mirror of https://github.com/FFmpeg/FFmpeg.git
Patch by Francesco Lavra (firstnamelastname@interfree.it) Originally committed as revision 23579 to svn://svn.ffmpeg.org/ffmpeg/trunkoldabi
parent
b6c265ec2b
commit
d31ba23185
8 changed files with 525 additions and 4 deletions
@ -0,0 +1,511 @@ |
||||
/*
|
||||
* Real Audio 1.0 (14.4K) encoder |
||||
* Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it> |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file libavcodec/ra144enc.c |
||||
* Real Audio 1.0 (14.4K) encoder |
||||
* @author Francesco Lavra <francescolavra@interfree.it> |
||||
*/ |
||||
|
||||
#include <values.h> |
||||
|
||||
#include "avcodec.h" |
||||
#include "put_bits.h" |
||||
#include "lpc.h" |
||||
#include "celp_filters.h" |
||||
#include "ra144.h" |
||||
|
||||
|
||||
static av_cold int ra144_encode_init(AVCodecContext * avctx) |
||||
{ |
||||
RA144Context *ractx; |
||||
|
||||
if (avctx->sample_fmt != SAMPLE_FMT_S16) { |
||||
av_log(avctx, AV_LOG_ERROR, "invalid sample format\n"); |
||||
return -1; |
||||
} |
||||
if (avctx->channels != 1) { |
||||
av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n", |
||||
avctx->channels); |
||||
return -1; |
||||
} |
||||
avctx->frame_size = NBLOCKS * BLOCKSIZE; |
||||
avctx->bit_rate = 8000; |
||||
ractx = avctx->priv_data; |
||||
ractx->lpc_coef[0] = ractx->lpc_tables[0]; |
||||
ractx->lpc_coef[1] = ractx->lpc_tables[1]; |
||||
ractx->avctx = avctx; |
||||
dsputil_init(&ractx->dsp, avctx); |
||||
return 0; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Quantizes a value by searching a sorted table for the element with the |
||||
* nearest value |
||||
* |
||||
* @param value value to quantize |
||||
* @param table array containing the quantization table |
||||
* @param size size of the quantization table |
||||
* @return index of the quantization table corresponding to the element with the |
||||
* nearest value |
||||
*/ |
||||
static int quantize(int value, const int16_t *table, unsigned int size) |
||||
{ |
||||
unsigned int low = 0, high = size - 1; |
||||
|
||||
while (1) { |
||||
int index = (low + high) >> 1; |
||||
int error = table[index] - value; |
||||
|
||||
if (index == low) |
||||
return table[high] + error > value ? low : high; |
||||
if (error > 0) { |
||||
high = index; |
||||
} else { |
||||
low = index; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Orthogonalizes a vector to another vector |
||||
* |
||||
* @param v vector to orthogonalize |
||||
* @param u vector against which orthogonalization is performed |
||||
*/ |
||||
static void orthogonalize(float *v, const float *u) |
||||
{ |
||||
int i; |
||||
float num = 0, den = 0; |
||||
|
||||
for (i = 0; i < BLOCKSIZE; i++) { |
||||
num += v[i] * u[i]; |
||||
den += u[i] * u[i]; |
||||
} |
||||
num /= den; |
||||
for (i = 0; i < BLOCKSIZE; i++) |
||||
v[i] -= num * u[i]; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Calculates match score and gain of an LPC-filtered vector with respect to |
||||
* input data, possibly othogonalizing it to up to 2 other vectors |
||||
* |
||||
* @param work array used to calculate the filtered vector |
||||
* @param coefs coefficients of the LPC filter |
||||
* @param vect original vector |
||||
* @param ortho1 first vector against which orthogonalization is performed |
||||
* @param ortho2 second vector against which orthogonalization is performed |
||||
* @param data input data |
||||
* @param score pointer to variable where match score is returned |
||||
* @param gain pointer to variable where gain is returned |
||||
*/ |
||||
static void get_match_score(float *work, const float *coefs, float *vect, |
||||
const float *ortho1, const float *ortho2, |
||||
const float *data, float *score, float *gain) |
||||
{ |
||||
float c, g; |
||||
int i; |
||||
|
||||
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); |
||||
if (ortho1) |
||||
orthogonalize(work, ortho1); |
||||
if (ortho2) |
||||
orthogonalize(work, ortho2); |
||||
c = g = 0; |
||||
for (i = 0; i < BLOCKSIZE; i++) { |
||||
g += work[i] * work[i]; |
||||
c += data[i] * work[i]; |
||||
} |
||||
if (c <= 0) { |
||||
*score = 0; |
||||
return; |
||||
} |
||||
*gain = c / g; |
||||
*score = *gain * c; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Creates a vector from the adaptive codebook at a given lag value |
||||
* |
||||
* @param vect array where vector is stored |
||||
* @param cb adaptive codebook |
