = (TFModel*)model; |
||||
int64_t input_dims[] = {1, input->height, input->width, input->channels}; |
||||
int64_t output_dims[] = {1, output->height, output->width, output->channels}; |
||||
TF_SessionOptions* sess_opts; |
||||
const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init"); |
||||
|
||||
// Input operation should be named 'x'
|
||||
tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); |
||||
if (!tf_model->input.oper){ |
||||
return DNN_ERROR; |
||||
} |
||||
tf_model->input.index = 0; |
||||
if (tf_model->input_tensor){ |
||||
TF_DeleteTensor(tf_model->input_tensor); |
||||
} |
||||
tf_model->input_tensor = TF_AllocateTensor(TF_FLOAT, input_dims, 4, |
||||
input_dims[1] * input_dims[2] * input_dims[3] * sizeof(float)); |
||||
if (!tf_model->input_tensor){ |
||||
return DNN_ERROR; |
||||
} |
||||
|
||||
// Output operation should be named 'y'
|
||||
tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); |
||||
if (!tf_model->output.oper){ |
||||
return DNN_ERROR; |
||||
} |
||||
tf_model->output.index = 0; |
||||
if (tf_model->output_tensor){ |
||||
TF_DeleteTensor(tf_model->output_tensor); |
||||
} |
||||
tf_model->output_tensor = TF_AllocateTensor(TF_FLOAT, output_dims, 4, |
||||
output_dims[1] * output_dims[2] * output_dims[3] * sizeof(float)); |
||||
if (!tf_model->output_tensor){ |
||||
return DNN_ERROR; |
||||
} |
||||
|
||||
tf_model->input_data = input; |
||||
tf_model->output_data = output; |
||||
|
||||
if (tf_model->session){ |
||||
TF_CloseSession(tf_model->session, tf_model->status); |
||||
TF_DeleteSession(tf_model->session, tf_model->status); |
||||
} |
||||
|
||||
sess_opts = TF_NewSessionOptions(); |
||||
tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status); |
||||
TF_DeleteSessionOptions(sess_opts); |
||||
if (TF_GetCode(tf_model->status) != TF_OK) |
||||
{ |
||||
return DNN_ERROR; |
||||
} |
||||
|
||||
// Run initialization operation with name "init" if it is present in graph
|
||||
if (init_op){ |
||||
TF_SessionRun(tf_model->session, NULL, |
||||
NULL, NULL, 0, |
||||
NULL, NULL, 0, |
||||
&init_op, 1, NULL, tf_model->status); |
||||
if (TF_GetCode(tf_model->status) != TF_OK) |
||||
{ |
||||
return DNN_ERROR; |
||||
} |
||||
} |
||||
|
||||
return DNN_SUCCESS; |
||||
} |
||||
|
||||
DNNModel* ff_dnn_load_model_tf(const char* model_filename) |
||||
{ |
||||
DNNModel* model = NULL; |
||||
TFModel* tf_model = NULL; |
||||
TF_Buffer* graph_def; |
||||
TF_ImportGraphDefOptions* graph_opts; |
||||
|
||||
model = av_malloc(sizeof(DNNModel)); |
||||
if (!model){ |
||||
return NULL; |
||||
} |
||||
|
||||
tf_model = av_malloc(sizeof(TFModel)); |
||||
if (!tf_model){ |
||||
av_freep(&model); |
||||
return NULL; |
||||
} |
||||
tf_model->session = NULL; |
||||
tf_model->input_tensor = NULL; |
||||
tf_model->output_tensor = NULL; |
||||
|
||||
graph_def = read_graph(model_filename); |
||||
if (!graph_def){ |
||||
av_freep(&tf_model); |
||||
av_freep(&model); |
||||
return NULL; |
||||
} |
||||
tf_model->graph = TF_NewGraph(); |
||||
tf_model->status = TF_NewStatus(); |
||||
graph_opts = TF_NewImportGraphDefOptions(); |
||||
TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status); |
||||
TF_DeleteImportGraphDefOptions(graph_opts); |
||||
TF_DeleteBuffer(graph_def); |
||||
if (TF_GetCode(tf_model->status) != TF_OK){ |
||||
TF_DeleteGraph(tf_model->graph); |
||||
TF_DeleteStatus(tf_model->status); |
||||
av_freep(&tf_model); |
||||
av_freep(&model); |
||||
return NULL; |
||||
} |
||||
|
||||
model->model = (void*)tf_model; |
||||
model->set_input_output = &set_input_output_tf; |
||||
|
||||
return model; |
||||
} |
||||
|
||||
DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type) |
||||
{ |
||||
DNNModel* model = NULL; |
||||
TFModel* tf_model = NULL; |
||||
TF_Buffer* graph_def; |
||||
unsigned char* graph_data = NULL; |
||||
