avfilter: add showcwt multimedia filter

pull/388/head
Paul B Mahol 2 years ago
parent 93810a625c
commit d34c1b389e
  1. 1
      Changelog
  2. 96
      doc/filters.texi
  3. 1
      libavfilter/Makefile
  4. 1
      libavfilter/allfilters.c
  5. 837
      libavfilter/avf_showcwt.c
  6. 4
      libavfilter/version.h

@ -25,6 +25,7 @@ version <next>:
- oneVPL support for QSV
- QSV AV1 encoder
- QSV decoding and encoding for 10/12bit 422, 10/12bit 444 HEVC and VP9
- showcwt multimedia filter
version 5.1:

@ -29274,6 +29274,102 @@ axisfile=myaxis.png:basefreq=40:endfreq=10000
@end example
@end itemize
@section showcwt
Convert input audio to video output representing frequency spectrum
using Continuous Wavelet Transform and Morlet wavelet.
The filter accepts the following options:
@table @option
@item size, s
Specify the video size for the output. For the syntax of this option,
check the @ref{video size syntax,,"Video size" section in the ffmpeg-utils manual,ffmpeg-utils}.
Default value is @code{640x512}.
@item rate, r
Set the output frame rate. Default value is @code{25}.
@item scale
Set the frequency scale used. Allowed values are:
@table @option
@item linear
@item log2
@item bark
@item mel
@item erbs
@end table
Default value is @code{linear}.
@item min
Set the minimum frequency that will be used in output.
Default is @code{20} Hz.
@item max
Set the maximum frequency that will be used in output.
Default is @code{20000} Hz. The real frequency upper limit
depends on input audio's sample rate and such will be enforced
on this value when it is set to value greater than Nyquist frequency.
@item logb
Set the logarithmic basis for brightness strength when
mapping calculated magnitude values to pixel values.
Allowed range is from @code{0} to @code{1}.
Default value is @code{0.0001}.
@item deviation
Set the frequency deviation.
Lower values than @code{1} are more frequency oriented,
while higher values than @code{1} are more time oriented.
Allowed range is from @code{0} to @code{10}.
Default value is @code{1}.
@item pps
Set the number of pixel output per each second in one row.
Allowed range is from @code{1} to @code{1024}.
Default value is @code{64}.
@item mode
Set the output visual mode. Allowed values are:
@table @option
@item magnitude
Show magnitude.
@item phase
Show only phase.
@item magphase
Show combination of magnitude and phase.
Magnitude is mapped to brightness and phase to color.
@item channel
Show unique color per channel magnitude.
@end table
Default value is @code{magnitude}.
@item slide
Set the output slide method. Allowed values are:
@table @option
@item replace
@item scroll
@end table
@item direction
Set the direction method for output slide method. Allowed values are:
@table @option
@item lr
Direction from left to right.
@item rl
Direction from right to left.
@item ud
Direction from up to down.
@item du
Direction from down to up.
@end table
@end table
@section showfreqs
Convert input audio to video output representing the audio power spectrum.

@ -593,6 +593,7 @@ OBJS-$(CONFIG_APHASEMETER_FILTER) += avf_aphasemeter.o
OBJS-$(CONFIG_AVECTORSCOPE_FILTER) += avf_avectorscope.o
OBJS-$(CONFIG_CONCAT_FILTER) += avf_concat.o
OBJS-$(CONFIG_SHOWCQT_FILTER) += avf_showcqt.o lswsutils.o lavfutils.o
OBJS-$(CONFIG_SHOWCWT_FILTER) += avf_showcwt.o
OBJS-$(CONFIG_SHOWFREQS_FILTER) += avf_showfreqs.o
OBJS-$(CONFIG_SHOWSPATIAL_FILTER) += avf_showspatial.o
OBJS-$(CONFIG_SHOWSPECTRUM_FILTER) += avf_showspectrum.o

@ -558,6 +558,7 @@ extern const AVFilter ff_avf_aphasemeter;
extern const AVFilter ff_avf_avectorscope;
extern const AVFilter ff_avf_concat;
extern const AVFilter ff_avf_showcqt;
extern const AVFilter ff_avf_showcwt;
extern const AVFilter ff_avf_showfreqs;
extern const AVFilter ff_avf_showspatial;
extern const AVFilter ff_avf_showspectrum;

@ -0,0 +1,837 @@
/*
* Copyright (c) 2022 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <math.h>
#include "libavutil/tx.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "audio.h"
#include "video.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
enum FrequencyScale {
FSCALE_LINEAR,
FSCALE_LOG2,
FSCALE_BARK,
FSCALE_MEL,
FSCALE_ERBS,
NB_FSCALE
};
enum DirectionMode {
DIRECTION_LR,
DIRECTION_RL,
DIRECTION_UD,
DIRECTION_DU,
NB_DIRECTION
};
enum SlideMode {
SLIDE_REPLACE,
SLIDE_SCROLL,
NB_SLIDE
};
typedef struct ShowCWTContext {
const AVClass *class;
int w, h;
int mode;
char *rate_str;
AVRational auto_frame_rate;
AVRational frame_rate;
AVTXContext *fft;
AVTXContext **ifft;
av_tx_fn tx_fn;
av_tx_fn itx_fn;
int fft_in_size;
int fft_out_size;
int ifft_in_size;
int ifft_out_size;
int pos;
int in_nb_samples;
int64_t in_pts;
int64_t old_pts;
float *frequency_band;
AVFrame *kernel;
unsigned *index;
int *kernel_start;
int *kernel_stop;
AVFrame *overlap;
AVFrame *outpicref;
AVFrame *fft_in;
AVFrame *fft_out;
AVFrame *ifft_in;
AVFrame *ifft_out;
AVFrame *ch_out;
int nb_threads;
int nb_channels;
int nb_consumed_samples;
int pps;
int slide;
int direction;
int hop_size;
int ihop_size;
int ihop_index;
int input_padding_size;
int input_sample_count;
int output_padding_size;
int output_sample_count;
int frequency_band_count;
float logarithmic_basis;
int frequency_scale;
float minimum_frequency;
float maximum_frequency;
float deviation;
} ShowCWTContext;
#define OFFSET(x) offsetof(ShowCWTContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption showcwt_options[] = {
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
{ "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
{ "rate", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "25"}, 0, 0, FLAGS },
{ "r", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "25"}, 0, 0, FLAGS },
{ "scale", "set frequency scale", OFFSET(frequency_scale), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_FSCALE-1, FLAGS, "scale" },
{ "linear", "linear", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_LINEAR}, 0, 0, FLAGS, "scale" },
{ "log2", "logarithmic", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_LOG2}, 0, 0, FLAGS, "scale" },
{ "bark", "bark", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_BARK}, 0, 0, FLAGS, "scale" },
{ "mel", "mel", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_MEL}, 0, 0, FLAGS, "scale" },
{ "erbs", "erbs", 0, AV_OPT_TYPE_CONST,{.i64=FSCALE_ERBS}, 0, 0, FLAGS, "scale" },
{ "min", "set minimum frequency", OFFSET(minimum_frequency), AV_OPT_TYPE_FLOAT, {.dbl = 20.}, 1, 2000, FLAGS },
{ "max", "set maximum frequency", OFFSET(maximum_frequency), AV_OPT_TYPE_FLOAT, {.dbl = 20000.}, 0, 192000, FLAGS },
{ "logb", "set logarithmic basis", OFFSET(logarithmic_basis), AV_OPT_TYPE_FLOAT, {.dbl = 0.0001}, 0, 1, FLAGS },
{ "deviation", "set frequency deviation", OFFSET(deviation), AV_OPT_TYPE_FLOAT, {.dbl = 1.}, 0, 10, FLAGS },
{ "pps", "set pixels per second", OFFSET(pps), AV_OPT_TYPE_INT, {.i64 = 64}, 1, 1024, FLAGS },
{ "mode", "set output mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS, "mode" },
{ "magnitude", "magnitude", 0, AV_OPT_TYPE_CONST,{.i64=0}, 0, 0, FLAGS, "mode" },
{ "phase", "phase", 0, AV_OPT_TYPE_CONST,{.i64=1}, 0, 0, FLAGS, "mode" },
{ "magphase", "magnitude+phase", 0, AV_OPT_TYPE_CONST,{.i64=2}, 0, 0, FLAGS, "mode" },
{ "channel", "color per channel", 0, AV_OPT_TYPE_CONST,{.i64=3}, 0, 0, FLAGS, "mode" },
{ "slide", "set slide mode", OFFSET(slide), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_SLIDE-1, FLAGS, "slide" },
{ "replace", "replace", 0, AV_OPT_TYPE_CONST,{.i64=SLIDE_REPLACE},0, 0, FLAGS, "slide" },
{ "scroll", "scroll", 0, AV_OPT_TYPE_CONST,{.i64=SLIDE_SCROLL}, 0, 0, FLAGS, "slide" },
{ "direction", "set direction mode", OFFSET(direction), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_DIRECTION-1, FLAGS, "direction" },
{ "lr", "left to right", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_LR}, 0, 0, FLAGS, "direction" },
{ "rl", "right to left", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_RL}, 0, 0, FLAGS, "direction" },
{ "ud", "up to down", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_UD}, 0, 0, FLAGS, "direction" },
{ "du", "down to up", 0, AV_OPT_TYPE_CONST,{.i64=DIRECTION_DU}, 0, 0, FLAGS, "direction" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showcwt);
static av_cold void uninit(AVFilterContext *ctx)
{
ShowCWTContext *s = ctx->priv;
av_freep(&s->frequency_band);
av_freep(&s->kernel_start);
av_freep(&s->kernel_stop);
av_freep(&s->index);
av_frame_free(&s->kernel);
av_frame_free(&s->overlap);
av_frame_free(&s->outpicref);
av_frame_free(&s->fft_in);
av_frame_free(&s->fft_out);
av_frame_free(&s->ifft_in);
av_frame_free(&s->ifft_out);
av_frame_free(&s->ch_out);
av_tx_uninit(&s->fft);
if (s->ifft) {
for (int n = 0; n < s->nb_threads; n++)
av_tx_uninit(&s->ifft[n]);
}
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE };
int ret;
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
return ret;
layouts = ff_all_channel_counts();
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
return ret;
formats = ff_all_samplerates();
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
return ret;
formats = ff_make_format_list(pix_fmts);
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
return 0;
}
static void frequency_band(float *frequency_band,
int frequency_band_count,
float frequency_range,
float frequency_offset,
int frequency_scale, float deviation)
{
deviation *= sqrtf(1.f / (4.f * M_PI)); // Heisenberg Gabor Limit
for (int y = 0; y < frequency_band_count; y++) {
float frequency = frequency_range * (1.f - (float)y / frequency_band_count) + frequency_offset;
float frequency_derivative = frequency_range / frequency_band_count;
switch (frequency_scale) {
case FSCALE_LOG2:
frequency = powf(2.f, frequency);
frequency_derivative *= logf(2.f) * frequency;
break;
case FSCALE_BARK:
frequency = 600.f * sinhf(frequency / 6.f);
frequency_derivative *= sqrtf(frequency * frequency + 360000.f) / 6.f;
break;
case FSCALE_MEL:
frequency = 700.f * (powf(10.f, frequency / 2595.f) - 1.f);
frequency_derivative *= (frequency + 700.f) * logf(10.f) / 2595.f;
break;
case FSCALE_ERBS:
frequency = 676170.4f / (47.06538f - expf(frequency * 0.08950404f)) - 14678.49f;
frequency_derivative *= (frequency * frequency + 14990.4 * frequency + 4577850.f) / 160514.f;
break;
}
frequency_band[y*2 ] = frequency;
frequency_band[y*2+1] = frequency_derivative * deviation;
}
}
#define cmul(operator, index) { \
const float ff = kernel[index]; \
isrc[n].re operator ff*dst[index].re; \
isrc[n].im operator ff*dst[index].im; \
}
static float remap_log(float value, float log_factor)
{
float sign = (0 < value) - (value < 0);
value = logf(value * sign) * log_factor;
return 1.f - av_clipf(value, 0.f, 1.f);
}
static int run_channel_cwt_prepare(AVFilterContext *ctx, void *arg, int ch)
{
ShowCWTContext *s = ctx->priv;
AVFrame *fin = arg;
const float *input = (const float *)fin->extended_data[ch];
float *overlap = (float *)s->overlap->extended_data[ch];
AVComplexFloat *src = (AVComplexFloat *)s->fft_in->extended_data[ch];
AVComplexFloat *dst = (AVComplexFloat *)s->fft_out->extended_data[ch];
const int nb_consumed_samples = s->nb_consumed_samples;
const int input_padding_size = s->input_padding_size;
const int hop_size = s->hop_size;
const int offset = input_padding_size - hop_size;
memmove(overlap, &overlap[hop_size], offset * sizeof(float));
memcpy(&overlap[offset], input,
fin->nb_samples * sizeof(float));
memset(&overlap[offset + fin->nb_samples], 0,
(hop_size - fin->nb_samples) * sizeof(float));
for (int n = 0; n < nb_consumed_samples; n++) {
src[n].re = overlap[n];
src[n].im = 0.f;
}
s->tx_fn(s->fft, dst, src, sizeof(*src));
return 0;
}
static int draw(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowCWTContext *s = ctx->priv;
const ptrdiff_t ylinesize = s->outpicref->linesize[0];
const ptrdiff_t ulinesize = s->outpicref->linesize[1];
const ptrdiff_t vlinesize = s->outpicref->linesize[2];
const float log_factor = 1.f/logf(s->logarithmic_basis);
const int count = s->frequency_band_count;
const int start = (count * jobnr) / nb_jobs;
const int end = (count * (jobnr+1)) / nb_jobs;
const int ihop_index = s->ihop_index;
const int ihop_size = s->ihop_size;
const int direction = s->direction;
uint8_t *dstY, *dstU, *dstV;
const int mode = s->mode;
const int w_1 = s->w - 1;
const int x = s->pos;
float Y, U, V;
for (int y = start; y < end; y++) {
const AVComplexFloat *src = ((const AVComplexFloat *)s->ch_out->extended_data[0]) +
y * ihop_size + ihop_index;
switch (direction) {
case DIRECTION_LR:
case DIRECTION_RL:
dstY = s->outpicref->data[0] + y * ylinesize;
dstU = s->outpicref->data[1] + y * ulinesize;
dstV = s->outpicref->data[2] + y * vlinesize;
break;
case DIRECTION_UD:
case DIRECTION_DU:
dstY = s->outpicref->data[0] + x * ylinesize + w_1 - y;
dstU = s->outpicref->data[1] + x * ulinesize + w_1 - y;
dstV = s->outpicref->data[2] + x * vlinesize + w_1 - y;
break;
}
switch (s->slide) {
case SLIDE_REPLACE:
/* nothing to do here */
break;
case SLIDE_SCROLL:
switch (s->direction) {
case DIRECTION_RL:
memmove(dstY, dstY + 1, w_1);
memmove(dstU, dstU + 1, w_1);
memmove(dstV, dstV + 1, w_1);
break;
case DIRECTION_LR:
memmove(dstY + 1, dstY, w_1);
memmove(dstU + 1, dstU, w_1);
memmove(dstV + 1, dstV, w_1);
break;
}
break;
}
if (direction == DIRECTION_RL ||
direction == DIRECTION_LR) {
dstY += x;
dstU += x;
dstV += x;
}
switch (mode) {
case 3:
{
const int nb_channels = s->nb_channels;
const float yf = 1.f / nb_channels;
Y = 0.f;
U = V = 0.5f;
for (int ch = 0; ch < nb_channels; ch++) {
const AVComplexFloat *src = ((const AVComplexFloat *)s->ch_out->extended_data[ch]) +
y * ihop_size + ihop_index;
float z;
z = hypotf(src[0].re, src[0].im);
z = remap_log(z, log_factor);
Y += z * yf;
U += z * yf * sinf(2.f * M_PI * ch * yf);
V += z * yf * cosf(2.f * M_PI * ch * yf);
}
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
dstU[0] = av_clip_uint8(lrintf(U * 255.f));
dstV[0] = av_clip_uint8(lrintf(V * 255.f));
}
break;
case 2:
Y = hypotf(src[0].re, src[0].im);
Y = remap_log(Y, log_factor);
U = atan2f(src[0].im, src[0].re);
U = 0.5f + 0.5f * U * Y / M_PI;
V = 1.f - U;
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
dstU[0] = av_clip_uint8(lrintf(U * 255.f));
dstV[0] = av_clip_uint8(lrintf(V * 255.f));
break;
case 1:
Y = atan2f(src[0].im, src[0].re);
Y = 0.5f + 0.5f * Y / M_PI;
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
break;
case 0:
Y = hypotf(src[0].re, src[0].im);
Y = remap_log(Y, log_factor);
dstY[0] = av_clip_uint8(lrintf(Y * 255.f));
break;
}
}
return 0;
}
static int run_channel_cwt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowCWTContext *s = ctx->priv;
const int ch = *(int *)arg;
AVComplexFloat *dst = (AVComplexFloat *)s->fft_out->extended_data[ch];
const int output_sample_count = s->output_sample_count;
const int ihop_size = s->ihop_size;
const int ioffset = (s->output_padding_size - ihop_size) >> 1;
const int count = s->frequency_band_count;
const int start = (count * jobnr) / nb_jobs;
const int end = (count * (jobnr+1)) / nb_jobs;
for (int y = start; y < end; y++) {
AVComplexFloat *isrc = (AVComplexFloat *)s->ifft_in->extended_data[y];
AVComplexFloat *idst = (AVComplexFloat *)s->ifft_out->extended_data[y];
AVComplexFloat *chout = ((AVComplexFloat *)s->ch_out->extended_data[ch]) + y * ihop_size;
const float *kernel = (const float *)s->kernel->extended_data[y];
const unsigned *index = (const unsigned *)s->index;
const int kernel_start = s->kernel_start[y];
const int kernel_stop = s->kernel_stop[y];
memset(isrc, 0, sizeof(*isrc) * output_sample_count);
for (int i = kernel_start; i < kernel_stop; i++) {
const unsigned n = index[i];
cmul(+=, i);
}
s->itx_fn(s->ifft[jobnr], idst, isrc, sizeof(*isrc));
for (int i = 0; i < ihop_size; i++) {
chout[i].re = idst[ioffset + i].re;
chout[i].im = idst[ioffset + i].im;
}
}
return 0;
}
static void compute_kernel(AVFilterContext *ctx)
{
ShowCWTContext *s = ctx->priv;
const int size = s->input_sample_count;
const float scale_factor = 1.f/(float)size;
const int output_sample_count = s->output_sample_count;
const int fsize = s->frequency_band_count;
unsigned *index = s->index;
for (int y = 0; y < fsize; y++) {
float *kernel = (float *)s->kernel->extended_data[y];
int *kernel_start = s->kernel_start;
int *kernel_stop = s->kernel_stop;
float frequency = s->frequency_band[y*2];
float deviation = 1.f / (s->frequency_band[y*2+1] *
output_sample_count);
for (int n = 0; n < size; n++) {
float ff, f = fabsf(n-frequency);
f = size - fabsf(f - size);
ff = expf(-f*f*deviation) * scale_factor;
kernel[n] = ff;
}
for (int n = 0; n < size; n++) {
if (kernel[n] != 0.f) {
kernel_start[y] = n;
break;
}
}
for (int n = 0; n < size; n++) {
if (kernel[size - n - 1] != 0.f) {
kernel_stop[y] = size - n;
break;
}
}
}
for (int n = 0; n < size; n++)
index[n] = n % output_sample_count;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
ShowCWTContext *s = ctx->priv;
float maximum_frequency = fminf(s->maximum_frequency, inlink->sample_rate * 0.5f);
float minimum_frequency = s->minimum_frequency;
float scale = 1.f, factor;
int ret;
uninit(ctx);
switch (s->direction) {
case DIRECTION_LR:
case DIRECTION_RL:
s->frequency_band_count = s->h;
break;
case DIRECTION_UD:
case DIRECTION_DU:
s->frequency_band_count = s->w;
break;
}
s->nb_threads = FFMIN(s->frequency_band_count, ff_filter_get_nb_threads(ctx));
s->nb_channels = inlink->ch_layout.nb_channels;
s->old_pts = AV_NOPTS_VALUE;
s->nb_consumed_samples = 65536;
s->input_sample_count = s->nb_consumed_samples;
s->hop_size = s->nb_consumed_samples >> 1;
s->input_padding_size = 65536;
s->output_padding_size = FFMAX(16, s->input_padding_size * s->pps / inlink->sample_rate);
outlink->w = s->w;
outlink->h = s->h;
outlink->sample_aspect_ratio = (AVRational){1,1};
s->fft_in_size = FFALIGN(s->input_padding_size, av_cpu_max_align());
s->fft_out_size = FFALIGN(s->input_padding_size, av_cpu_max_align());
s->output_sample_count = s->output_padding_size;
s->ifft_in_size = FFALIGN(s->output_padding_size, av_cpu_max_align());
s->ifft_out_size = FFALIGN(s->output_padding_size, av_cpu_max_align());
s->ihop_size = s->output_padding_size >> 1;
ret = av_tx_init(&s->fft, &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->input_padding_size, &scale, 0);
if (ret < 0)
return ret;
s->ifft = av_calloc(s->nb_threads, sizeof(*s->ifft));
if (!s->ifft)
return AVERROR(ENOMEM);
for (int n = 0; n < s->nb_threads; n++) {
ret = av_tx_init(&s->ifft[n], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->output_padding_size, &scale, 0);
if (ret < 0)
return ret;
}
s->frequency_band = av_calloc(s->frequency_band_count,
sizeof(*s->frequency_band) * 2);
s->outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
s->fft_in = ff_get_audio_buffer(inlink, s->fft_in_size * 2);
s->fft_out = ff_get_audio_buffer(inlink, s->fft_out_size * 2);
s->overlap = ff_get_audio_buffer(inlink, s->input_padding_size);
s->ch_out = ff_get_audio_buffer(inlink, s->frequency_band_count * 2 * s->ihop_size);
s->ifft_in = av_frame_alloc();
s->ifft_out = av_frame_alloc();
s->kernel = av_frame_alloc();
s->index = av_calloc(s->input_padding_size, sizeof(*s->index));
s->kernel_start = av_calloc(s->frequency_band_count, sizeof(*s->kernel_start));
s->kernel_stop = av_calloc(s->frequency_band_count, sizeof(*s->kernel_stop));
if (!s->outpicref || !s->fft_in || !s->fft_out ||
!s->ifft_in || !s->ifft_out || !s->kernel_start || !s->kernel_stop ||
!s->frequency_band || !s->kernel || !s->overlap || !s->index)
return AVERROR(ENOMEM);
s->ifft_in->format = inlink->format;
s->ifft_in->nb_samples = s->ifft_in_size * 2;
s->ifft_in->ch_layout.nb_channels = s->frequency_band_count;
ret = av_frame_get_buffer(s->ifft_in, 0);
if (ret < 0)
return ret;
s->ifft_out->format = inlink->format;
s->ifft_out->nb_samples = s->ifft_out_size * 2;
s->ifft_out->ch_layout.nb_channels = s->frequency_band_count;
ret = av_frame_get_buffer(s->ifft_out, 0);
if (ret < 0)
return ret;
s->kernel->format = inlink->format;
s->kernel->nb_samples = s->input_padding_size;
s->kernel->ch_layout.nb_channels = s->frequency_band_count;
ret = av_frame_get_buffer(s->kernel, 0);
if (ret < 0)
return ret;
s->outpicref->sample_aspect_ratio = (AVRational){1,1};
for (int y = 0; y < outlink->h; y++) {
memset(s->outpicref->data[0] + y * s->outpicref->linesize[0], 0, outlink->w);
memset(s->outpicref->data[1] + y * s->outpicref->linesize[1], 128, outlink->w);
memset(s->outpicref->data[2] + y * s->outpicref->linesize[2], 128, outlink->w);
if (s->outpicref->data[3])
memset(s->outpicref->data[3] + y * s->outpicref->linesize[3], 0, outlink->w);
}
s->outpicref->color_range = AVCOL_RANGE_JPEG;
factor = s->nb_consumed_samples / (float)inlink->sample_rate;
minimum_frequency *= factor;
maximum_frequency *= factor;
switch (s->frequency_scale) {
case FSCALE_LOG2:
minimum_frequency = logf(minimum_frequency) / logf(2.f);
maximum_frequency = logf(maximum_frequency) / logf(2.f);
break;
case FSCALE_BARK:
minimum_frequency = 6.f * asinhf(minimum_frequency / 600.f);
maximum_frequency = 6.f * asinhf(maximum_frequency / 600.f);
break;
case FSCALE_MEL:
minimum_frequency = 2595.f * log10f(1.f + minimum_frequency / 700.f);
maximum_frequency = 2595.f * log10f(1.f + maximum_frequency / 700.f);
break;
case FSCALE_ERBS:
minimum_frequency = 11.17268f * log(1.f + (46.06538f * minimum_frequency) / (minimum_frequency + 14678.49f));
maximum_frequency = 11.17268f * log(1.f + (46.06538f * maximum_frequency) / (maximum_frequency + 14678.49f));
break;
}
frequency_band(s->frequency_band,
s->frequency_band_count, maximum_frequency - minimum_frequency,
minimum_frequency, s->frequency_scale, s->deviation);
av_log(ctx, AV_LOG_DEBUG, "input_sample_count: %d\n", s->input_sample_count);
av_log(ctx, AV_LOG_DEBUG, "output_sample_count: %d\n", s->output_sample_count);
switch (s->direction) {
case DIRECTION_LR:
s->pos = 0;
break;
case DIRECTION_RL:
s->pos = s->w - 1;
break;
case DIRECTION_UD:
s->pos = 0;
break;
case DIRECTION_DU:
s->pos = s->h - 1;
break;
}
s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
if (strcmp(s->rate_str, "auto")) {
ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
} else {
s->frame_rate = s->auto_frame_rate;
}
outlink->frame_rate = s->frame_rate;
outlink->time_base = av_inv_q(outlink->frame_rate);
compute_kernel(ctx);
return 0;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
ShowCWTContext *s = ctx->priv;
int ret = 0, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (s->outpicref) {
AVFrame *fin;
if (s->ihop_index == 0) {
ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &fin);
if (ret < 0)
return ret;
if (ret > 0) {
for (int ch = 0; ch < s->nb_channels; ch++)
run_channel_cwt_prepare(ctx, fin, ch);
s->in_pts = fin->pts;
s->in_nb_samples = fin->nb_samples;
av_frame_free(&fin);
}
}
if (ret > 0 || s->ihop_index > 0) {
int64_t pts_offset;
switch (s->slide) {
case SLIDE_SCROLL:
switch (s->direction) {
case DIRECTION_UD:
for (int p = 0; p < 3; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
for (int y = s->h - 1; y > 0; y--) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memmove(dst, dst - linesize, s->w);
}
}
break;
case DIRECTION_DU:
for (int p = 0; p < 3; p++) {
ptrdiff_t linesize = s->outpicref->linesize[p];
for (int y = 0; y < s->h - 1; y++) {
uint8_t *dst = s->outpicref->data[p] + y * linesize;
memmove(dst, dst + linesize, s->w);
}
}
break;
}
break;
}
for (int ch = 0; ch < s->nb_channels && s->ihop_index == 0; ch++) {
ff_filter_execute(ctx, run_channel_cwt, (void *)&ch, NULL,
s->nb_threads);
}
ff_filter_execute(ctx, draw, NULL, NULL, s->nb_threads);
pts_offset = av_rescale_q(s->ihop_index, av_make_q(1, s->ihop_size), av_make_q(1, s->in_nb_samples));
s->outpicref->pts = av_rescale_q(s->in_pts + pts_offset, inlink->time_base, outlink->time_base);
s->ihop_index++;
if (s->ihop_index >= s->ihop_size)
s->ihop_index = 0;
switch (s->slide) {
case SLIDE_REPLACE:
switch (s->direction) {
case DIRECTION_LR:
s->pos++;
if (s->pos >= s->w)
s->pos = 0;
break;
case DIRECTION_RL:
s->pos--;
if (s->pos < 0)
s->pos = s->w - 1;
break;
case DIRECTION_UD:
s->pos++;
if (s->pos >= s->h)
s->pos = 0;
break;
case DIRECTION_DU:
s->pos--;
if (s->pos < 0)
s->pos = s->h - 1;
break;
}
break;
case SLIDE_SCROLL:
switch (s->direction) {
case DIRECTION_LR:
s->pos = 0;
break;
case DIRECTION_RL:
s->pos = s->w - 1;
break;
case DIRECTION_UD:
s->pos = 0;
break;
case DIRECTION_DU:
s->pos = s->h - 1;
break;
}
break;
}
if (s->old_pts < s->outpicref->pts) {
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
ret = av_frame_copy_props(out, s->outpicref);
if (ret < 0)
goto fail;
ret = av_frame_copy(out, s->outpicref);
if (ret < 0)
goto fail;
s->old_pts = s->outpicref->pts;
ret = ff_filter_frame(outlink, out);
if (ret <= 0)
return ret;
fail:
av_frame_free(&out);
return ret;
}
}
}
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
ff_outlink_set_status(outlink, status, pts);
return 0;
}
}
if (ff_inlink_queued_samples(inlink) >= s->hop_size || s->ihop_index) {
ff_filter_set_ready(ctx, 10);
return 0;
}
if (ff_outlink_frame_wanted(outlink)) {
ff_inlink_request_frame(inlink);
return 0;
}
return FFERROR_NOT_READY;
}
static const AVFilterPad showcwt_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
static const AVFilterPad showcwt_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_avf_showcwt = {
.name = "showcwt",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a CWT (Continuous Wavelet Transform) spectrum video output."),
.uninit = uninit,
.priv_size = sizeof(ShowCWTContext),
FILTER_INPUTS(showcwt_inputs),
FILTER_OUTPUTS(showcwt_outputs),
FILTER_QUERY_FUNC(query_formats),
.activate = activate,
.priv_class = &showcwt_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};

@ -31,8 +31,8 @@
#include "version_major.h"
#define LIBAVFILTER_VERSION_MINOR 50
#define LIBAVFILTER_VERSION_MICRO 101
#define LIBAVFILTER_VERSION_MINOR 51
#define LIBAVFILTER_VERSION_MICRO 100
#define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \

Loading…
Cancel
Save