AAC encoder: improve SF range utilization

This patch does 4 things, all of which interact and thus it
woudln't be possible to commit them separately without causing
either quality regressions or assertion failures.

Fate comparison targets don't all reflect improvements in
quality, yet listening tests show substantially improved quality
and stability.

1. Increase SF range utilization.

The spec requires SF delta values to be constrained within the
range -60..60. The previous code was applying that range to
the whole SF array and not only the deltas of consecutive values,
because doing so requires smarter code: zeroing or otherwise
skipping a band may invalidate lots of SF choices.

This patch implements that logic to allow the coders to utilize
the full dynamic range of scalefactors, increasing quality quite
considerably, and fixing delta-SF-related assertion failures,
since now the limitation is enforced rather than asserted.

2. PNS tweaks

The previous modification makes big improvements in twoloop's
efficiency, and every time that happens PNS logic needs to be
tweaked accordingly to avoid it from stepping all over twoloop's
decisions. This patch includes modifications of the sort.

3. Account for lowpass cutoff during PSY analysis

The closer PSY's allocation is to final allocation the better
the quality is, and given these modifications, twoloop is now
very efficient at avoiding holes. Thus, to compute accurate
thresholds, PSY needs to account for the lowpass applied
implicitly during twoloop (by zeroing high bands).

This patch makes twoloop set the cutoff in psymodel's context
the first time it runs, and makes PSY account for it during
threshold computation, making PE and threshold computations
closer to the final allocation and thus achieving better
subjective quality.

4. Tweaks to RC lambda tracking loop in relation to PNS

Without this tweak some corner cases cause quality regressions.
Basically, lambda needs to react faster to overall bitrate
efficiency changes since now PNS can be quite successful in
enforcing maximum bitrates, when PSY allocates too many bits
to the lower bands, suppressing the signals RC logic uses to
lower lambda in those cases and causing aggressive PNS.

This tweak makes PNS much less aggressive, though it can still
use some further tweaks.

Also update MIPS specializations and adjust fuzz

Also in lavc/mips/aacpsy_mips.h: remove trailing whitespace
pull/162/merge
Claudio Freire 9 years ago
parent ec83efd4d3
commit ca203e9985
  1. 60
      libavcodec/aaccoder.c
  2. 136
      libavcodec/aaccoder_twoloop.h
  3. 2
      libavcodec/aacenc.c
  4. 11
      libavcodec/aacenc_is.c
  5. 63
      libavcodec/aacenc_utils.h
  6. 20
      libavcodec/aacpsy.c
  7. 172
      libavcodec/mips/aaccoder_mips.c
  8. 78
      libavcodec/mips/aacpsy_mips.h
  9. 1
      libavcodec/psymodel.c
  10. 1
      libavcodec/psymodel.h
  11. 26
      tests/fate/aac.mak

@ -54,7 +54,7 @@
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */ * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
#define NOISE_SPREAD_THRESHOLD 0.5073f #define NOISE_SPREAD_THRESHOLD 0.9f
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
* replace low energy non zero bands */ * replace low energy non zero bands */
@ -591,6 +591,7 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
int bandwidth, cutoff; int bandwidth, cutoff;
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128]; float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
float *NOR34 = &s->scoefs[3*128]; float *NOR34 = &s->scoefs[3*128];
uint8_t nextband[128];
const float lambda = s->lambda; const float lambda = s->lambda;
const float freq_mult = avctx->sample_rate*0.5f/wlen; const float freq_mult = avctx->sample_rate*0.5f/wlen;
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda); const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
@ -604,6 +605,7 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
/** Keep this in sync with twoloop's cutoff selection */ /** Keep this in sync with twoloop's cutoff selection */
float rate_bandwidth_multiplier = 1.5f; float rate_bandwidth_multiplier = 1.5f;
int prev = -1000, prev_sf = -1;
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE) int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
: (avctx->bit_rate / avctx->channels); : (avctx->bit_rate / avctx->channels);
@ -619,6 +621,7 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
ff_init_nextband_map(sce, nextband);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
int wstart = w*128; int wstart = w*128;
for (g = 0; g < sce->ics.num_swb; g++) { for (g = 0; g < sce->ics.num_swb; g++) {
@ -655,16 +658,27 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
* *
* At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important) * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
*/ */
if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold || if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
(!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) || (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
min_energy < pns_transient_energy_r * max_energy ) { min_energy < pns_transient_energy_r * max_energy ) {
sce->pns_ener[w*16+g] = sfb_energy; sce->pns_ener[w*16+g] = sfb_energy;
if (!sce->zeroes[w*16+g])
prev_sf = sce->sf_idx[w*16+g];
continue; continue;
} }
pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread); pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */ noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */ noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
if (prev != -1000) {
int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
if (!sce->zeroes[w*16+g])
prev_sf = sce->sf_idx[w*16+g];
continue;
}
}
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
float band_energy, scale, pns_senergy; float band_energy, scale, pns_senergy;
const int start_c = (w+w2)*128+sce->ics.swb_offset[g]; const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
@ -697,7 +711,10 @@ static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChanne
if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) { if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
sce->band_type[w*16+g] = NOISE_BT; sce->band_type[w*16+g] = NOISE_BT;
sce->zeroes[w*16+g] = 0; sce->zeroes[w*16+g] = 0;
prev = noise_sfi;
} }
if (!sce->zeroes[w*16+g])
prev_sf = sce->sf_idx[w*16+g];
} }
} }
} }
@ -775,7 +792,8 @@ static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelEleme
static void search_for_ms(AACEncContext *s, ChannelElement *cpe) static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
{ {
int start = 0, i, w, w2, g, sid_sf_boost; int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
uint8_t nextband0[128], nextband1[128];
float M[128], S[128]; float M[128], S[128];
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
const float lambda = s->lambda; const float lambda = s->lambda;
@ -784,21 +802,19 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
SingleChannelElement *sce1 = &cpe->ch[1]; SingleChannelElement *sce1 = &cpe->ch[1];
if (!cpe->common_window) if (!cpe->common_window)
return; return;
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
int min_sf_idx_mid = SCALE_MAX_POS;
int min_sf_idx_side = SCALE_MAX_POS;
for (g = 0; g < sce0->ics.num_swb; g++) {
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
min_sf_idx_mid = FFMIN(min_sf_idx_mid, sce0->sf_idx[w*16+g]);
if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
min_sf_idx_side = FFMIN(min_sf_idx_side, sce1->sf_idx[w*16+g]);
}
/** Scout out next nonzero bands */
ff_init_nextband_map(sce0, nextband0);
ff_init_nextband_map(sce1, nextband1);
prev_mid = sce0->sf_idx[0];
prev_side = sce1->sf_idx[0];
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0; start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) { for (g = 0; g < sce0->ics.num_swb; g++) {
float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f; float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
cpe->ms_mask[w*16+g] = 0; cpe->ms_mask[w*16+g] = 0;
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g]) {
float Mmax = 0.0f, Smax = 0.0f; float Mmax = 0.0f, Smax = 0.0f;
/* Must compute mid/side SF and book for the whole window group */ /* Must compute mid/side SF and book for the whole window group */
@ -825,16 +841,18 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
int midcb, sidcb; int midcb, sidcb;
minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]); minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
mididx = av_clip(minidx, min_sf_idx_mid, min_sf_idx_mid + SCALE_MAX_DIFF); mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
sididx = av_clip(minidx - sid_sf_boost * 3, min_sf_idx_side, min_sf_idx_side + SCALE_MAX_DIFF); sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
midcb = find_min_book(Mmax, mididx); if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
sidcb = find_min_book(Smax, sididx); && ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
|| !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
if ((mididx > minidx) || (sididx > minidx)) {
/* scalefactor range violation, bad stuff, will decrease quality unacceptably */ /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
continue; continue;
} }
midcb = find_min_book(Mmax, mididx);
sidcb = find_min_book(Smax, sididx);
/* No CB can be zero */ /* No CB can be zero */
midcb = FFMAX(1,midcb); midcb = FFMAX(1,midcb);
sidcb = FFMAX(1,sidcb); sidcb = FFMAX(1,sidcb);
@ -900,6 +918,10 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
} }
} }
} }
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
prev_mid = sce0->sf_idx[w*16+g];
if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
prev_side = sce1->sf_idx[w*16+g];
start += sce0->ics.swb_sizes[g]; start += sce0->ics.swb_sizes[g];
} }
} }

@ -76,6 +76,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
int refbits = destbits; int refbits = destbits;
int toomanybits, toofewbits; int toomanybits, toofewbits;
char nzs[128]; char nzs[128];
uint8_t nextband[128];
int maxsf[128]; int maxsf[128];
float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128]; float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
float maxvals[128], spread_thr_r[128]; float maxvals[128], spread_thr_r[128];
@ -102,7 +103,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
*/ */
float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10); float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
int fflag, minscaler, maxscaler, nminscaler, minrdsf; int fflag, minscaler, maxscaler, nminscaler;
int its = 0; int its = 0;
int maxits = 30; int maxits = 30;
int allz = 0; int allz = 0;
@ -158,9 +159,13 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
/** search further */ /** search further */
maxits *= 2; maxits *= 2;
} else { } else {
/** When using ABR, be strict */ /* When using ABR, be strict, but a reasonable leeway is
toomanybits = destbits + destbits/16; * critical to allow RC to smoothly track desired bitrate
toofewbits = destbits - destbits/4; * without sudden quality drops that cause audible artifacts.
* Symmetry is also desirable, to avoid systematic bias.
*/
toomanybits = destbits + destbits/8;
toofewbits = destbits - destbits/8;
sfoffs = 0; sfoffs = 0;
rdlambda = sqrtf(rdlambda); rdlambda = sqrtf(rdlambda);
@ -191,6 +196,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
bandwidth = avctx->cutoff; bandwidth = avctx->cutoff;
} else { } else {
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
s->psy.cutoff = bandwidth;
} }
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
@ -241,7 +247,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
nzs[w*16+g] = nz; nzs[w*16+g] = nz;
sce->zeroes[w*16+g] = !nz; sce->zeroes[w*16+g] = !nz;
allz |= nz; allz |= nz;
if (nz) { if (nz && sce->can_pns[w*16+g]) {
spread_thr_r[w*16+g] = energy * nz / (uplim * spread); spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
if (min_spread_thr_r < 0) { if (min_spread_thr_r < 0) {
min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g]; min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
@ -433,6 +439,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
} while (qstep); } while (qstep);
overdist = 1; overdist = 1;
fflag = tbits < toofewbits;
for (i = 0; i < 2 && (overdist || recomprd); ++i) { for (i = 0; i < 2 && (overdist || recomprd); ++i) {
if (recomprd) { if (recomprd) {
/** Must recompute distortion */ /** Must recompute distortion */
@ -484,13 +491,13 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
} }
} }
} }
if (!i && s->options.pns && its > maxits/2) { if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) {
float maxoverdist = 0.0f; float maxoverdist = 0.0f;
float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
overdist = recomprd = 0; overdist = recomprd = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
float ovrfactor = 2.f+(maxits-its)*16.f/maxits;
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
if (!sce->zeroes[w*16+g] && dists[w*16+g] > uplims[w*16+g]*ovrfactor) { if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]); float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
maxoverdist = FFMAX(maxoverdist, ovrdist); maxoverdist = FFMAX(maxoverdist, ovrdist);
overdist++; overdist++;
@ -506,7 +513,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
float zspread; float zspread;
int zeroable = 0; int zeroable = 0;
int zeroed = 0; int zeroed = 0;
int maxzeroed; int maxzeroed, zloop;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) { if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
@ -517,21 +524,41 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
} }
} }
zspread = (maxspread-minspread) * 0.0125f + minspread; zspread = (maxspread-minspread) * 0.0125f + minspread;
zspread = FFMIN(maxoverdist, zspread); /* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
maxzeroed = zeroable * its / (2 * maxits); * and forced the hand of the later search_for_pns step.
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) { * Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
if (sce->ics.swb_offset[g] < pns_start_pos) * and leave further PNSing to search_for_pns if worthwhile.
continue; */
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread) { ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
sce->zeroes[w*16+g] = 1; maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
sce->band_type[w*16+g] = 0; for (zloop = 0; zloop < 2; zloop++) {
zeroed++; /* Two passes: first distorted stuff - two birds in one shot and all that,
* then anything viable. Viable means not zero, but either CB=zero-able
* (too high SF), not SF <= 1 (that means we'd be operating at very high
* quality, we don't want PNS when doing VHQ), PNS allowed, and within
* the lowest ranking percentile.
*/
float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS;
int mcb;
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
if (sce->ics.swb_offset[g] < pns_start_pos)
continue;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
&& sce->sf_idx[w*16+g] > loopminsf
&& (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]))
|| (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
sce->zeroes[w*16+g] = 1;
sce->band_type[w*16+g] = 0;
zeroed++;
}
} }
} }
} }
if (zeroed) if (zeroed)
recomprd = 1; recomprd = fflag = 1;
} else { } else {
overdist = 0; overdist = 0;
} }
@ -549,9 +576,8 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
} }
} }
fflag = 0;
minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
minrdsf = FFMAX3(60, minscaler - 1, maxscaler - SCALE_MAX_DIFF - 1); prev = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
/** Start with big steps, end up fine-tunning */ /** Start with big steps, end up fine-tunning */
int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10; int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
@ -561,19 +587,22 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
start = w * 128; start = w * 128;
for (g = 0; g < sce->ics.num_swb; g++) { for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g]; int prevsc = sce->sf_idx[w*16+g];
int minrdsfboost = (sce->ics.num_windows > 1) ? av_clip(g-4, -2, 0) : av_clip(g-16, -4, 0); if (prev < 0 && !sce->zeroes[w*16+g])
prev = sce->sf_idx[0];
if (!sce->zeroes[w*16+g]) { if (!sce->zeroes[w*16+g]) {
const float *coefs = sce->coeffs + start; const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start; const float *scaled = s->scoefs + start;
int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > minrdsf) { int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF);
int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF);
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > mindeltasf) {
/* Try to make sure there is some energy in every nonzero band /* Try to make sure there is some energy in every nonzero band
* NOTE: This algorithm must be forcibly imbalanced, pushing harder * NOTE: This algorithm must be forcibly imbalanced, pushing harder
* on holes or more distorted bands at first, otherwise there's * on holes or more distorted bands at first, otherwise there's
* no net gain (since the next iteration will offset all bands * no net gain (since the next iteration will offset all bands
* on the opposite direction to compensate for extra bits) * on the opposite direction to compensate for extra bits)
*/ */
for (i = 0; i < edepth; ++i) { for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) {
int cb, bits; int cb, bits;
float dist, qenergy; float dist, qenergy;
int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1); int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
@ -585,6 +614,12 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
} else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) { } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
break; break;
} }
/* !g is the DC band, it's important, since quantization error here
* applies to less than a cycle, it creates horrible intermodulation
* distortion if it doesn't stick to what psy requests
*/
if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b; int b;
float sqenergy; float sqenergy;
@ -603,19 +638,19 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
sce->sf_idx[w*16+g]--; sce->sf_idx[w*16+g]--;
dists[w*16+g] = dist - bits; dists[w*16+g] = dist - bits;
qenergies[w*16+g] = qenergy; qenergies[w*16+g] = qenergy;
if (mb && (sce->sf_idx[w*16+g] < (minrdsf+minrdsfboost) || ( if (mb && (sce->sf_idx[w*16+g] < mindeltasf || (
(dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g])) (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
) )) { ) )) {
break; break;
} }
} }
} else if (tbits > toofewbits && sce->sf_idx[w*16+g] < maxscaler } else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
&& (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g])) && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
) { ) {
/** Um... over target. Save bits for more important stuff. */ /** Um... over target. Save bits for more important stuff. */
for (i = 0; i < depth; ++i) { for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) {
int cb, bits; int cb, bits;
float dist, qenergy; float dist, qenergy;
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1); cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
@ -651,38 +686,53 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx,
} }
} }
} }
prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf);
if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
} }
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minrdsf, minscaler + SCALE_MAX_DIFF);
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], SCALE_MAX_POS - SCALE_DIV_512);
if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
start += sce->ics.swb_sizes[g]; start += sce->ics.swb_sizes[g];
} }
} }
if (nminscaler < minscaler || sce->ics.num_windows > 1) {
/** SF difference limit violation risk. Must re-clamp. */ /** SF difference limit violation risk. Must re-clamp. */
minscaler = nminscaler; prev = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) { for (g = 0; g < sce->ics.num_swb; g++) {
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); if (!sce->zeroes[w*16+g]) {
int prevsf = sce->sf_idx[w*16+g];
if (prev < 0)
prev = prevsf;
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF);
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
prev = sce->sf_idx[w*16+g];
if (!fflag && prevsf != sce->sf_idx[w*16+g])
fflag = 1;
} }
} }
} }
its++; its++;
} while (fflag && its < maxits); } while (fflag && its < maxits);
/** Scout out next nonzero bands */
ff_init_nextband_map(sce, nextband);
prev = -1; prev = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
/** Make sure proper codebooks are set */ /** Make sure proper codebooks are set */
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g]) { if (!sce->zeroes[w*16+g]) {
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
if (sce->band_type[w*16+g] <= 0) { if (sce->band_type[w*16+g] <= 0) {
sce->zeroes[w*16+g] = 1; if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
sce->band_type[w*16+g] = 0; /** Cannot zero out, make sure it's not attempted */
sce->band_type[w*16+g] = 1;
} else {
sce->zeroes[w*16+g] = 1;
sce->band_type[w*16+g] = 0;
}
} }
} else { } else {
sce->band_type[w*16+g] = 0; sce->band_type[w*16+g] = 0;

@ -793,7 +793,7 @@ static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
s->lambda = FFMIN(s->lambda * ratio, 65536.f); s->lambda = FFMIN(s->lambda * ratio, 65536.f);
/* Keep iterating if we must reduce and lambda is in the sky */ /* Keep iterating if we must reduce and lambda is in the sky */
if ((s->lambda < 300.f || ratio > 0.9f) && (s->lambda > 10.f || ratio < 1.1f)) { if (ratio > 0.9f && ratio < 1.1f) {
break; break;
} else { } else {
if (is_mode || ms_mode || tns_mode || pred_mode) { if (is_mode || ms_mode || tns_mode || pred_mode) {

@ -99,18 +99,23 @@ void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElemen
{ {
SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1]; SingleChannelElement *sce1 = &cpe->ch[1];
int start = 0, count = 0, w, w2, g, i; int start = 0, count = 0, w, w2, g, i, prev_sf1 = -1;
const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f; const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
uint8_t nextband1[128];
if (!cpe->common_window) if (!cpe->common_window)
return; return;
/** Scout out next nonzero bands */
ff_init_nextband_map(sce1, nextband1);
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0; start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) { for (g = 0; g < sce0->ics.num_swb; g++) {
if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) && if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] && cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) { cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g] &&
ff_sfdelta_can_remove_band(sce1, nextband1, prev_sf1, w*16+g)) {
float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f, ener01p = 0.0f; float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f, ener01p = 0.0f;
struct AACISError ph_err1, ph_err2, *erf; struct AACISError ph_err1, ph_err2, *erf;
if (sce0->band_type[w*16+g] == NOISE_BT || if (sce0->band_type[w*16+g] == NOISE_BT ||
@ -142,6 +147,8 @@ void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElemen
count++; count++;
} }
} }
if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
prev_sf1 = sce1->sf_idx[w*16+g];
start += sce0->ics.swb_sizes[g]; start += sce0->ics.swb_sizes[g];
} }
} }

@ -191,6 +191,69 @@ static inline int lcg_random(unsigned previous_val)
return v.s; return v.s;
} }
/*
* Compute a nextband map to be used with SF delta constraint utilities.
* The nextband array should contain 128 elements, and positions that don't
* map to valid, nonzero bands of the form w*16+g (with w being the initial
* window of the window group, only) are left indetermined.
*/
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
{
unsigned char prevband = 0;
int w, g;
/** Just a safe default */
for (g = 0; g < 128; g++)
nextband[g] = g;
/** Now really navigate the nonzero band chain */
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
prevband = nextband[prevband] = w*16+g;
}
}
nextband[prevband] = prevband; /* terminate */
}
/*
* Updates nextband to reflect a removed band (equivalent to
* calling ff_init_nextband_map after marking a band as zero)
*/
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
{
nextband[prevband] = nextband[band];
}
/*
* Checks whether the specified band could be removed without inducing
* scalefactor delta that violates SF delta encoding constraints.
* prev_sf has to be the scalefactor of the previous nonzero, nonspecial
* band, in encoding order, or negative if there was no such band.
*/
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
const uint8_t *nextband, int prev_sf, int band)
{
return prev_sf >= 0
&& sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
}
/*
* Checks whether the specified band's scalefactor could be replaced
* with another one without violating SF delta encoding constraints.
* prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
* band, in encoding order, or negative if there was no such band.
*/
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
const uint8_t *nextband, int prev_sf, int new_sf, int band)
{
return new_sf >= (prev_sf - SCALE_MAX_DIFF)
&& new_sf <= (prev_sf + SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
}
#define ERROR_IF(cond, ...) \ #define ERROR_IF(cond, ...) \
if (cond) { \ if (cond) { \
av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \ av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \

@ -305,7 +305,7 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
float prev, minscale, minath, minsnr, pe_min; float prev, minscale, minath, minsnr, pe_min;
int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels); int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels);
const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx); const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
const float num_bark = calc_bark((float)bandwidth); const float num_bark = calc_bark((float)bandwidth);
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
@ -595,26 +595,30 @@ static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
#ifndef calc_thr_3gpp #ifndef calc_thr_3gpp
static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
const uint8_t *band_sizes, const float *coefs) const uint8_t *band_sizes, const float *coefs, const int cutoff)
{ {
int i, w, g; int i, w, g;
int start = 0; int start = 0, wstart = 0;
for (w = 0; w < wi->num_windows*16; w += 16) { for (w = 0; w < wi->num_windows*16; w += 16) {
wstart = 0;
for (g = 0; g < num_bands; g++) { for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g]; AacPsyBand *band = &pch->band[w+g];
float form_factor = 0.0f; float form_factor = 0.0f;
float Temp; float Temp;
band->energy = 0.0f; band->energy = 0.0f;
for (i = 0; i < band_sizes[g]; i++) { if (wstart < cutoff) {
band->energy += coefs[start+i] * coefs[start+i]; for (i = 0; i < band_sizes[g]; i++) {
form_factor += sqrtf(fabs(coefs[start+i])); band->energy += coefs[start+i] * coefs[start+i];
form_factor += sqrtf(fabs(coefs[start+i]));
}
} }
Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
band->thr = band->energy * 0.001258925f; band->thr = band->energy * 0.001258925f;
band->nz_lines = form_factor * sqrtf(Temp); band->nz_lines = form_factor * sqrtf(Temp);
start += band_sizes[g]; start += band_sizes[g];
wstart += band_sizes[g];
} }
} }
} }
@ -655,9 +659,11 @@ static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs); calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
//modify thresholds and energies - spread, threshold in quiet, pre-echo control //modify thresholds and energies - spread, threshold in quiet, pre-echo control
for (w = 0; w < wi->num_windows*16; w += 16) { for (w = 0; w < wi->num_windows*16; w += 16) {

@ -2336,74 +2336,136 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in,
static void search_for_ms_mips(AACEncContext *s, ChannelElement *cpe) static void search_for_ms_mips(AACEncContext *s, ChannelElement *cpe)
{ {
int start = 0, i, w, w2, g; int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
uint8_t nextband0[128], nextband1[128];
float M[128], S[128]; float M[128], S[128];
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
const float lambda = s->lambda; const float lambda = s->lambda;
const float mslambda = FFMIN(1.0f, lambda / 120.f);
SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1]; SingleChannelElement *sce1 = &cpe->ch[1];
if (!cpe->common_window) if (!cpe->common_window)
return; return;
/** Scout out next nonzero bands */
ff_init_nextband_map(sce0, nextband0);
ff_init_nextband_map(sce1, nextband1);
prev_mid = sce0->sf_idx[0];
prev_side = sce1->sf_idx[0];
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0; start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) { for (g = 0; g < sce0->ics.num_swb; g++) {
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
float dist1 = 0.0f, dist2 = 0.0f; cpe->ms_mask[w*16+g] = 0;
if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g]) {
float Mmax = 0.0f, Smax = 0.0f;
/* Must compute mid/side SF and book for the whole window group */
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; M[i] = (sce0->coeffs[start+(w+w2)*128+i]
float minthr = FFMIN(band0->threshold, band1->threshold); + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
float maxthr = FFMAX(band0->threshold, band1->threshold); S[i] = M[i]
for (i = 0; i < sce0->ics.swb_sizes[g]; i+=4) { - sce1->coeffs[start+(w+w2)*128+i];
M[i ] = (sce0->coeffs[start+w2*128+i ] }
+ sce1->coeffs[start+w2*128+i ]) * 0.5; abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
M[i+1] = (sce0->coeffs[start+w2*128+i+1] abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
+ sce1->coeffs[start+w2*128+i+1]) * 0.5; for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
M[i+2] = (sce0->coeffs[start+w2*128+i+2] Mmax = FFMAX(Mmax, M34[i]);
+ sce1->coeffs[start+w2*128+i+2]) * 0.5; Smax = FFMAX(Smax, S34[i]);
M[i+3] = (sce0->coeffs[start+w2*128+i+3] }
+ sce1->coeffs[start+w2*128+i+3]) * 0.5; }
S[i ] = M[i ] for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
- sce1->coeffs[start+w2*128+i ]; float dist1 = 0.0f, dist2 = 0.0f;
S[i+1] = M[i+1] int B0 = 0, B1 = 0;
- sce1->coeffs[start+w2*128+i+1]; int minidx;
S[i+2] = M[i+2] int mididx, sididx;
- sce1->coeffs[start+w2*128+i+2]; int midcb, sidcb;
S[i+3] = M[i+3]
- sce1->coeffs[start+w2*128+i+3]; minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
} mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]); && ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]); || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
L34, continue;
sce0->ics.swb_sizes[g], }
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g], midcb = find_min_book(Mmax, mididx);
lambda / band0->threshold, INFINITY, NULL, NULL, 0); sidcb = find_min_book(Smax, sididx);
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
R34, /* No CB can be zero */
sce1->ics.swb_sizes[g], midcb = FFMAX(1,midcb);
sce1->sf_idx[(w+w2)*16+g], sidcb = FFMAX(1,sidcb);
sce1->band_type[(w+w2)*16+g],
lambda / band1->threshold, INFINITY, NULL, NULL, 0); for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
dist2 += quantize_band_cost(s, M, FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
M34, FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
sce0->ics.swb_sizes[g], float minthr = FFMIN(band0->threshold, band1->threshold);
sce0->sf_idx[(w+w2)*16+g], int b1,b2,b3,b4;
sce0->band_type[(w+w2)*16+g], for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
lambda / maxthr, INFINITY, NULL, NULL, 0); M[i] = (sce0->coeffs[start+(w+w2)*128+i]
dist2 += quantize_band_cost(s, S, + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
S34, S[i] = M[i]
sce1->ics.swb_sizes[g], - sce1->coeffs[start+(w+w2)*128+i];
sce1->sf_idx[(w+w2)*16+g], }
sce1->band_type[(w+w2)*16+g],
lambda / minthr, INFINITY, NULL, NULL, 0); abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
L34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
lambda / band0->threshold, INFINITY, &b1, NULL, 0);
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
R34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
lambda / band1->threshold, INFINITY, &b2, NULL, 0);
dist2 += quantize_band_cost(s, M,
M34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
lambda / minthr, INFINITY, &b3, NULL, 0);
dist2 += quantize_band_cost(s, S,
S34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
B0 += b1+b2;
B1 += b3+b4;
dist1 -= B0;
dist2 -= B1;
}
cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
if (cpe->ms_mask[w*16+g]) {
/* Setting the M/S mask is useful with I/S or PNS, but only the flag */
if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
sce0->sf_idx[w*16+g] = mididx;
sce1->sf_idx[w*16+g] = sididx;
sce0->band_type[w*16+g] = midcb;
sce1->band_type[w*16+g] = sidcb;
}
break;
} else if (B1 > B0) {
/* More boost won't fix this */
break;
}
} }
cpe->ms_mask[w*16+g] = dist2 < dist1;
} }
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
prev_mid = sce0->sf_idx[w*16+g];
if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
prev_side = sce1->sf_idx[w*16+g];
start += sce0->ics.swb_sizes[g]; start += sce0->ics.swb_sizes[g];
} }
} }

@ -61,58 +61,62 @@
#if HAVE_INLINE_ASM && HAVE_MIPSFPU && ( PSY_LAME_FIR_LEN == 21 ) #if HAVE_INLINE_ASM && HAVE_MIPSFPU && ( PSY_LAME_FIR_LEN == 21 )
static void calc_thr_3gpp_mips(const FFPsyWindowInfo *wi, const int num_bands, static void calc_thr_3gpp_mips(const FFPsyWindowInfo *wi, const int num_bands,
AacPsyChannel *pch, const uint8_t *band_sizes, AacPsyChannel *pch, const uint8_t *band_sizes,
const float *coefs) const float *coefs, const int cutoff)
{ {
int i, w, g; int i, w, g;
int start = 0; int start = 0, wstart = 0;
for (w = 0; w < wi->num_windows*16; w += 16) { for (w = 0; w < wi->num_windows*16; w += 16) {
wstart = 0;
for (g = 0; g < num_bands; g++) { for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g]; AacPsyBand *band = &pch->band[w+g];
float form_factor = 0.0f; float form_factor = 0.0f;
float Temp; float Temp;
band->energy = 0.0f; band->energy = 0.0f;
for (i = 0; i < band_sizes[g]; i+=4) { if (wstart < cutoff) {
float a, b, c, d; for (i = 0; i < band_sizes[g]; i+=4) {
float ax, bx, cx, dx; float a, b, c, d;
float *cf = (float *)&coefs[start+i]; float ax, bx, cx, dx;
float *cf = (float *)&coefs[start+i];
__asm__ volatile (
"lwc1 %[a], 0(%[cf]) \n\t" __asm__ volatile (
"lwc1 %[b], 4(%[cf]) \n\t" "lwc1 %[a], 0(%[cf]) \n\t"
"lwc1 %[c], 8(%[cf]) \n\t" "lwc1 %[b], 4(%[cf]) \n\t"
"lwc1 %[d], 12(%[cf]) \n\t" "lwc1 %[c], 8(%[cf]) \n\t"
"abs.s %[a], %[a] \n\t" "lwc1 %[d], 12(%[cf]) \n\t"
"abs.s %[b], %[b] \n\t" "abs.s %[a], %[a] \n\t"
"abs.s %[c], %[c] \n\t" "abs.s %[b], %[b] \n\t"
"abs.s %[d], %[d] \n\t" "abs.s %[c], %[c] \n\t"
"sqrt.s %[ax], %[a] \n\t" "abs.s %[d], %[d] \n\t"
"sqrt.s %[bx], %[b] \n\t" "sqrt.s %[ax], %[a] \n\t"
"sqrt.s %[cx], %[c] \n\t" "sqrt.s %[bx], %[b] \n\t"
"sqrt.s %[dx], %[d] \n\t" "sqrt.s %[cx], %[c] \n\t"
"madd.s %[e], %[e], %[a], %[a] \n\t" "sqrt.s %[dx], %[d] \n\t"
"madd.s %[e], %[e], %[b], %[b] \n\t" "madd.s %[e], %[e], %[a], %[a] \n\t"
"madd.s %[e], %[e], %[c], %[c] \n\t" "madd.s %[e], %[e], %[b], %[b] \n\t"
"madd.s %[e], %[e], %[d], %[d] \n\t" "madd.s %[e], %[e], %[c], %[c] \n\t"
"add.s %[f], %[f], %[ax] \n\t" "madd.s %[e], %[e], %[d], %[d] \n\t"
"add.s %[f], %[f], %[bx] \n\t" "add.s %[f], %[f], %[ax] \n\t"
"add.s %[f], %[f], %[cx] \n\t" "add.s %[f], %[f], %[bx] \n\t"
"add.s %[f], %[f], %[dx] \n\t" "add.s %[f], %[f], %[cx] \n\t"
"add.s %[f], %[f], %[dx] \n\t"
: [a]"=&f"(a), [b]"=&f"(b),
[c]"=&f"(c), [d]"=&f"(d), : [a]"=&f"(a), [b]"=&f"(b),
[e]"+f"(band->energy), [f]"+f"(form_factor), [c]"=&f"(c), [d]"=&f"(d),
[ax]"=&f"(ax), [bx]"=&f"(bx), [e]"+f"(band->energy), [f]"+f"(form_factor),
[cx]"=&f"(cx), [dx]"=&f"(dx) [ax]"=&f"(ax), [bx]"=&f"(bx),
: [cf]"r"(cf) [cx]"=&f"(cx), [dx]"=&f"(dx)
: "memory" : [cf]"r"(cf)
); : "memory"
);
}
} }
Temp = sqrtf((float)band_sizes[g] / band->energy); Temp = sqrtf((float)band_sizes[g] / band->energy);
band->thr = band->energy * 0.001258925f; band->thr = band->energy * 0.001258925f;
band->nz_lines = form_factor * sqrtf(Temp); band->nz_lines = form_factor * sqrtf(Temp);
start += band_sizes[g]; start += band_sizes[g];
wstart += band_sizes[g];
} }
} }
} }

@ -39,6 +39,7 @@ av_cold int ff_psy_init(FFPsyContext *ctx, AVCodecContext *avctx, int num_lens,
ctx->group = av_mallocz_array(sizeof(ctx->group[0]), num_groups); ctx->group = av_mallocz_array(sizeof(ctx->group[0]), num_groups);
ctx->bands = av_malloc_array (sizeof(ctx->bands[0]), num_lens); ctx->bands = av_malloc_array (sizeof(ctx->bands[0]), num_lens);
ctx->num_bands = av_malloc_array (sizeof(ctx->num_bands[0]), num_lens); ctx->num_bands = av_malloc_array (sizeof(ctx->num_bands[0]), num_lens);
ctx->cutoff = avctx->cutoff;
if (!ctx->ch || !ctx->group || !ctx->bands || !ctx->num_bands) { if (!ctx->ch || !ctx->group || !ctx->bands || !ctx->num_bands) {
ff_psy_end(ctx); ff_psy_end(ctx);

@ -93,6 +93,7 @@ typedef struct FFPsyContext {
FFPsyChannel *ch; ///< single channel information FFPsyChannel *ch; ///< single channel information
FFPsyChannelGroup *group; ///< channel group information FFPsyChannelGroup *group; ///< channel group information
int num_groups; ///< number of channel groups int num_groups; ///< number of channel groups
int cutoff; ///< lowpass frequency cutoff for analysis
uint8_t **bands; ///< scalefactor band sizes for possible frame sizes uint8_t **bands; ///< scalefactor band sizes for possible frame sizes
int *num_bands; ///< number of scalefactor bands for possible frame sizes int *num_bands; ///< number of scalefactor bands for possible frame sizes

@ -146,16 +146,16 @@ fate-aac-aref-encode: CMD = enc_dec_pcm adts wav s16le $(REF) -strict -2 -c:a aa
fate-aac-aref-encode: CMP = stddev fate-aac-aref-encode: CMP = stddev
fate-aac-aref-encode: REF = ./tests/data/asynth-44100-2.wav fate-aac-aref-encode: REF = ./tests/data/asynth-44100-2.wav
fate-aac-aref-encode: CMP_SHIFT = -4096 fate-aac-aref-encode: CMP_SHIFT = -4096
fate-aac-aref-encode: CMP_TARGET = 1139 fate-aac-aref-encode: CMP_TARGET = 670
fate-aac-aref-encode: SIZE_TOLERANCE = 2464 fate-aac-aref-encode: SIZE_TOLERANCE = 2464
fate-aac-aref-encode: FUZZ = 6 fate-aac-aref-encode: FUZZ = 89
FATE_AAC_ENCODE += fate-aac-ln-encode FATE_AAC_ENCODE += fate-aac-ln-encode
fate-aac-ln-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_is 0 -aac_pns 0 -aac_ms 0 -aac_tns 0 -b:a 512k fate-aac-ln-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_is 0 -aac_pns 0 -aac_ms 0 -aac_tns 0 -b:a 512k
fate-aac-ln-encode: CMP = stddev fate-aac-ln-encode: CMP = stddev
fate-aac-ln-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-ln-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-ln-encode: CMP_SHIFT = -4096 fate-aac-ln-encode: CMP_SHIFT = -4096
fate-aac-ln-encode: CMP_TARGET = 80 fate-aac-ln-encode: CMP_TARGET = 50
fate-aac-ln-encode: SIZE_TOLERANCE = 3560 fate-aac-ln-encode: SIZE_TOLERANCE = 3560
fate-aac-ln-encode: FUZZ = 30 fate-aac-ln-encode: FUZZ = 30
@ -164,7 +164,7 @@ fate-aac-ln-encode-128k: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audi
fate-aac-ln-encode-128k: CMP = stddev fate-aac-ln-encode-128k: CMP = stddev
fate-aac-ln-encode-128k: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-ln-encode-128k: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-ln-encode-128k: CMP_SHIFT = -4096 fate-aac-ln-encode-128k: CMP_SHIFT = -4096
fate-aac-ln-encode-128k: CMP_TARGET = 745 fate-aac-ln-encode-128k: CMP_TARGET = 798
fate-aac-ln-encode-128k: SIZE_TOLERANCE = 3560 fate-aac-ln-encode-128k: SIZE_TOLERANCE = 3560
fate-aac-ln-encode-128k: FUZZ = 5 fate-aac-ln-encode-128k: FUZZ = 5
@ -173,16 +173,16 @@ fate-aac-pns-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-re
fate-aac-pns-encode: CMP = stddev fate-aac-pns-encode: CMP = stddev
fate-aac-pns-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-pns-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-pns-encode: CMP_SHIFT = -4096 fate-aac-pns-encode: CMP_SHIFT = -4096
fate-aac-pns-encode: CMP_TARGET = 695 fate-aac-pns-encode: CMP_TARGET = 663
fate-aac-pns-encode: SIZE_TOLERANCE = 3560 fate-aac-pns-encode: SIZE_TOLERANCE = 3560
fate-aac-pns-encode: FUZZ = 25 fate-aac-pns-encode: FUZZ = 72
FATE_AAC_ENCODE += fate-aac-tns-encode FATE_AAC_ENCODE += fate-aac-tns-encode
fate-aac-tns-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_tns 1 -aac_is 0 -aac_pns 0 -aac_ms 0 -b:a 128k -cutoff 22050 fate-aac-tns-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_tns 1 -aac_is 0 -aac_pns 0 -aac_ms 0 -b:a 128k -cutoff 22050
fate-aac-tns-encode: CMP = stddev fate-aac-tns-encode: CMP = stddev
fate-aac-tns-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-tns-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-tns-encode: CMP_SHIFT = -4096 fate-aac-tns-encode: CMP_SHIFT = -4096
fate-aac-tns-encode: CMP_TARGET = 766 fate-aac-tns-encode: CMP_TARGET = 857
fate-aac-tns-encode: FUZZ = 6 fate-aac-tns-encode: FUZZ = 6
fate-aac-tns-encode: SIZE_TOLERANCE = 3560 fate-aac-tns-encode: SIZE_TOLERANCE = 3560
@ -191,25 +191,25 @@ fate-aac-is-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-ref
fate-aac-is-encode: CMP = stddev fate-aac-is-encode: CMP = stddev
fate-aac-is-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-is-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-is-encode: CMP_SHIFT = -4096 fate-aac-is-encode: CMP_SHIFT = -4096
fate-aac-is-encode: CMP_TARGET = 584 fate-aac-is-encode: CMP_TARGET = 725
fate-aac-is-encode: SIZE_TOLERANCE = 3560 fate-aac-is-encode: SIZE_TOLERANCE = 3560
fate-aac-is-encode: FUZZ = 1 fate-aac-is-encode: FUZZ = 5
FATE_AAC_ENCODE += fate-aac-ms-encode FATE_AAC_ENCODE += fate-aac-ms-encode
fate-aac-ms-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_pns 0 -aac_is 0 -aac_ms 1 -aac_tns 0 -b:a 128k -cutoff 22050 fate-aac-ms-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -aac_pns 0 -aac_is 0 -aac_ms 1 -aac_tns 0 -b:a 128k -cutoff 22050
fate-aac-ms-encode: CMP = stddev fate-aac-ms-encode: CMP = stddev
fate-aac-ms-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-ms-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-ms-encode: CMP_SHIFT = -4096 fate-aac-ms-encode: CMP_SHIFT = -4096
fate-aac-ms-encode: CMP_TARGET = 615 fate-aac-ms-encode: CMP_TARGET = 682
fate-aac-ms-encode: SIZE_TOLERANCE = 3560 fate-aac-ms-encode: SIZE_TOLERANCE = 3560
fate-aac-ms-encode: FUZZ = 10 fate-aac-ms-encode: FUZZ = 15
FATE_AAC_ENCODE += fate-aac-ltp-encode FATE_AAC_ENCODE += fate-aac-ltp-encode
fate-aac-ltp-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -profile:a aac_ltp -aac_pns 0 -aac_is 0 -aac_ms 0 -aac_tns 0 -b:a 36k -fflags +bitexact -flags +bitexact fate-aac-ltp-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav -strict -2 -c:a aac -profile:a aac_ltp -aac_pns 0 -aac_is 0 -aac_ms 0 -aac_tns 0 -b:a 36k -fflags +bitexact -flags +bitexact
fate-aac-ltp-encode: CMP = stddev fate-aac-ltp-encode: CMP = stddev
fate-aac-ltp-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-ltp-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-ltp-encode: CMP_SHIFT = -4096 fate-aac-ltp-encode: CMP_SHIFT = -4096
fate-aac-ltp-encode: CMP_TARGET = 1120 fate-aac-ltp-encode: CMP_TARGET = 1284
fate-aac-ltp-encode: SIZE_TOLERANCE = 3560 fate-aac-ltp-encode: SIZE_TOLERANCE = 3560
fate-aac-ltp-encode: FUZZ = 17 fate-aac-ltp-encode: FUZZ = 17
@ -218,7 +218,7 @@ fate-aac-pred-encode: CMD = enc_dec_pcm adts wav s16le $(TARGET_SAMPLES)/audio-r
fate-aac-pred-encode: CMP = stddev fate-aac-pred-encode: CMP = stddev
fate-aac-pred-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav fate-aac-pred-encode: REF = $(SAMPLES)/audio-reference/luckynight_2ch_44kHz_s16.wav
fate-aac-pred-encode: CMP_SHIFT = -4096 fate-aac-pred-encode: CMP_SHIFT = -4096
fate-aac-pred-encode: CMP_TARGET = 790 fate-aac-pred-encode: CMP_TARGET = 835
fate-aac-pred-encode: FUZZ = 12 fate-aac-pred-encode: FUZZ = 12
fate-aac-pred-encode: SIZE_TOLERANCE = 3560 fate-aac-pred-encode: SIZE_TOLERANCE = 3560

Loading…
Cancel
Save