dnn_backend_native_layer_mathunary: add atanh support

It can be tested with the model generated with below python script:

import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')

please uncomment the part you want to test

x_sinh_1 = tf.sinh(x)
x_out = tf.divide(x_sinh_1, 1.176) # sinh(1.0)

x_cosh_1 = tf.cosh(x)
x_out = tf.divide(x_cosh_1, 1.55) # cosh(1.0)

x_tanh_1 = tf.tanh(x)
x__out = tf.divide(x_tanh_1, 0.77) # tanh(1.0)

x_asinh_1 = tf.asinh(x)
x_out = tf.divide(x_asinh_1, 0.89) # asinh(1.0/1.1)

x_acosh_1 = tf.add(x, 1.1)
x_acosh_2 = tf.acosh(x_acosh_1) # accept (1, inf)
x_out = tf.divide(x_acosh_2, 1.4) # acosh(2.1)

x_atanh_1 = tf.divide(x, 1.1)
x_atanh_2 = tf.atanh(x_atanh_1) # accept (-1, 1)
x_out = tf.divide(x_atanh_2, 1.55) # atanhh(1.0/1.1)

y = tf.identity(x_out, name='dnn_out') #please only preserve the x_out you want to test

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Ting Fu <ting.fu@intel.com>
pull/344/head^2
Ting Fu 4 years ago committed by Guo, Yejun
parent 52d2e16665
commit c0cdeea0ee
  1. 4
      libavfilter/dnn/dnn_backend_native_layer_mathunary.c
  2. 1
      libavfilter/dnn/dnn_backend_native_layer_mathunary.h
  3. 2
      tools/python/convert_from_tensorflow.py
  4. 2
      tools/python/convert_header.py

@ -124,6 +124,10 @@ int dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_oper
for (int i = 0; i < dims_count; ++i)
dst[i] = acosh(src[i]);
return 0;
case DMUO_ATANH:
for (int i = 0; i < dims_count; ++i)
dst[i] = atanh(src[i]);
return 0;
default:
return -1;
}

@ -42,6 +42,7 @@ typedef enum {
DMUO_TANH = 9,
DMUO_ASINH = 10,
DMUO_ACOSH = 11,
DMUO_ATANH = 12,
DMUO_COUNT
} DNNMathUnaryOperation;

@ -72,7 +72,7 @@ class TFConverter:
self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, 'Acosh':11}
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, 'Acosh':11, 'Atanh':12}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {}

@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
major = 1
# increase minor when we don't have to re-convert the model file
minor = 17
minor = 18

Loading…
Cancel
Save