||||
* @param lag lag value |
||||
*/ |
||||
static void create_adapt_vect(float *vect, const int16_t *cb, int lag) |
||||
{ |
||||
int i; |
||||
|
||||
cb += BUFFERSIZE - lag; |
||||
for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++) |
||||
vect[i] = cb[i]; |
||||
if (lag < BLOCKSIZE) |
||||
for (i = 0; i < BLOCKSIZE - lag; i++) |
||||
vect[lag + i] = cb[i]; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Searches the adaptive codebook for the best entry and gain and removes its |
||||
* contribution from input data |
||||
* |
||||
* @param adapt_cb array from which the adaptive codebook is extracted |
||||
* @param work array used to calculate LPC-filtered vectors |
||||
* @param coefs coefficients of the LPC filter |
||||
* @param data input data |
||||
* @return index of the best entry of the adaptive codebook |
||||
*/ |
||||
static int adaptive_cb_search(const int16_t *adapt_cb, float *work, |
||||
const float *coefs, float *data) |
||||
{ |
||||
int i, best_vect; |
||||
float score, gain, best_score, best_gain; |
||||
float exc[BLOCKSIZE]; |
||||
|
||||
gain = best_score = 0; |
||||
for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) { |
||||
create_adapt_vect(exc, adapt_cb, i); |
||||
get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain); |
||||
if (score > best_score) { |
||||
best_score = score; |
||||
best_vect = i; |
||||
best_gain = gain; |
||||
} |
||||
} |
||||
if (!best_score) |
||||
return 0; |
||||
|
||||
/**
|
||||
* Re-calculate the filtered vector from the vector with maximum match score |
||||
* and remove its contribution from input data. |
||||
*/ |
||||
create_adapt_vect(exc, adapt_cb, best_vect); |
||||
ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER); |
||||
for (i = 0; i < BLOCKSIZE; i++) |
||||
data[i] -= best_gain * work[i]; |
||||
return (best_vect - BLOCKSIZE / 2 + 1); |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Finds the best vector of a fixed codebook by applying an LPC filter to |
||||
* codebook entries, possibly othogonalizing them to up to 2 other vectors and |
||||
* matching the results with input data |
||||
* |
||||
* @param work array used to calculate the filtered vectors |
||||
* @param coefs coefficients of the LPC filter |
||||
* @param cb fixed codebook |
||||
* @param ortho1 first vector against which orthogonalization is performed |
||||
* @param ortho2 second vector against which orthogonalization is performed |
||||
* @param data input data |
||||
* @param idx pointer to variable where the index of the best codebook entry is |
||||
* returned |
||||
* @param gain pointer to variable where the gain of the best codebook entry is |
||||
* returned |
||||
*/ |
||||
static void find_best_vect(float *work, const float *coefs, |
||||
const int8_t cb[][BLOCKSIZE], const float *ortho1, |
||||
const float *ortho2, float *data, int *idx, |
||||
float *gain) |
||||
{ |
||||
int i, j; |
||||
float g, score, best_score; |
||||
float vect[BLOCKSIZE]; |
||||
|
||||
*idx = *gain = best_score = 0; |
||||
for (i = 0; i < FIXED_CB_SIZE; i++) { |
||||
for (j = 0; j < BLOCKSIZE; j++) |
||||
vect[j] = cb[i][j]; |
||||
get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g); |
||||
if (score > best_score) { |
||||
best_score = score; |
||||
*idx = i; |
||||
*gain = g; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Searches the two fixed codebooks for the best entry and gain |
||||
* |
||||
* @param work array used to calculate LPC-filtered vectors |
||||
* @param coefs coefficients of the LPC filter |
||||
* @param data input data |
||||
* @param cba_idx index of the best entry of the adaptive codebook |
||||
* @param cb1_idx pointer to variable where the index of the best entry of the |
||||
* first fixed codebook is returned |
||||
* @param cb2_idx pointer to variable where the index of the best entry of the |
||||
* second fixed codebook is returned |
||||
*/ |
||||
static void fixed_cb_search(float *work, const float *coefs, float *data, |
||||
int cba_idx, int *cb1_idx, int *cb2_idx) |
||||
{ |
||||
int i, ortho_cb1; |
||||
float gain; |
||||
float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE]; |
||||
float vect[BLOCKSIZE]; |
||||
|
||||
/**
|
||||
* The filtered vector from the adaptive codebook can be retrieved from |
||||
* work, because this function is called just after adaptive_cb_search(). |
||||
*/ |
||||
if (cba_idx) |
||||
memcpy(cba_vect, work, sizeof(cba_vect)); |
||||
|
||||
find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL, |
||||
data, cb1_idx, &gain); |
||||
|
||||
/**
|
||||
* Re-calculate the filtered vector from the vector with maximum match score |
||||
* and remove its contribution from input data. |
||||
*/ |
||||
if (gain) { |
||||
for (i = 0; i < BLOCKSIZE; i++) |
||||
vect[i] = ff_cb1_vects[*cb1_idx][i]; |
||||
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); |
||||
if (cba_idx) |
||||
orthogonalize(work, cba_vect); |
||||
for (i = 0; i < BLOCKSIZE; i++) |
||||
data[i] -= gain * work[i]; |
||||
memcpy(cb1_vect, work, sizeof(cb1_vect)); |
||||
ortho_cb1 = 1; |
||||
} else |
||||
ortho_cb1 = 0; |
||||
|
||||
find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL, |
||||
ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain); |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Encodes a subblock of the current frame |
||||
* |
||||
* @param ractx encoder context |
||||
* @param sblock_data input data of the subblock |
||||
* @param lpc_coefs coefficients of the LPC filter |
||||
* @param rms RMS of the reflection coefficients |
||||
* @param pb pointer to PutBitContext of the current frame |
||||
*/ |
||||
static void ra144_encode_subblock(RA144Context *ractx, |
||||
const int16_t *sblock_data, |
||||
const int16_t *lpc_coefs, unsigned int rms, |
||||
PutBitContext *pb) |
||||
{ |
||||
float data[BLOCKSIZE], work[LPC_ORDER + BLOCKSIZE]; |
||||
float coefs[LPC_ORDER]; |
||||
float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE]; |
||||
int16_t cba_vect[BLOCKSIZE]; |
||||
int cba_idx, cb1_idx, cb2_idx, gain; |
||||
int i, n, m[3]; |
||||
float g[3]; |
||||
float error, best_error; |
||||
|
||||
for (i = 0; i < LPC_ORDER; i++) { |
||||
work[i] = ractx->curr_sblock[BLOCKSIZE + i]; |
||||
coefs[i] = lpc_coefs[i] * (1/4096.0); |
||||
} |
||||
|
||||
/**
|
||||
* Calculate the zero-input response of the LPC filter and subtract it from |
||||
* input data. |
||||
*/ |
||||
memset(data, 0, sizeof(data)); |
||||
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE, |
||||
LPC_ORDER); |
||||
for (i = 0; i < BLOCKSIZE; i++) { |
||||
zero[i] = work[LPC_ORDER + i]; |
||||
data[i] = sblock_data[i] - zero[i]; |
||||
} |
||||
|
||||
/**
|
||||
* Codebook search is performed without taking into account the contribution |
||||
* of the previous subblock, since it has been just subtracted from input |
||||
* data. |
||||
*/ |
||||
memset(work, 0, LPC_ORDER * sizeof(*work)); |
||||
|
||||
cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs, |
||||
data); |
||||
if (cba_idx) { |
||||
/**
|
||||
* The filtered vector from the adaptive codebook can be retrieved from |
||||
* work, see implementation of adaptive_cb_search(). |
||||
*/ |
||||
memcpy(cba, work + LPC_ORDER, sizeof(cba)); |
||||
|
||||
ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1); |
||||
m[0] = (ff_irms(cba_vect) * rms) >> 12; |
||||
} |
||||
fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx); |
||||
for (i = 0; i < BLOCKSIZE; i++) { |
||||
cb1[i] = ff_cb1_vects[cb1_idx][i]; |
||||
cb2[i] = ff_cb2_vects[cb2_idx][i]; |
||||
} |
||||
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE, |
||||
LPC_ORDER); |
||||
memcpy(cb1, work + LPC_ORDER, sizeof(cb1)); |
||||
m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8; |
||||
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE, |
||||
LPC_ORDER); |
||||
memcpy(cb2, work + LPC_ORDER, sizeof(cb2)); |
||||
m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8; |
||||
best_error = FLT_MAX; |
||||
gain = 0; |
||||
for (n = 0; n < 256; n++) { |
||||
g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) * |
||||
(1/4096.0); |
||||
g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) * |
||||
(1/4096.0); |
||||
error = 0; |
||||
if (cba_idx) { |
||||
g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) * |
||||
(1/4096.0); |
||||
for (i = 0; i < BLOCKSIZE; i++) { |
||||
data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] + |
||||
g[2] * cb2[i]; |
||||
error += (data[i] - sblock_data[i]) * |
||||
(data[i] - sblock_data[i]); |
||||
} |
||||
} else { |
||||
for (i = 0; i < BLOCKSIZE; i++) { |
||||
data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i]; |
||||
error += (data[i] - sblock_data[i]) * |
||||
(data[i] - sblock_data[i]); |
||||
} |
||||
} |
||||
if (error < best_error) { |
||||
best_error = error; |
||||
gain = n; |
||||
} |
||||
} |
||||
put_bits(pb, 7, cba_idx); |
||||
put_bits(pb, 8, gain); |
||||
put_bits(pb, 7, cb1_idx); |
||||
put_bits(pb, 7, cb2_idx); |
||||
ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms, |
||||
gain); |
||||
} |
||||
|
||||
|
||||
static int ra144_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
||||
int buf_size, void *data) |
||||
{ |
||||
static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4}; |
||||
static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; |
||||
RA144Context *ractx; |
||||
PutBitContext pb; |
||||
int32_t lpc_data[NBLOCKS * BLOCKSIZE]; |
||||
int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER]; |
||||
int shift[LPC_ORDER]; |
||||
int16_t block_coefs[NBLOCKS][LPC_ORDER]; |
||||
int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */ |
||||
unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */ |
||||
int energy = 0; |
||||
int i, idx; |
||||
|
||||
if (buf_size < FRAMESIZE) { |
||||
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n"); |
||||
return 0; |
||||
} |
||||
ractx = avctx->priv_data; |
||||
|
||||
/**
|
||||
* Since the LPC coefficients are calculated on a frame centered over the |
||||
* fourth subframe, to encode a given frame, data from the next frame is |
||||
* needed. In each call to this function, the previous frame (whose data are |
||||
* saved in the encoder context) is encoded, and data from the current frame |
||||
* are saved in the encoder context to be used in the next function call. |
||||
*/ |
||||
for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) { |
||||
lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i]; |
||||
energy += (lpc_data[i] * lpc_data[i]) >> 4; |
||||
} |
||||
for (i = 2 * BLOCKSIZE + BLOCKSIZE / 2; i < NBLOCKS * BLOCKSIZE; i++) { |
||||
lpc_data[i] = *((int16_t *)data + i - 2 * BLOCKSIZE - BLOCKSIZE / 2) >> |
||||
2; |
||||
energy += (lpc_data[i] * lpc_data[i]) >> 4; |
||||
} |
||||
energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab, |
||||
32)]; |
||||
|
||||
ff_lpc_calc_coefs(&ractx->dsp, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER, |
||||
LPC_ORDER, 16, lpc_coefs, shift, 1, ORDER_METHOD_EST, 12, |
||||
0); |
||||
for (i = 0; i < LPC_ORDER; i++) |
||||
block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] << |
||||
(12 - shift[LPC_ORDER - 1])); |
||||
|
||||
/**
|
||||
* TODO: apply perceptual weighting of the input speech through bandwidth |
||||
* expansion of the LPC filter. |
||||
*/ |
||||
|
||||
if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) { |
||||
/**
|
||||
* The filter is unstable: use the coefficients of the previous frame. |
||||
*/ |
||||
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]); |
||||
ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx); |
||||
} |
||||
init_put_bits(&pb, frame, buf_size); |
||||
for (i = 0; i < LPC_ORDER; i++) { |
||||
idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]); |
||||
put_bits(&pb, bit_sizes[i], idx); |
||||
lpc_refl[i] = ff_lpc_refl_cb[i][idx]; |
||||
} |
||||
ractx->lpc_refl_rms[0] = ff_rms(lpc_refl); |
||||
ff_eval_coefs(ractx->lpc_coef[0], lpc_refl); |
||||
refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy); |
||||
refl_rms[1] = ff_interp(ractx, block_coefs[1], 2, |
||||
energy <= ractx->old_energy, |
||||
ff_t_sqrt(energy * ractx->old_energy) >> 12); |
||||
refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy); |
||||
refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy); |
||||
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]); |
||||
put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32)); |
||||
for (i = 0; i < NBLOCKS; i++) |
||||
ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE, |
||||
block_coefs[i], refl_rms[i], &pb); |
||||
flush_put_bits(&pb); |
||||
ractx->old_energy = energy; |
||||
ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0]; |
||||
FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]); |
||||
for (i = 0; i < NBLOCKS * BLOCKSIZE; i++) |
||||
ractx->curr_block[i] = *((int16_t *)data + i) >> 2; |
||||
return FRAMESIZE; |
||||
} |
||||
|
||||
|
||||
AVCodec ra_144_encoder = |
||||
{ |
||||
"real_144", |
||||
CODEC_TYPE_AUDIO, |
||||
CODEC_ID_RA_144, |
||||
sizeof(RA144Context), |
||||
ra144_encode_init, |
||||
ra144_encode_frame, |
||||
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K) encoder"), |
||||
}; |
Loading…
Reference in new issue