TF_ImportGraphDefOptions* graph_opts; |
||||
|
||||
graph_def = TF_NewBuffer(); |
||||
switch (model_type){ |
||||
case DNN_SRCNN: |
||||
graph_data = av_malloc(srcnn_tf_size); |
||||
if (!graph_data){ |
||||
TF_DeleteBuffer(graph_def); |
||||
return NULL; |
||||
} |
||||
memcpy(graph_data, srcnn_tf_model, srcnn_tf_size); |
||||
graph_def->data = (void*)graph_data; |
||||
graph_def->length = srcnn_tf_size; |
||||
graph_def->data_deallocator = free_buffer; |
||||
break; |
||||
default: |
||||
TF_DeleteBuffer(graph_def); |
||||
return NULL; |
||||
} |
||||
|
||||
model = av_malloc(sizeof(DNNModel)); |
||||
if (!model){ |
||||
TF_DeleteBuffer(graph_def); |
||||
return NULL; |
||||
} |
||||
|
||||
tf_model = av_malloc(sizeof(TFModel)); |
||||
if (!tf_model){ |
||||
TF_DeleteBuffer(graph_def); |
||||
av_freep(&model); |
||||
return NULL; |
||||
} |
||||
tf_model->session = NULL; |
||||
tf_model->input_tensor = NULL; |
||||
tf_model->output_tensor = NULL; |
||||
|
||||
tf_model->graph = TF_NewGraph(); |
||||
tf_model->status = TF_NewStatus(); |
||||
graph_opts = TF_NewImportGraphDefOptions(); |
||||
TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status); |
||||
TF_DeleteImportGraphDefOptions(graph_opts); |
||||
TF_DeleteBuffer(graph_def); |
||||
if (TF_GetCode(tf_model->status) != TF_OK){ |
||||
TF_DeleteGraph(tf_model->graph); |
||||
TF_DeleteStatus(tf_model->status); |
||||
av_freep(&tf_model); |
||||
av_freep(&model); |
||||
return NULL; |
||||
} |
||||
|
||||
model->model = (void*)tf_model; |
||||
model->set_input_output = &set_input_output_tf; |
||||
|
||||
return model; |
||||
} |
||||
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model) |
||||
{ |
||||
TFModel* tf_model = (TFModel*)model->model; |
||||
|
||||
memcpy(TF_TensorData(tf_model->input_tensor), tf_model->input_data->data, |
||||
tf_model->input_data->height * tf_model->input_data->width * |
||||
tf_model->input_data->channels * sizeof(float)); |
||||
|
||||
TF_SessionRun(tf_model->session, NULL, |
||||
&tf_model->input, &tf_model->input_tensor, 1, |
||||
&tf_model->output, &tf_model->output_tensor, 1, |
||||
NULL, 0, NULL, tf_model->status); |
||||
|
||||
if (TF_GetCode(tf_model->status) != TF_OK){ |
||||
return DNN_ERROR; |
||||
} |
||||
else{ |
||||
memcpy(tf_model->output_data->data, TF_TensorData(tf_model->output_tensor), |
||||
tf_model->output_data->height * tf_model->output_data->width * |
||||
tf_model->output_data->channels * sizeof(float)); |
||||
|
||||
return DNN_SUCCESS; |
||||
} |
||||
} |
||||
|
||||
void ff_dnn_free_model_tf(DNNModel** model) |
||||
{ |
||||
TFModel* tf_model; |
||||
|
||||
if (*model){ |
||||
tf_model = (TFModel*)(*model)->model; |
||||
if (tf_model->graph){ |
||||
TF_DeleteGraph(tf_model->graph); |
||||
} |
||||
if (tf_model->session){ |
||||
TF_CloseSession(tf_model->session, tf_model->status); |
||||
TF_DeleteSession(tf_model->session, tf_model->status); |
||||
} |
||||
if (tf_model->status){ |
||||
TF_DeleteStatus(tf_model->status); |
||||
} |
||||
if (tf_model->input_tensor){ |
||||
TF_DeleteTensor(tf_model->input_tensor); |
||||
} |
||||
if (tf_model->output_tensor){ |
||||
TF_DeleteTensor(tf_model->output_tensor); |
||||
} |
||||
av_freep(&tf_model); |
||||
av_freep(model); |
||||
} |
||||
} |
@ -0,0 +1,40 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for TensorFlow backend. |
||||
*/ |
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_BACKEND_TF_H |
||||
#define AVFILTER_DNN_BACKEND_TF_H |
||||
|
||||
#include "dnn_interface.h" |
||||
|
||||
DNNModel* ff_dnn_load_model_tf(const char* model_filename); |
||||
|
||||
DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type); |
||||
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model); |
||||
|
||||
void ff_dnn_free_model_tf(DNNModel** model); |
||||
|
||||
#endif |
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue