|
|
|
@ -291,24 +291,24 @@ static void ac3_tables_init(void) |
|
|
|
|
*/ |
|
|
|
|
static int ac3_decode_init(AVCodecContext *avctx) |
|
|
|
|
{ |
|
|
|
|
AC3DecodeContext *ctx = avctx->priv_data; |
|
|
|
|
ctx->avctx = avctx; |
|
|
|
|
AC3DecodeContext *s = avctx->priv_data; |
|
|
|
|
s->avctx = avctx; |
|
|
|
|
|
|
|
|
|
ac3_common_init(); |
|
|
|
|
ac3_tables_init(); |
|
|
|
|
ff_mdct_init(&ctx->imdct_256, 8, 1); |
|
|
|
|
ff_mdct_init(&ctx->imdct_512, 9, 1); |
|
|
|
|
ac3_window_init(ctx->window); |
|
|
|
|
dsputil_init(&ctx->dsp, avctx); |
|
|
|
|
av_init_random(0, &ctx->dith_state); |
|
|
|
|
ff_mdct_init(&s->imdct_256, 8, 1); |
|
|
|
|
ff_mdct_init(&s->imdct_512, 9, 1); |
|
|
|
|
ac3_window_init(s->window); |
|
|
|
|
dsputil_init(&s->dsp, avctx); |
|
|
|
|
av_init_random(0, &s->dith_state); |
|
|
|
|
|
|
|
|
|
/* set bias values for float to int16 conversion */ |
|
|
|
|
if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) { |
|
|
|
|
ctx->add_bias = 385.0f; |
|
|
|
|
ctx->mul_bias = 1.0f; |
|
|
|
|
if(s->dsp.float_to_int16 == ff_float_to_int16_c) { |
|
|
|
|
s->add_bias = 385.0f; |
|
|
|
|
s->mul_bias = 1.0f; |
|
|
|
|
} else { |
|
|
|
|
ctx->add_bias = 0.0f; |
|
|
|
|
ctx->mul_bias = 32767.0f; |
|
|
|
|
s->add_bias = 0.0f; |
|
|
|
|
s->mul_bias = 32767.0f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
@ -319,10 +319,10 @@ static int ac3_decode_init(AVCodecContext *avctx) |
|
|
|
|
* GetBitContext within AC3DecodeContext must point to |
|
|
|
|
* start of the synchronized ac3 bitstream. |
|
|
|
|
*/ |
|
|
|
|
static int ac3_parse_header(AC3DecodeContext *ctx) |
|
|
|
|
static int ac3_parse_header(AC3DecodeContext *s) |
|
|
|
|
{ |
|
|
|
|
AC3HeaderInfo hdr; |
|
|
|
|
GetBitContext *gbc = &ctx->gbc; |
|
|
|
|
GetBitContext *gbc = &s->gbc; |
|
|
|
|
float center_mix_level, surround_mix_level; |
|
|
|
|
int err, i; |
|
|
|
|
|
|
|
|
@ -331,42 +331,42 @@ static int ac3_parse_header(AC3DecodeContext *ctx) |
|
|
|
|
return err; |
|
|
|
|
|
|
|
|
|
/* get decoding parameters from header info */ |
|
|
|
|
ctx->bit_alloc_params.sr_code = hdr.sr_code; |
|
|
|
|
ctx->channel_mode = hdr.channel_mode; |
|
|
|
|
s->bit_alloc_params.sr_code = hdr.sr_code; |
|
|
|
|
s->channel_mode = hdr.channel_mode; |
|
|
|
|
center_mix_level = gain_levels[center_levels[hdr.center_mix_level]]; |
|
|
|
|
surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]]; |
|
|
|
|
ctx->lfe_on = hdr.lfe_on; |
|
|
|
|
ctx->bit_alloc_params.sr_shift = hdr.sr_shift; |
|
|
|
|
ctx->sampling_rate = hdr.sample_rate; |
|
|
|
|
ctx->bit_rate = hdr.bit_rate; |
|
|
|
|
ctx->channels = hdr.channels; |
|
|
|
|
ctx->fbw_channels = ctx->channels - ctx->lfe_on; |
|
|
|
|
ctx->lfe_ch = ctx->fbw_channels + 1; |
|
|
|
|
ctx->frame_size = hdr.frame_size; |
|
|
|
|
s->lfe_on = hdr.lfe_on; |
|
|
|
|
s->bit_alloc_params.sr_shift = hdr.sr_shift; |
|
|
|
|
s->sampling_rate = hdr.sample_rate; |
|
|
|
|
s->bit_rate = hdr.bit_rate; |
|
|
|
|
s->channels = hdr.channels; |
|
|
|
|
s->fbw_channels = s->channels - s->lfe_on; |
|
|
|
|
s->lfe_ch = s->fbw_channels + 1; |
|
|
|
|
s->frame_size = hdr.frame_size; |
|
|
|
|
|
|
|
|
|
/* set default output to all source channels */ |
|
|
|
|
ctx->out_channels = ctx->channels; |
|
|
|
|
ctx->output_mode = ctx->channel_mode; |
|
|
|
|
if(ctx->lfe_on) |
|
|
|
|
ctx->output_mode |= AC3_OUTPUT_LFEON; |
|
|
|
|
s->out_channels = s->channels; |
|
|
|
|
s->output_mode = s->channel_mode; |
|
|
|
|
if(s->lfe_on) |
|
|
|
|
s->output_mode |= AC3_OUTPUT_LFEON; |
|
|
|
|
|
|
|
|
|
/* skip over portion of header which has already been read */ |
|
|
|
|
skip_bits(gbc, 16); // skip the sync_word
|
|
|
|
|
skip_bits(gbc, 16); // skip crc1
|
|
|
|
|
skip_bits(gbc, 8); // skip fscod and frmsizecod
|
|
|
|
|
skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
|
|
|
|
|
if(ctx->channel_mode == AC3_CHMODE_STEREO) { |
|
|
|
|
if(s->channel_mode == AC3_CHMODE_STEREO) { |
|
|
|
|
skip_bits(gbc, 2); // skip dsurmod
|
|
|
|
|
} else { |
|
|
|
|
if((ctx->channel_mode & 1) && ctx->channel_mode != AC3_CHMODE_MONO) |
|
|
|
|
if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO) |
|
|
|
|
skip_bits(gbc, 2); // skip cmixlev
|
|
|
|
|
if(ctx->channel_mode & 4) |
|
|
|
|
if(s->channel_mode & 4) |
|
|
|
|
skip_bits(gbc, 2); // skip surmixlev
|
|
|
|
|
} |
|
|
|
|
skip_bits1(gbc); // skip lfeon
|
|
|
|
|
|
|
|
|
|
/* read the rest of the bsi. read twice for dual mono mode. */ |
|
|
|
|
i = !(ctx->channel_mode); |
|
|
|
|
i = !(s->channel_mode); |
|
|
|
|
do { |
|
|
|
|
skip_bits(gbc, 5); // skip dialog normalization
|
|
|
|
|
if (get_bits1(gbc)) |
|
|
|
@ -396,20 +396,20 @@ static int ac3_parse_header(AC3DecodeContext *ctx) |
|
|
|
|
|
|
|
|
|
/* set stereo downmixing coefficients
|
|
|
|
|
reference: Section 7.8.2 Downmixing Into Two Channels */ |
|
|
|
|
for(i=0; i<ctx->fbw_channels; i++) { |
|
|
|
|
ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][0]]; |
|
|
|
|
ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][1]]; |
|
|
|
|
for(i=0; i<s->fbw_channels; i++) { |
|
|
|
|
s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]]; |
|
|
|
|
s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]]; |
|
|
|
|
} |
|
|
|
|
if(ctx->channel_mode > 1 && ctx->channel_mode & 1) { |
|
|
|
|
ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = center_mix_level; |
|
|
|
|
if(s->channel_mode > 1 && s->channel_mode & 1) { |
|
|
|
|
s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = center_mix_level; |
|
|
|
|
} |
|
|
|
|
if(ctx->channel_mode == AC3_CHMODE_2F1R || ctx->channel_mode == AC3_CHMODE_3F1R) { |
|
|
|
|
int nf = ctx->channel_mode - 2; |
|
|
|
|
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB; |
|
|
|
|
if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) { |
|
|
|
|
int nf = s->channel_mode - 2; |
|
|
|
|
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB; |
|
|
|
|
} |
|
|
|
|
if(ctx->channel_mode == AC3_CHMODE_2F2R || ctx->channel_mode == AC3_CHMODE_3F2R) { |
|
|
|
|
int nf = ctx->channel_mode - 4; |
|
|
|
|
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surround_mix_level; |
|
|
|
|
if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) { |
|
|
|
|
int nf = s->channel_mode - 4; |
|
|
|
|
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = surround_mix_level; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
@ -450,23 +450,23 @@ static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps, |
|
|
|
|
* range using the coupling coefficients and coupling coordinates. |
|
|
|
|
* reference: Section 7.4.3 Coupling Coordinate Format |
|
|
|
|
*/ |
|
|
|
|
static void uncouple_channels(AC3DecodeContext *ctx) |
|
|
|
|
static void uncouple_channels(AC3DecodeContext *s) |
|
|
|
|
{ |
|
|
|
|
int i, j, ch, bnd, subbnd; |
|
|
|
|
|
|
|
|
|
subbnd = -1; |
|
|
|
|
i = ctx->start_freq[CPL_CH]; |
|
|
|
|
for(bnd=0; bnd<ctx->num_cpl_bands; bnd++) { |
|
|
|
|
i = s->start_freq[CPL_CH]; |
|
|
|
|
for(bnd=0; bnd<s->num_cpl_bands; bnd++) { |
|
|
|
|
do { |
|
|
|
|
subbnd++; |
|
|
|
|
for(j=0; j<12; j++) { |
|
|
|
|
for(ch=1; ch<=ctx->fbw_channels; ch++) { |
|
|
|
|
if(ctx->channel_in_cpl[ch]) |
|
|
|
|
ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cpl_coords[ch][bnd] * 8.0f; |
|
|
|
|
for(ch=1; ch<=s->fbw_channels; ch++) { |
|
|
|
|
if(s->channel_in_cpl[ch]) |
|
|
|
|
s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f; |
|
|
|
|
} |
|
|
|
|
i++; |
|
|
|
|
} |
|
|
|
|
} while(ctx->cpl_band_struct[subbnd]); |
|
|
|
|
} while(s->cpl_band_struct[subbnd]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -486,25 +486,25 @@ typedef struct { |
|
|
|
|
* Get the transform coefficients for a particular channel |
|
|
|
|
* reference: Section 7.3 Quantization and Decoding of Mantissas |
|
|
|
|
*/ |
|
|
|
|
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m) |
|
|
|
|
static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m) |
|
|
|
|
{ |
|
|
|
|
GetBitContext *gbc = &ctx->gbc; |
|
|
|
|
GetBitContext *gbc = &s->gbc; |
|
|
|
|
int i, gcode, tbap, start, end; |
|
|
|
|
uint8_t *exps; |
|
|
|
|
uint8_t *bap; |
|
|
|
|
float *coeffs; |
|
|
|
|
|
|
|
|
|
exps = ctx->dexps[ch_index]; |
|
|
|
|
bap = ctx->bap[ch_index]; |
|
|
|
|
coeffs = ctx->transform_coeffs[ch_index]; |
|
|
|
|
start = ctx->start_freq[ch_index]; |
|
|
|
|
end = ctx->end_freq[ch_index]; |
|
|
|
|
exps = s->dexps[ch_index]; |
|
|
|
|
bap = s->bap[ch_index]; |
|
|
|
|
coeffs = s->transform_coeffs[ch_index]; |
|
|
|
|
start = s->start_freq[ch_index]; |
|
|
|
|
end = s->end_freq[ch_index]; |
|
|
|
|
|
|
|
|
|
for (i = start; i < end; i++) { |
|
|
|
|
tbap = bap[i]; |
|
|
|
|
switch (tbap) { |
|
|
|
|
case 0: |
|
|
|
|
coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) / 65535.0f) - 0.5f; |
|
|
|
|
coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f; |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
case 1: |
|
|
|
@ -562,27 +562,27 @@ static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_gro |
|
|
|
|
* Remove random dithering from coefficients with zero-bit mantissas |
|
|
|
|
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0) |
|
|
|
|
*/ |
|
|
|
|
static void remove_dithering(AC3DecodeContext *ctx) { |
|
|
|
|
static void remove_dithering(AC3DecodeContext *s) { |
|
|
|
|
int ch, i; |
|
|
|
|
int end=0; |
|
|
|
|
float *coeffs; |
|
|
|
|
uint8_t *bap; |
|
|
|
|
|
|
|
|
|
for(ch=1; ch<=ctx->fbw_channels; ch++) { |
|
|
|
|
if(!ctx->dither_flag[ch]) { |
|
|
|
|
coeffs = ctx->transform_coeffs[ch]; |
|
|
|
|
bap = ctx->bap[ch]; |
|
|
|
|
if(ctx->channel_in_cpl[ch]) |
|
|
|
|
end = ctx->start_freq[CPL_CH]; |
|
|
|
|
for(ch=1; ch<=s->fbw_channels; ch++) { |
|
|
|
|
if(!s->dither_flag[ch]) { |
|
|
|
|
coeffs = s->transform_coeffs[ch]; |
|
|
|
|
bap = s->bap[ch]; |
|
|
|
|
if(s->channel_in_cpl[ch]) |
|
|
|
|
end = s->start_freq[CPL_CH]; |
|
|
|
|
else |
|
|
|
|
end = ctx->end_freq[ch]; |
|
|
|
|
end = s->end_freq[ch]; |
|
|
|
|
for(i=0; i<end; i++) { |
|
|
|
|
if(bap[i] == 0) |
|
|
|
|
coeffs[i] = 0.0f; |
|
|
|
|
} |
|
|
|
|
if(ctx->channel_in_cpl[ch]) { |
|
|
|
|
bap = ctx->bap[CPL_CH]; |
|
|
|
|
for(; i<ctx->end_freq[CPL_CH]; i++) { |
|
|
|
|
if(s->channel_in_cpl[ch]) { |
|
|
|
|
bap = s->bap[CPL_CH]; |
|
|
|
|
for(; i<s->end_freq[CPL_CH]; i++) { |
|
|
|
|
if(bap[i] == 0) |
|
|
|
|
coeffs[i] = 0.0f; |
|
|
|
|
} |
|
|
|
@ -594,7 +594,7 @@ static void remove_dithering(AC3DecodeContext *ctx) { |
|
|
|
|
/**
|
|
|
|
|
* Get the transform coefficients. |
|
|
|
|
*/ |
|
|
|
|
static int get_transform_coeffs(AC3DecodeContext * ctx) |
|
|
|
|
static int get_transform_coeffs(AC3DecodeContext *s) |
|
|
|
|
{ |
|
|
|
|
int ch, end; |
|
|
|
|
int got_cplchan = 0; |
|
|
|
@ -602,33 +602,33 @@ static int get_transform_coeffs(AC3DecodeContext * ctx) |
|
|
|
|
|
|
|
|
|
m.b1ptr = m.b2ptr = m.b4ptr = 3; |
|
|
|
|
|
|
|
|
|
for (ch = 1; ch <= ctx->channels; ch++) { |
|
|
|
|
for (ch = 1; ch <= s->channels; ch++) { |
|
|
|
|
/* transform coefficients for full-bandwidth channel */ |
|
|
|
|
if (get_transform_coeffs_ch(ctx, ch, &m)) |
|
|
|
|
if (get_transform_coeffs_ch(s, ch, &m)) |
|
|
|
|
return -1; |
|
|
|
|
/* tranform coefficients for coupling channel come right after the
|
|
|
|
|
coefficients for the first coupled channel*/ |
|
|
|
|
if (ctx->channel_in_cpl[ch]) { |
|
|
|
|
if (s->channel_in_cpl[ch]) { |
|
|
|
|
if (!got_cplchan) { |
|
|
|
|
if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) { |
|
|
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n"); |
|
|
|
|
if (get_transform_coeffs_ch(s, CPL_CH, &m)) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
uncouple_channels(ctx); |
|
|
|
|
uncouple_channels(s); |
|
|
|
|
got_cplchan = 1; |
|
|
|
|
} |
|
|
|
|
end = ctx->end_freq[CPL_CH]; |
|
|
|
|
end = s->end_freq[CPL_CH]; |
|
|
|
|
} else { |
|
|
|
|
end = ctx->end_freq[ch]; |
|
|
|
|
end = s->end_freq[ch]; |
|
|
|
|
} |
|
|
|
|
do |
|
|
|
|
ctx->transform_coeffs[ch][end] = 0; |
|
|
|
|
s->transform_coeffs[ch][end] = 0; |
|
|
|
|
while(++end < 256); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* if any channel doesn't use dithering, zero appropriate coefficients */ |
|
|
|
|
if(!ctx->dither_all) |
|
|
|
|
remove_dithering(ctx); |
|
|
|
|
if(!s->dither_all) |
|
|
|
|
remove_dithering(s); |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
@ -637,22 +637,22 @@ static int get_transform_coeffs(AC3DecodeContext * ctx) |
|
|
|
|
* Stereo rematrixing. |
|
|
|
|
* reference: Section 7.5.4 Rematrixing : Decoding Technique |
|
|
|
|
*/ |
|
|
|
|
static void do_rematrixing(AC3DecodeContext *ctx) |
|
|
|
|
static void do_rematrixing(AC3DecodeContext *s) |
|
|
|
|
{ |
|
|
|
|
int bnd, i; |
|
|
|
|
int end, bndend; |
|
|
|
|
float tmp0, tmp1; |
|
|
|
|
|
|
|
|
|
end = FFMIN(ctx->end_freq[1], ctx->end_freq[2]); |
|
|
|
|
end = FFMIN(s->end_freq[1], s->end_freq[2]); |
|
|
|
|
|
|
|
|
|
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) { |
|
|
|
|
if(ctx->rematrixing_flags[bnd]) { |
|
|
|
|
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) { |
|
|
|
|
if(s->rematrixing_flags[bnd]) { |
|
|
|
|
bndend = FFMIN(end, rematrix_band_tab[bnd+1]); |
|
|
|
|
for(i=rematrix_band_tab[bnd]; i<bndend; i++) { |
|
|
|
|
tmp0 = ctx->transform_coeffs[1][i]; |
|
|
|
|
tmp1 = ctx->transform_coeffs[2][i]; |
|
|
|
|
ctx->transform_coeffs[1][i] = tmp0 + tmp1; |
|
|
|
|
ctx->transform_coeffs[2][i] = tmp0 - tmp1; |
|
|
|
|
tmp0 = s->transform_coeffs[1][i]; |
|
|
|
|
tmp1 = s->transform_coeffs[2][i]; |
|
|
|
|
s->transform_coeffs[1][i] = tmp0 + tmp1; |
|
|
|
|
s->transform_coeffs[2][i] = tmp0 - tmp1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -661,21 +661,21 @@ static void do_rematrixing(AC3DecodeContext *ctx) |
|
|
|
|
/**
|
|
|
|
|
* Perform the 256-point IMDCT |
|
|
|
|
*/ |
|
|
|
|
static void do_imdct_256(AC3DecodeContext *ctx, int chindex) |
|
|
|
|
static void do_imdct_256(AC3DecodeContext *s, int chindex) |
|
|
|
|
{ |
|
|
|
|
int i, k; |
|
|
|
|
DECLARE_ALIGNED_16(float, x[128]); |
|
|
|
|
FFTComplex z[2][64]; |
|
|
|
|
float *o_ptr = ctx->tmp_output; |
|
|
|
|
float *o_ptr = s->tmp_output; |
|
|
|
|
|
|
|
|
|
for(i=0; i<2; i++) { |
|
|
|
|
/* de-interleave coefficients */ |
|
|
|
|
for(k=0; k<128; k++) { |
|
|
|
|
x[k] = ctx->transform_coeffs[chindex][2*k+i]; |
|
|
|
|
x[k] = s->transform_coeffs[chindex][2*k+i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* run standard IMDCT */ |
|
|
|
|
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct); |
|
|
|
|
s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct); |
|
|
|
|
|
|
|
|
|
/* reverse the post-rotation & reordering from standard IMDCT */ |
|
|
|
|
for(k=0; k<32; k++) { |
|
|
|
@ -704,32 +704,32 @@ static void do_imdct_256(AC3DecodeContext *ctx, int chindex) |
|
|
|
|
* Convert frequency domain coefficients to time-domain audio samples. |
|
|
|
|
* reference: Section 7.9.4 Transformation Equations |
|
|
|
|
*/ |
|
|
|
|
static inline void do_imdct(AC3DecodeContext *ctx) |
|
|
|
|
static inline void do_imdct(AC3DecodeContext *s) |
|
|
|
|
{ |
|
|
|
|
int ch; |
|
|
|
|
int channels; |
|
|
|
|
|
|
|
|
|
/* Don't perform the IMDCT on the LFE channel unless it's used in the output */ |
|
|
|
|
channels = ctx->fbw_channels; |
|
|
|
|
if(ctx->output_mode & AC3_OUTPUT_LFEON) |
|
|
|
|
channels = s->fbw_channels; |
|
|
|
|
if(s->output_mode & AC3_OUTPUT_LFEON) |
|
|
|
|
channels++; |
|
|
|
|
|
|
|
|
|
for (ch=1; ch<=channels; ch++) { |
|
|
|
|
if (ctx->block_switch[ch]) { |
|
|
|
|
do_imdct_256(ctx, ch); |
|
|
|
|
if (s->block_switch[ch]) { |
|
|
|
|
do_imdct_256(s, ch); |
|
|
|
|
} else { |
|
|
|
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, |
|
|
|
|
ctx->transform_coeffs[ch], |
|
|
|
|
ctx->tmp_imdct); |
|
|
|
|
s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output, |
|
|
|
|
s->transform_coeffs[ch], |
|
|
|
|
s->tmp_imdct); |
|
|
|
|
} |
|
|
|
|
/* For the first half of the block, apply the window, add the delay
|
|
|
|
|
from the previous block, and send to output */ |
|
|
|
|
ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output, |
|
|
|
|
ctx->window, ctx->delay[ch-1], 0, 256, 1); |
|
|
|
|
s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output, |
|
|
|
|
s->window, s->delay[ch-1], 0, 256, 1); |
|
|
|
|
/* For the second half of the block, apply the window and store the
|
|
|
|
|
samples to delay, to be combined with the next block */ |
|
|
|
|
ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256, |
|
|
|
|
ctx->window, 256); |
|
|
|
|
s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256, |
|
|
|
|
s->window, 256); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -764,182 +764,182 @@ static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels, |
|
|
|
|
/**
|
|
|
|
|
* Parse an audio block from AC-3 bitstream. |
|
|
|
|
*/ |
|
|
|
|
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) |
|
|
|
|
static int ac3_parse_audio_block(AC3DecodeContext *s, int blk) |
|
|
|
|
{ |
|
|
|
|
int fbw_channels = ctx->fbw_channels; |
|
|
|
|
int channel_mode = ctx->channel_mode; |
|
|
|
|
int fbw_channels = s->fbw_channels; |
|
|
|
|
int channel_mode = s->channel_mode; |
|
|
|
|
int i, bnd, seg, ch; |
|
|
|
|
GetBitContext *gbc = &ctx->gbc; |
|
|
|
|
GetBitContext *gbc = &s->gbc; |
|
|
|
|
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; |
|
|
|
|
|
|
|
|
|
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS); |
|
|
|
|
|
|
|
|
|
/* block switch flags */ |
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) |
|
|
|
|
ctx->block_switch[ch] = get_bits1(gbc); |
|
|
|
|
s->block_switch[ch] = get_bits1(gbc); |
|
|
|
|
|
|
|
|
|
/* dithering flags */ |
|
|
|
|
ctx->dither_all = 1; |
|
|
|
|
s->dither_all = 1; |
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) { |
|
|
|
|
ctx->dither_flag[ch] = get_bits1(gbc); |
|
|
|
|
if(!ctx->dither_flag[ch]) |
|
|
|
|
ctx->dither_all = 0; |
|
|
|
|
s->dither_flag[ch] = get_bits1(gbc); |
|
|
|
|
if(!s->dither_flag[ch]) |
|
|
|
|
s->dither_all = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* dynamic range */ |
|
|
|
|
i = !(ctx->channel_mode); |
|
|
|
|
i = !(s->channel_mode); |
|
|
|
|
do { |
|
|
|
|
if(get_bits1(gbc)) { |
|
|
|
|
ctx->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * |
|
|
|
|
ctx->avctx->drc_scale)+1.0; |
|
|
|
|
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * |
|
|
|
|
s->avctx->drc_scale)+1.0; |
|
|
|
|
} else if(blk == 0) { |
|
|
|
|
ctx->dynamic_range[i] = 1.0f; |
|
|
|
|
s->dynamic_range[i] = 1.0f; |
|
|
|
|
} |
|
|
|
|
} while(i--); |
|
|
|
|
|
|
|
|
|
/* coupling strategy */ |
|
|
|
|
if (get_bits1(gbc)) { |
|
|
|
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
|
|
|
ctx->cpl_in_use = get_bits1(gbc); |
|
|
|
|
if (ctx->cpl_in_use) { |
|
|
|
|
s->cpl_in_use = get_bits1(gbc); |
|
|
|
|
if (s->cpl_in_use) { |
|
|
|
|
/* coupling in use */ |
|
|
|
|
int cpl_begin_freq, cpl_end_freq; |
|
|
|
|
|
|
|
|
|
/* determine which channels are coupled */ |
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) |
|
|
|
|
ctx->channel_in_cpl[ch] = get_bits1(gbc); |
|
|
|
|
s->channel_in_cpl[ch] = get_bits1(gbc); |
|
|
|
|
|
|
|
|
|
/* phase flags in use */ |
|
|
|
|
if (channel_mode == AC3_CHMODE_STEREO) |
|
|
|
|
ctx->phase_flags_in_use = get_bits1(gbc); |
|
|
|
|
s->phase_flags_in_use = get_bits1(gbc); |
|
|
|
|
|
|
|
|
|
/* coupling frequency range and band structure */ |
|
|
|
|
cpl_begin_freq = get_bits(gbc, 4); |
|
|
|
|
cpl_end_freq = get_bits(gbc, 4); |
|
|
|
|
if (3 + cpl_end_freq - cpl_begin_freq < 0) { |
|
|
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
ctx->num_cpl_bands = ctx->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; |
|
|
|
|
ctx->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; |
|
|
|
|
ctx->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; |
|
|
|
|
for (bnd = 0; bnd < ctx->num_cpl_subbands - 1; bnd++) { |
|
|
|
|
s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; |
|
|
|
|
s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; |
|
|
|
|
s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; |
|
|
|
|
for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) { |
|
|
|
|
if (get_bits1(gbc)) { |
|
|
|
|
ctx->cpl_band_struct[bnd] = 1; |
|
|
|
|
ctx->num_cpl_bands--; |
|
|
|
|
s->cpl_band_struct[bnd] = 1; |
|
|
|
|
s->num_cpl_bands--; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
/* coupling not in use */ |
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) |
|
|
|
|
ctx->channel_in_cpl[ch] = 0; |
|
|
|
|
s->channel_in_cpl[ch] = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* coupling coordinates */ |
|
|
|
|
if (ctx->cpl_in_use) { |
|
|
|
|
if (s->cpl_in_use) { |
|
|
|
|
int cpl_coords_exist = 0; |
|
|
|
|
|
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) { |
|
|
|
|
if (ctx->channel_in_cpl[ch]) { |
|
|
|
|
if (s->channel_in_cpl[ch]) { |
|
|
|
|
if (get_bits1(gbc)) { |
|
|
|
|
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant; |
|
|
|
|
cpl_coords_exist = 1; |
|
|
|
|
master_cpl_coord = 3 * get_bits(gbc, 2); |
|
|
|
|
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { |
|
|
|
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
|
|
|
cpl_coord_exp = get_bits(gbc, 4); |
|
|
|
|
cpl_coord_mant = get_bits(gbc, 4); |
|
|
|
|
if (cpl_coord_exp == 15) |
|
|
|
|
ctx->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; |
|
|
|
|
s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; |
|
|
|
|
else |
|
|
|
|
ctx->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; |
|
|
|
|
ctx->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; |
|
|
|
|
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; |
|
|
|
|
s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
/* phase flags */ |
|
|
|
|
if (channel_mode == AC3_CHMODE_STEREO && ctx->phase_flags_in_use && cpl_coords_exist) { |
|
|
|
|
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { |
|
|
|
|
if (channel_mode == AC3_CHMODE_STEREO && s->phase_flags_in_use && cpl_coords_exist) { |
|
|
|
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
|
|
|
|
if (get_bits1(gbc)) |
|
|
|
|
ctx->cpl_coords[2][bnd] = -ctx->cpl_coords[2][bnd]; |
|
|
|
|
s->cpl_coords[2][bnd] = -s->cpl_coords[2][bnd]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* stereo rematrixing strategy and band structure */ |
|
|
|
|
if (channel_mode == AC3_CHMODE_STEREO) { |
|
|
|
|
ctx->rematrixing_strategy = get_bits1(gbc); |
|
|
|
|
if (ctx->rematrixing_strategy) { |
|
|
|
|
ctx->num_rematrixing_bands = 4; |
|
|
|
|
if(ctx->cpl_in_use && ctx->start_freq[CPL_CH] <= 61) |
|
|
|
|
ctx->num_rematrixing_bands -= 1 + (ctx->start_freq[CPL_CH] == 37); |
|
|
|
|
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) |
|
|
|
|
ctx->rematrixing_flags[bnd] = get_bits1(gbc); |
|
|
|
|
s->rematrixing_strategy = get_bits1(gbc); |
|
|
|
|
if (s->rematrixing_strategy) { |
|
|
|
|
s->num_rematrixing_bands = 4; |
|
|
|
|
if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61) |
|
|
|
|
s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37); |
|
|
|
|
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) |
|
|
|
|
s->rematrixing_flags[bnd] = get_bits1(gbc); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* exponent strategies for each channel */ |
|
|
|
|
ctx->exp_strategy[CPL_CH] = EXP_REUSE; |
|
|
|
|
ctx->exp_strategy[ctx->lfe_ch] = EXP_REUSE; |
|
|
|
|
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { |
|
|
|
|
if(ch == ctx->lfe_ch) |
|
|
|
|
ctx->exp_strategy[ch] = get_bits(gbc, 1); |
|
|
|
|
s->exp_strategy[CPL_CH] = EXP_REUSE; |
|
|
|
|
s->exp_strategy[s->lfe_ch] = EXP_REUSE; |
|
|
|
|
for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { |
|
|
|
|
if(ch == s->lfe_ch) |
|
|
|
|
s->exp_strategy[ch] = get_bits(gbc, 1); |
|
|
|
|
else |
|
|
|
|
ctx->exp_strategy[ch] = get_bits(gbc, 2); |
|
|
|
|
if(ctx->exp_strategy[ch] != EXP_REUSE) |
|
|
|
|
s->exp_strategy[ch] = get_bits(gbc, 2); |
|
|
|
|
if(s->exp_strategy[ch] != EXP_REUSE) |
|
|
|
|
bit_alloc_stages[ch] = 3; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* channel bandwidth */ |
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) { |
|
|
|
|
ctx->start_freq[ch] = 0; |
|
|
|
|
if (ctx->exp_strategy[ch] != EXP_REUSE) { |
|
|
|
|
int prev = ctx->end_freq[ch]; |
|
|
|
|
if (ctx->channel_in_cpl[ch]) |
|
|
|
|
ctx->end_freq[ch] = ctx->start_freq[CPL_CH]; |
|
|
|
|
s->start_freq[ch] = 0; |
|
|
|
|
if (s->exp_strategy[ch] != EXP_REUSE) { |
|
|
|
|
int prev = s->end_freq[ch]; |
|
|
|
|
if (s->channel_in_cpl[ch]) |
|
|
|
|
s->end_freq[ch] = s->start_freq[CPL_CH]; |
|
|
|
|
else { |
|
|
|
|
int bandwidth_code = get_bits(gbc, 6); |
|
|
|
|
if (bandwidth_code > 60) { |
|
|
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
ctx->end_freq[ch] = bandwidth_code * 3 + 73; |
|
|
|
|
s->end_freq[ch] = bandwidth_code * 3 + 73; |
|
|
|
|
} |
|
|
|
|
if(blk > 0 && ctx->end_freq[ch] != prev) |
|
|
|
|
if(blk > 0 && s->end_freq[ch] != prev) |
|
|
|
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
ctx->start_freq[ctx->lfe_ch] = 0; |
|
|
|
|
ctx->end_freq[ctx->lfe_ch] = 7; |
|
|
|
|
s->start_freq[s->lfe_ch] = 0; |
|
|
|
|
s->end_freq[s->lfe_ch] = 7; |
|
|
|
|
|
|
|
|
|
/* decode exponents for each channel */ |
|
|
|
|
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { |
|
|
|
|
if (ctx->exp_strategy[ch] != EXP_REUSE) { |
|
|
|
|
for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { |
|
|
|
|
if (s->exp_strategy[ch] != EXP_REUSE) { |
|
|
|
|
int group_size, num_groups; |
|
|
|
|
group_size = 3 << (ctx->exp_strategy[ch] - 1); |
|
|
|
|
group_size = 3 << (s->exp_strategy[ch] - 1); |
|
|
|
|
if(ch == CPL_CH) |
|
|
|
|
num_groups = (ctx->end_freq[ch] - ctx->start_freq[ch]) / group_size; |
|
|
|
|
else if(ch == ctx->lfe_ch) |
|
|
|
|
num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size; |
|
|
|
|
else if(ch == s->lfe_ch) |
|
|
|
|
num_groups = 2; |
|
|
|
|
else |
|
|
|
|
num_groups = (ctx->end_freq[ch] + group_size - 4) / group_size; |
|
|
|
|
ctx->dexps[ch][0] = get_bits(gbc, 4) << !ch; |
|
|
|
|
decode_exponents(gbc, ctx->exp_strategy[ch], num_groups, ctx->dexps[ch][0], |
|
|
|
|
&ctx->dexps[ch][ctx->start_freq[ch]+!!ch]); |
|
|
|
|
if(ch != CPL_CH && ch != ctx->lfe_ch) |
|
|
|
|
num_groups = (s->end_freq[ch] + group_size - 4) / group_size; |
|
|
|
|
s->dexps[ch][0] = get_bits(gbc, 4) << !ch; |
|
|
|
|
decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0], |
|
|
|
|
&s->dexps[ch][s->start_freq[ch]+!!ch]); |
|
|
|
|
if(ch != CPL_CH && ch != s->lfe_ch) |
|
|
|
|
skip_bits(gbc, 2); /* skip gainrng */ |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* bit allocation information */ |
|
|
|
|
if (get_bits1(gbc)) { |
|
|
|
|
ctx->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift; |
|
|
|
|
ctx->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> ctx->bit_alloc_params.sr_shift; |
|
|
|
|
ctx->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)]; |
|
|
|
|
ctx->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)]; |
|
|
|
|
ctx->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)]; |
|
|
|
|
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { |
|
|
|
|
s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift; |
|
|
|
|
s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift; |
|
|
|
|
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)]; |
|
|
|
|
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)]; |
|
|
|
|
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)]; |
|
|
|
|
for(ch=!s->cpl_in_use; ch<=s->channels; ch++) { |
|
|
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -948,73 +948,73 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) |
|
|
|
|
if (get_bits1(gbc)) { |
|
|
|
|
int csnr; |
|
|
|
|
csnr = (get_bits(gbc, 6) - 15) << 4; |
|
|
|
|
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { /* snr offset and fast gain */ |
|
|
|
|
ctx->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2; |
|
|
|
|
ctx->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)]; |
|
|
|
|
for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */ |
|
|
|
|
s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2; |
|
|
|
|
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)]; |
|
|
|
|
} |
|
|
|
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* coupling leak information */ |
|
|
|
|
if (ctx->cpl_in_use && get_bits1(gbc)) { |
|
|
|
|
ctx->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3); |
|
|
|
|
ctx->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3); |
|
|
|
|
if (s->cpl_in_use && get_bits1(gbc)) { |
|
|
|
|
s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3); |
|
|
|
|
s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3); |
|
|
|
|
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* delta bit allocation information */ |
|
|
|
|
if (get_bits1(gbc)) { |
|
|
|
|
/* delta bit allocation exists (strategy) */ |
|
|
|
|
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { |
|
|
|
|
ctx->dba_mode[ch] = get_bits(gbc, 2); |
|
|
|
|
if (ctx->dba_mode[ch] == DBA_RESERVED) { |
|
|
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); |
|
|
|
|
for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) { |
|
|
|
|
s->dba_mode[ch] = get_bits(gbc, 2); |
|
|
|
|
if (s->dba_mode[ch] == DBA_RESERVED) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); |
|
|
|
|
} |
|
|
|
|
/* channel delta offset, len and bit allocation */ |
|
|
|
|
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { |
|
|
|
|
if (ctx->dba_mode[ch] == DBA_NEW) { |
|
|
|
|
ctx->dba_nsegs[ch] = get_bits(gbc, 3); |
|
|
|
|
for (seg = 0; seg <= ctx->dba_nsegs[ch]; seg++) { |
|
|
|
|
ctx->dba_offsets[ch][seg] = get_bits(gbc, 5); |
|
|
|
|
ctx->dba_lengths[ch][seg] = get_bits(gbc, 4); |
|
|
|
|
ctx->dba_values[ch][seg] = get_bits(gbc, 3); |
|
|
|
|
for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) { |
|
|
|
|
if (s->dba_mode[ch] == DBA_NEW) { |
|
|
|
|
s->dba_nsegs[ch] = get_bits(gbc, 3); |
|
|
|
|
for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) { |
|
|
|
|
s->dba_offsets[ch][seg] = get_bits(gbc, 5); |
|
|
|
|
s->dba_lengths[ch][seg] = get_bits(gbc, 4); |
|
|
|
|
s->dba_values[ch][seg] = get_bits(gbc, 3); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else if(blk == 0) { |
|
|
|
|
for(ch=0; ch<=ctx->channels; ch++) { |
|
|
|
|
ctx->dba_mode[ch] = DBA_NONE; |
|
|
|
|
for(ch=0; ch<=s->channels; ch++) { |
|
|
|
|
s->dba_mode[ch] = DBA_NONE; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* Bit allocation */ |
|
|
|
|
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { |
|
|
|
|
for(ch=!s->cpl_in_use; ch<=s->channels; ch++) { |
|
|
|
|
if(bit_alloc_stages[ch] > 2) { |
|
|
|
|
/* Exponent mapping into PSD and PSD integration */ |
|
|
|
|
ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch], |
|
|
|
|
ctx->start_freq[ch], ctx->end_freq[ch], |
|
|
|
|
ctx->psd[ch], ctx->band_psd[ch]); |
|
|
|
|
ff_ac3_bit_alloc_calc_psd(s->dexps[ch], |
|
|
|
|
s->start_freq[ch], s->end_freq[ch], |
|
|
|
|
s->psd[ch], s->band_psd[ch]); |
|
|
|
|
} |
|
|
|
|
if(bit_alloc_stages[ch] > 1) { |
|
|
|
|
/* Compute excitation function, Compute masking curve, and
|
|
|
|
|
Apply delta bit allocation */ |
|
|
|
|
ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->band_psd[ch], |
|
|
|
|
ctx->start_freq[ch], ctx->end_freq[ch], |
|
|
|
|
ctx->fast_gain[ch], (ch == ctx->lfe_ch), |
|
|
|
|
ctx->dba_mode[ch], ctx->dba_nsegs[ch], |
|
|
|
|
ctx->dba_offsets[ch], ctx->dba_lengths[ch], |
|
|
|
|
ctx->dba_values[ch], ctx->mask[ch]); |
|
|
|
|
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch], |
|
|
|
|
s->start_freq[ch], s->end_freq[ch], |
|
|
|
|
s->fast_gain[ch], (ch == s->lfe_ch), |
|
|
|
|
s->dba_mode[ch], s->dba_nsegs[ch], |
|
|
|
|
s->dba_offsets[ch], s->dba_lengths[ch], |
|
|
|
|
s->dba_values[ch], s->mask[ch]); |
|
|
|
|
} |
|
|
|
|
if(bit_alloc_stages[ch] > 0) { |
|
|
|
|
/* Compute bit allocation */ |
|
|
|
|
ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch], |
|
|
|
|
ctx->start_freq[ch], ctx->end_freq[ch], |
|
|
|
|
ctx->snr_offset[ch], |
|
|
|
|
ctx->bit_alloc_params.floor, |
|
|
|
|
ctx->bap[ch]); |
|
|
|
|
ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch], |
|
|
|
|
s->start_freq[ch], s->end_freq[ch], |
|
|
|
|
s->snr_offset[ch], |
|
|
|
|
s->bit_alloc_params.floor, |
|
|
|
|
s->bap[ch]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1027,43 +1027,43 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) |
|
|
|
|
|
|
|
|
|
/* unpack the transform coefficients
|
|
|
|
|
this also uncouples channels if coupling is in use. */ |
|
|
|
|
if (get_transform_coeffs(ctx)) { |
|
|
|
|
av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); |
|
|
|
|
if (get_transform_coeffs(s)) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* recover coefficients if rematrixing is in use */ |
|
|
|
|
if(ctx->channel_mode == AC3_CHMODE_STEREO) |
|
|
|
|
do_rematrixing(ctx); |
|
|
|
|
if(s->channel_mode == AC3_CHMODE_STEREO) |
|
|
|
|
do_rematrixing(s); |
|
|
|
|
|
|
|
|
|
/* apply scaling to coefficients (headroom, dynrng) */ |
|
|
|
|
for(ch=1; ch<=ctx->channels; ch++) { |
|
|
|
|
float gain = 2.0f * ctx->mul_bias; |
|
|
|
|
if(ctx->channel_mode == AC3_CHMODE_DUALMONO) { |
|
|
|
|
gain *= ctx->dynamic_range[ch-1]; |
|
|
|
|
for(ch=1; ch<=s->channels; ch++) { |
|
|
|
|
float gain = 2.0f * s->mul_bias; |
|
|
|
|
if(s->channel_mode == AC3_CHMODE_DUALMONO) { |
|
|
|
|
gain *= s->dynamic_range[ch-1]; |
|
|
|
|
} else { |
|
|
|
|
gain *= ctx->dynamic_range[0]; |
|
|
|
|
gain *= s->dynamic_range[0]; |
|
|
|
|
} |
|
|
|
|
for(i=0; i<ctx->end_freq[ch]; i++) { |
|
|
|
|
ctx->transform_coeffs[ch][i] *= gain; |
|
|
|
|
for(i=0; i<s->end_freq[ch]; i++) { |
|
|
|
|
s->transform_coeffs[ch][i] *= gain; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
do_imdct(ctx); |
|
|
|
|
do_imdct(s); |
|
|
|
|
|
|
|
|
|
/* downmix output if needed */ |
|
|
|
|
if(ctx->channels != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) && |
|
|
|
|
ctx->fbw_channels == ctx->out_channels)) { |
|
|
|
|
ac3_downmix(ctx->output, ctx->fbw_channels, ctx->output_mode, |
|
|
|
|
ctx->downmix_coeffs); |
|
|
|
|
if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) && |
|
|
|
|
s->fbw_channels == s->out_channels)) { |
|
|
|
|
ac3_downmix(s->output, s->fbw_channels, s->output_mode, |
|
|
|
|
s->downmix_coeffs); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* convert float to 16-bit integer */ |
|
|
|
|
for(ch=0; ch<ctx->out_channels; ch++) { |
|
|
|
|
for(ch=0; ch<s->out_channels; ch++) { |
|
|
|
|
for(i=0; i<256; i++) { |
|
|
|
|
ctx->output[ch][i] += ctx->add_bias; |
|
|
|
|
s->output[ch][i] += s->add_bias; |
|
|
|
|
} |
|
|
|
|
ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256); |
|
|
|
|
s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
@ -1074,15 +1074,15 @@ static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) |
|
|
|
|
*/ |
|
|
|
|
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size) |
|
|
|
|
{ |
|
|
|
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
|
|
|
AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data; |
|
|
|
|
int16_t *out_samples = (int16_t *)data; |
|
|
|
|
int i, blk, ch, err; |
|
|
|
|
|
|
|
|
|
/* initialize the GetBitContext with the start of valid AC-3 Frame */ |
|
|
|
|
init_get_bits(&ctx->gbc, buf, buf_size * 8); |
|
|
|
|
init_get_bits(&s->gbc, buf, buf_size * 8); |
|
|
|
|
|
|
|
|
|
/* parse the syncinfo */ |
|
|
|
|
err = ac3_parse_header(ctx); |
|
|
|
|
err = ac3_parse_header(s); |
|
|
|
|
if(err) { |
|
|
|
|
switch(err) { |
|
|
|
|
case AC3_PARSE_ERROR_SYNC: |
|
|
|
@ -1104,37 +1104,37 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
avctx->sample_rate = ctx->sampling_rate; |
|
|
|
|
avctx->bit_rate = ctx->bit_rate; |
|
|
|
|
avctx->sample_rate = s->sampling_rate; |
|
|
|
|
avctx->bit_rate = s->bit_rate; |
|
|
|
|
|
|
|
|
|
/* check that reported frame size fits in input buffer */ |
|
|
|
|
if(ctx->frame_size > buf_size) { |
|
|
|
|
if(s->frame_size > buf_size) { |
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* channel config */ |
|
|
|
|
ctx->out_channels = ctx->channels; |
|
|
|
|
s->out_channels = s->channels; |
|
|
|
|
if (avctx->request_channels > 0 && avctx->request_channels <= 2 && |
|
|
|
|
avctx->request_channels < ctx->channels) { |
|
|
|
|
ctx->out_channels = avctx->request_channels; |
|
|
|
|
ctx->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; |
|
|
|
|
avctx->request_channels < s->channels) { |
|
|
|
|
s->out_channels = avctx->request_channels; |
|
|
|
|
s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; |
|
|
|
|
} |
|
|
|
|
avctx->channels = ctx->out_channels; |
|
|
|
|
avctx->channels = s->out_channels; |
|
|
|
|
|
|
|
|
|
/* parse the audio blocks */ |
|
|
|
|
for (blk = 0; blk < NB_BLOCKS; blk++) { |
|
|
|
|
if (ac3_parse_audio_block(ctx, blk)) { |
|
|
|
|
if (ac3_parse_audio_block(s, blk)) { |
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); |
|
|
|
|
*data_size = 0; |
|
|
|
|
return ctx->frame_size; |
|
|
|
|
return s->frame_size; |
|
|
|
|
} |
|
|
|
|
for (i = 0; i < 256; i++) |
|
|
|
|
for (ch = 0; ch < ctx->out_channels; ch++) |
|
|
|
|
*(out_samples++) = ctx->int_output[ch][i]; |
|
|
|
|
for (ch = 0; ch < s->out_channels; ch++) |
|
|
|
|
*(out_samples++) = s->int_output[ch][i]; |
|
|
|
|
} |
|
|
|
|
*data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); |
|
|
|
|
return ctx->frame_size; |
|
|
|
|
return s->frame_size; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -1142,9 +1142,9 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, |
|
|
|
|
*/ |
|
|
|
|
static int ac3_decode_end(AVCodecContext *avctx) |
|
|
|
|
{ |
|
|
|
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
|
|
|
ff_mdct_end(&ctx->imdct_512); |
|
|
|
|
ff_mdct_end(&ctx->imdct_256); |
|
|
|
|
AC3DecodeContext *s = (AC3DecodeContext *)avctx->priv_data; |
|
|
|
|
ff_mdct_end(&s->imdct_512); |
|
|
|
|
ff_mdct_end(&s->imdct_256); |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|