mirror of https://github.com/FFmpeg/FFmpeg.git
parent
b14629e5ea
commit
be64629a13
6 changed files with 738 additions and 1 deletions
@ -0,0 +1,733 @@ |
||||
/*
|
||||
* Apple ProRes compatible decoder |
||||
* |
||||
* Copyright (c) 2010-2011 Maxim Poliakovski |
||||
* |
||||
* This file is part of Libav. |
||||
* |
||||
* Libav is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* Libav is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with Libav; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444. |
||||
* It is used for storing and editing high definition video data in Apple's Final Cut Pro. |
||||
* |
||||
* @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
|
||||
*/ |
||||
|
||||
#define A32_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
|
||||
|
||||
#include <stdint.h> |
||||
|
||||
#include "libavutil/intmath.h" |
||||
#include "avcodec.h" |
||||
#include "dsputil.h" |
||||
#include "get_bits.h" |
||||
|
||||
#define BITS_PER_SAMPLE 10 ///< output precision of that decoder
|
||||
#define BIAS (1 << (BITS_PER_SAMPLE - 1)) ///< bias value for converting signed pixels into unsigned ones
|
||||
#define CLIP_MIN (1 << (BITS_PER_SAMPLE - 8)) ///< minimum value for clipping resulting pixels
|
||||
#define CLIP_MAX (1 << BITS_PER_SAMPLE) - CLIP_MIN - 1 ///< maximum value for clipping resulting pixels
|
||||
|
||||
|
||||
typedef struct { |
||||
DSPContext dsp; |
||||
AVFrame picture; |
||||
ScanTable scantable; |
||||
int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
|
||||
|
||||
int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
|
||||
int pic_format; ///< 2 = 422, 3 = 444
|
||||
uint8_t qmat_luma[64]; ///< dequantization matrix for luma
|
||||
uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
|
||||
int qmat_changed; ///< 1 - global quantization matrices changed
|
||||
int prev_slice_sf; ///< scalefactor of the previous decoded slice
|
||||
DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled[64]); |
||||
DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled[64]); |
||||
DECLARE_ALIGNED(16, DCTELEM, blocks[8 * 4 * 64]); |
||||
int total_slices; ///< total number of slices in a picture
|
||||
const uint8_t **slice_data_index; ///< array of pointers to the data of each slice
|
||||
int chroma_factor; |
||||
int mb_chroma_factor; |
||||
int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
|
||||
int num_x_slices; |
||||
int num_y_slices; |
||||
int slice_width_factor; |
||||
int slice_height_factor; |
||||
int num_x_mbs; |
||||
int num_y_mbs; |
||||
} ProresContext; |
||||
|
||||
|
||||
static const uint8_t progressive_scan[64] = { |
||||
0, 1, 8, 9, 2, 3, 10, 11, |
||||
16, 17, 24, 25, 18, 19, 26, 27, |
||||
4, 5, 12, 20, 13, 6, 7, 14, |
||||
21, 28, 29, 22, 15, 23, 30, 31, |
||||
32, 33, 40, 48, 41, 34, 35, 42, |
||||
49, 56, 57, 50, 43, 36, 37, 44, |
||||
51, 58, 59, 52, 45, 38, 39, 46, |
||||
53, 60, 61, 54, 47, 55, 62, 63 |
||||
}; |
||||
|
||||
static const uint8_t interlaced_scan[64] = { |
||||
0, 8, 1, 9, 16, 24, 17, 25, |
||||
2, 10, 3, 11, 18, 26, 19, 27, |
||||
32, 40, 33, 34, 41, 48, 56, 49, |
||||
42, 35, 43, 50, 57, 58, 51, 59, |
||||
4, 12, 5, 6, 13, 20, 28, 21, |
||||
14, 7, 15, 22, 29, 36, 44, 37, |
||||
30, 23, 31, 38, 45, 52, 60, 53, |
||||
46, 39, 47, 54, 61, 62, 55, 63 |
||||
}; |
||||
|
||||
|
||||
static av_cold int decode_init(AVCodecContext *avctx) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
|
||||
ctx->total_slices = 0; |
||||
ctx->slice_data_index = 0; |
||||
|
||||
avctx->pix_fmt = PIX_FMT_YUV422P10; // set default pixel format
|
||||
|
||||
avctx->bits_per_raw_sample = BITS_PER_SAMPLE; |
||||
dsputil_init(&ctx->dsp, avctx); |
||||
|
||||
avctx->coded_frame = &ctx->picture; |
||||
avcodec_get_frame_defaults(&ctx->picture); |
||||
ctx->picture.type = AV_PICTURE_TYPE_I; |
||||
ctx->picture.key_frame = 1; |
||||
|
||||
ctx->scantable_type = -1; // set scantable type to uninitialized
|
||||
memset(ctx->qmat_luma, 4, 64); |
||||
memset(ctx->qmat_chroma, 4, 64); |
||||
ctx->prev_slice_sf = 0; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
|
||||
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, |
||||
const int data_size, AVCodecContext *avctx) |
||||
{ |
||||
int hdr_size, version, width, height, flags; |
||||
const uint8_t *ptr; |
||||
|
||||
hdr_size = AV_RB16(buf); |
||||
if (hdr_size > data_size) { |
||||
av_log(avctx, AV_LOG_ERROR, "frame data too short!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
version = AV_RB16(buf + 2); |
||||
if (version >= 2) { |
||||
av_log(avctx, AV_LOG_ERROR, |
||||
"unsupported header version: %d\n", version); |
||||
return -1; |
||||
} |
||||
|
||||
width = AV_RB16(buf + 8); |
||||
height = AV_RB16(buf + 10); |
||||
if (width != avctx->width || height != avctx->height) { |
||||
av_log(avctx, AV_LOG_ERROR, |
||||
"picture dimension changed! Old: %d x %d, new: %d x %d\n", |
||||
avctx->width, avctx->height, width, height); |
||||
return -1; |
||||
} |
||||
|
||||
ctx->frame_type = (buf[12] >> 2) & 3; |
||||
if (ctx->frame_type > 2) { |
||||
av_log(avctx, AV_LOG_ERROR, |
||||
"unsupported frame type: %d!\n", ctx->frame_type); |
||||
return -1; |
||||
} |
||||
|
||||
ctx->chroma_factor = (buf[12] >> 6) & 3; |
||||
ctx->mb_chroma_factor = ctx->chroma_factor + 2; |
||||
ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1; |
||||
switch (ctx->chroma_factor) { |
||||
case 2: |
||||
avctx->pix_fmt = PIX_FMT_YUV422P10; |
||||
break; |
||||
case 3: |
||||
avctx->pix_fmt = PIX_FMT_YUV444P10; |
||||
break; |
||||
default: |
||||
av_log(avctx, AV_LOG_ERROR, |
||||
"unsupported picture format: %d!\n", ctx->pic_format); |
||||
return -1; |
||||
} |
||||
|
||||
if (ctx->scantable_type != ctx->frame_type) { |
||||
if (!ctx->frame_type) |
||||
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, |
||||
progressive_scan); |
||||
else |
||||
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, |
||||
interlaced_scan); |
||||
ctx->scantable_type = ctx->frame_type; |
||||
} |
||||
|
||||
if (ctx->frame_type) { /* if interlaced */ |
||||
ctx->picture.interlaced_frame = 1; |
||||
ctx->picture.top_field_first = ctx->frame_type & 1; |
||||
} |
||||
|
||||
ctx->qmat_changed = 0; |
||||
ptr = buf + 20; |
||||
flags = buf[19]; |
||||
if (flags & 2) { |
||||
if (ptr - buf > hdr_size - 64) { |
||||
av_log(avctx, AV_LOG_ERROR, "Too short header data\n"); |
||||
return -1; |
||||
} |
||||
if (memcmp(ctx->qmat_luma, ptr, 64)) { |
||||
memcpy(ctx->qmat_luma, ptr, 64); |
||||
ctx->qmat_changed = 1; |
||||
} |
||||
ptr += 64; |
||||
} else { |
||||
memset(ctx->qmat_luma, 4, 64); |
||||
ctx->qmat_changed = 1; |
||||
} |
||||
|
||||
if (flags & 1) { |
||||
if (ptr - buf > hdr_size - 64) { |
||||
av_log(avctx, AV_LOG_ERROR, "Too short header data\n"); |
||||
return -1; |
||||
} |
||||
if (memcmp(ctx->qmat_chroma, ptr, 64)) { |
||||
memcpy(ctx->qmat_chroma, ptr, 64); |
||||
ctx->qmat_changed = 1; |
||||
} |
||||
} else { |
||||
memset(ctx->qmat_chroma, 4, 64); |
||||
ctx->qmat_changed = 1; |
||||
} |
||||
|
||||
return hdr_size; |
||||
} |
||||
|
||||
|
||||
static int decode_picture_header(ProresContext *ctx, const uint8_t *buf, |
||||
const int data_size, AVCodecContext *avctx) |
||||
{ |
||||
int i, hdr_size, pic_data_size, num_slices; |
||||
int slice_width_factor, slice_height_factor; |
||||
int remainder, num_x_slices; |
||||
const uint8_t *data_ptr, *index_ptr; |
||||
|
||||
hdr_size = data_size > 0 ? buf[0] >> 3 : 0; |
||||
if (hdr_size < 8 || hdr_size > data_size) { |
||||
av_log(avctx, AV_LOG_ERROR, "picture header too short!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
pic_data_size = AV_RB32(buf + 1); |
||||
if (pic_data_size > data_size) { |
||||
av_log(avctx, AV_LOG_ERROR, "picture data too short!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
slice_width_factor = buf[7] >> 4; |
||||
slice_height_factor = buf[7] & 0xF; |
||||
if (slice_width_factor > 3 || slice_height_factor) { |
||||
av_log(avctx, AV_LOG_ERROR, |
||||
"unsupported slice dimension: %d x %d!\n", |
||||
1 << slice_width_factor, 1 << slice_height_factor); |
||||
return -1; |
||||
} |
||||
|
||||
ctx->slice_width_factor = slice_width_factor; |
||||
ctx->slice_height_factor = slice_height_factor; |
||||
|
||||
ctx->num_x_mbs = (avctx->width + 15) >> 4; |
||||
ctx->num_y_mbs = |
||||
(avctx->height + (1 << (4 + ctx->picture.interlaced_frame)) - 1) >> |
||||
(4 + ctx->picture.interlaced_frame); |
||||
|
||||
remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1); |
||||
num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) + |
||||
((remainder >> 1) & 1) + ((remainder >> 2) & 1); |
||||
|
||||
num_slices = num_x_slices * ctx->num_y_mbs; |
||||
if (num_slices != AV_RB16(buf + 5)) { |
||||
av_log(avctx, AV_LOG_ERROR, "invalid number of slices!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
if (ctx->total_slices != num_slices) { |
||||
av_freep(&ctx->slice_data_index); |
||||
ctx->slice_data_index = |
||||
av_malloc((num_slices + 1) * sizeof(uint8_t*)); |
||||
if (!ctx->slice_data_index) |
||||
return AVERROR(ENOMEM); |
||||
ctx->total_slices = num_slices; |
||||
} |
||||
|
||||
if (hdr_size + num_slices * 2 > data_size) { |
||||
av_log(avctx, AV_LOG_ERROR, "slice table too short!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
/* parse slice table allowing quick access to the slice data */ |
||||
index_ptr = buf + hdr_size; |
||||
data_ptr = index_ptr + num_slices * 2; |
||||
|
||||
for (i = 0; i < num_slices; i++) { |
||||
ctx->slice_data_index[i] = data_ptr; |
||||
data_ptr += AV_RB16(index_ptr + i * 2); |
||||
} |
||||
ctx->slice_data_index[i] = data_ptr; |
||||
|
||||
if (data_ptr > buf + data_size) { |
||||
av_log(avctx, AV_LOG_ERROR, "out of slice data!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
return pic_data_size; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Read an unsigned rice/exp golomb codeword. |
||||
*/ |
||||
static inline int decode_vlc_codeword(GetBitContext *gb, uint8_t codebook) |
||||
{ |
||||
unsigned int rice_order, exp_order, switch_bits; |
||||
unsigned int buf, code; |
||||
int log, prefix_len, len; |
||||
|
||||
OPEN_READER(re, gb); |
||||
UPDATE_CACHE(re, gb); |
||||
buf = GET_CACHE(re, gb); |
||||
|
||||
/* number of prefix bits to switch between Rice and expGolomb */ |
||||
switch_bits = (codebook & 3) + 1; |
||||
rice_order = codebook >> 5; /* rice code order */ |
||||
exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
||||
|
||||
log = 31 - av_log2(buf); /* count prefix bits (zeroes) */ |
||||
|
||||
if (log < switch_bits) { /* ok, we got a rice code */ |
||||
if (!rice_order) { |
||||
/* shortcut for faster decoding of rice codes without remainder */ |
||||
code = log; |
||||
LAST_SKIP_BITS(re, gb, log + 1); |
||||
} else { |
||||
prefix_len = log + 1; |
||||
code = (log << rice_order) + NEG_USR32((buf << prefix_len), rice_order); |
||||
LAST_SKIP_BITS(re, gb, prefix_len + rice_order); |
||||
} |
||||
} else { /* otherwise we got a exp golomb code */ |
||||
len = (log << 1) - switch_bits + exp_order + 1; |
||||
code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order); |
||||
LAST_SKIP_BITS(re, gb, len); |
||||
} |
||||
|
||||
CLOSE_READER(re, gb); |
||||
|
||||
return code; |
||||
} |
||||
|
||||
#define LSB2SIGN(x) (-((x) & 1)) |
||||
#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x)) |
||||
|
||||
#define FIRST_DC_CB 0xB8 // rice_order = 5, exp_golomb_order = 6, switch_bits = 0
|
||||
|
||||
static uint8_t dc_codebook[4] = { |
||||
0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
|
||||
0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
|
||||
0x4D, // rice_order = 2, exp_golomb_order = 3, switch_bits = 1
|
||||
0x70 // rice_order = 3, exp_golomb_order = 4, switch_bits = 0
|
||||
}; |
||||
|
||||
|
||||
/**
|
||||
* Decode DC coefficients for all blocks in a slice. |
||||
*/ |
||||
static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out, |
||||
int nblocks) |
||||
{ |
||||
DCTELEM prev_dc; |
||||
int i, sign; |
||||
int16_t delta; |
||||
unsigned int code; |
||||
|
||||
code = decode_vlc_codeword(gb, FIRST_DC_CB); |
||||
out[0] = prev_dc = TOSIGNED(code); |
||||
|
||||
out += 64; /* move to the DC coeff of the next block */ |
||||
delta = 3; |
||||
|
||||
for (i = 1; i < nblocks; i++, out += 64) { |
||||
code = decode_vlc_codeword(gb, dc_codebook[FFMIN(FFABS(delta), 3)]); |
||||
|
||||
sign = -(((delta >> 15) & 1) ^ (code & 1)); |
||||
delta = (((code + 1) >> 1) ^ sign) - sign; |
||||
prev_dc += delta; |
||||
out[0] = prev_dc; |
||||
} |
||||
} |
||||
|
||||
|
||||
static uint8_t ac_codebook[7] = { |
||||
0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
|
||||
0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
|
||||
0x4C, // rice_order = 2, exp_golomb_order = 3, switch_bits = 0
|
||||
0x05, // rice_order = 0, exp_golomb_order = 1, switch_bits = 1
|
||||
0x29, // rice_order = 1, exp_golomb_order = 2, switch_bits = 1
|
||||
0x06, // rice_order = 0, exp_golomb_order = 1, switch_bits = 2
|
||||
0x0A, // rice_order = 0, exp_golomb_order = 2, switch_bits = 2
|
||||
}; |
||||
|
||||
/**
|
||||
* Lookup tables for adaptive switching between codebooks |
||||
* according with previous run/level value. |
||||
*/ |
||||
static uint8_t run_to_cb_index[16] = |
||||
{ 5, 5, 3, 3, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2 }; |
||||
|
||||
static uint8_t lev_to_cb_index[10] = { 0, 6, 3, 5, 0, 1, 1, 1, 1, 2 }; |
||||
|
||||
|
||||
/**
|
||||
* Decode AC coefficients for all blocks in a slice. |
||||
*/ |
||||
static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out, |
||||
int blocks_per_slice, |
||||
int plane_size_factor, |
||||
const uint8_t *scan) |
||||
{ |
||||
int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index; |
||||
int max_coeffs, bits_left; |
||||
|
||||
/* set initial prediction values */ |
||||
run = 4; |
||||
level = 2; |
||||
|
||||
max_coeffs = blocks_per_slice << 6; |
||||
block_mask = blocks_per_slice - 1; |
||||
|
||||
for (pos = blocks_per_slice - 1; pos < max_coeffs;) { |
||||
run_cb_index = run_to_cb_index[FFMIN(run, 15)]; |
||||
lev_cb_index = lev_to_cb_index[FFMIN(level, 9)]; |
||||
|
||||
bits_left = get_bits_left(gb); |
||||
if (bits_left <= 8 && !show_bits(gb, bits_left)) |
||||
return; |
||||
|
||||
run = decode_vlc_codeword(gb, ac_codebook[run_cb_index]); |
||||
|
||||
bits_left = get_bits_left(gb); |
||||
if (bits_left <= 8 && !show_bits(gb, bits_left)) |
||||
return; |
||||
|
||||
level = decode_vlc_codeword(gb, ac_codebook[lev_cb_index]) + 1; |
||||
|
||||
pos += run + 1; |
||||
if (pos >= max_coeffs) |
||||
break; |
||||
|
||||
sign = get_sbits(gb, 1); |
||||
out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] = |
||||
(level ^ sign) - sign; |
||||
} |
||||
} |
||||
|
||||
|
||||
#define CLIP_AND_BIAS(x) (av_clip((x) + BIAS, CLIP_MIN, CLIP_MAX)) |
||||
|
||||
/**
|
||||
* Add bias value, clamp and output pixels of a slice |
||||
*/ |
||||
static void put_pixels(const DCTELEM *in, uint16_t *out, int stride, |
||||
int mbs_per_slice, int blocks_per_mb) |
||||
{ |
||||
int mb, x, y, src_offset, dst_offset; |
||||
const DCTELEM *src1, *src2; |
||||
uint16_t *dst1, *dst2; |
||||
|
||||
src1 = in; |
||||
src2 = in + (blocks_per_mb << 5); |
||||
dst1 = out; |
||||
dst2 = out + (stride << 3); |
||||
|
||||
for (mb = 0; mb < mbs_per_slice; mb++) { |
||||
for (y = 0, dst_offset = 0; y < 8; y++, dst_offset += stride) { |
||||
for (x = 0; x < 8; x++) { |
||||
src_offset = (y << 3) + x; |
||||
|
||||
dst1[dst_offset + x] = CLIP_AND_BIAS(src1[src_offset]); |
||||
dst2[dst_offset + x] = CLIP_AND_BIAS(src2[src_offset]); |
||||
|
||||
if (blocks_per_mb > 2) { |
||||
dst1[dst_offset + x + 8] = |
||||
CLIP_AND_BIAS(src1[src_offset + 64]); |
||||
dst2[dst_offset + x + 8] = |
||||
CLIP_AND_BIAS(src2[src_offset + 64]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
src1 += blocks_per_mb << 6; |
||||
src2 += blocks_per_mb << 6; |
||||
dst1 += blocks_per_mb << 2; |
||||
dst2 += blocks_per_mb << 2; |
||||
} |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* Decode a slice plane (luma or chroma). |
||||
*/ |
||||
static void decode_slice_plane(ProresContext *ctx, const uint8_t *buf, |
||||
int data_size, uint16_t *out_ptr, |
||||
int linesize, int mbs_per_slice, |
||||
int blocks_per_mb, int plane_size_factor, |
||||
const int16_t *qmat) |
||||
{ |
||||
GetBitContext gb; |
||||
DCTELEM *block_ptr; |
||||
int i, blk_num, blocks_per_slice; |
||||
|
||||
blocks_per_slice = mbs_per_slice * blocks_per_mb; |
||||
|
||||
memset(ctx->blocks, 0, 8 * 4 * 64 * sizeof(*ctx->blocks)); |
||||
|
||||
init_get_bits(&gb, buf, data_size << 3); |
||||
|
||||
decode_dc_coeffs(&gb, ctx->blocks, blocks_per_slice); |
||||
|
||||
decode_ac_coeffs(&gb, ctx->blocks, blocks_per_slice, |
||||
plane_size_factor, ctx->scantable.permutated); |
||||
|
||||
/* inverse quantization, inverse transform and output */ |
||||
block_ptr = ctx->blocks; |
||||
|
||||
for (blk_num = 0; blk_num < blocks_per_slice; |
||||
blk_num++, block_ptr += 64) { |
||||
/* TODO: the correct solution shoud be (block_ptr[i] * qmat[i]) >> 1
|
||||
* and the input of the inverse transform should be scaled by 2 |
||||
* in order to avoid rounding errors. |
||||
* Due to the fact the existing Libav transforms are incompatible with |
||||
* that input I temporally introduced the coarse solution below... */ |
||||
for (i = 0; i < 64; i++) |
||||
block_ptr[i] = (block_ptr[i] * qmat[i]) >> 2; |
||||
|
||||
ctx->dsp.idct(block_ptr); |
||||
} |
||||
|
||||
put_pixels(ctx->blocks, out_ptr, linesize >> 1, mbs_per_slice, |
||||
blocks_per_mb); |
||||
} |
||||
|
||||
|
||||
static int decode_slice(ProresContext *ctx, int pic_num, int slice_num, |
||||
int mb_x_pos, int mb_y_pos, int mbs_per_slice, |
||||
AVCodecContext *avctx) |
||||
{ |
||||
const uint8_t *buf; |
||||
uint8_t *y_data, *u_data, *v_data; |
||||
AVFrame *pic = avctx->coded_frame; |
||||
int i, sf, slice_width_factor; |
||||
int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size; |
||||
int y_linesize, u_linesize, v_linesize; |
||||
|
||||
buf = ctx->slice_data_index[slice_num]; |
||||
slice_data_size = ctx->slice_data_index[slice_num + 1] - buf; |
||||
|
||||
slice_width_factor = av_log2(mbs_per_slice); |
||||
|
||||
y_data = pic->data[0]; |
||||
u_data = pic->data[1]; |
||||
v_data = pic->data[2]; |
||||
y_linesize = pic->linesize[0]; |
||||
u_linesize = pic->linesize[1]; |
||||
v_linesize = pic->linesize[2]; |
||||
|
||||
if (pic->interlaced_frame) { |
||||
if (!(pic_num ^ pic->top_field_first)) { |
||||
y_data += y_linesize; |
||||
u_data += u_linesize; |
||||
v_data += v_linesize; |
||||
} |
||||
y_linesize <<= 1; |
||||
u_linesize <<= 1; |
||||
v_linesize <<= 1; |
||||
} |
||||
|
||||
if (slice_data_size < 6) { |
||||
av_log(avctx, AV_LOG_ERROR, "slice data too short!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
/* parse slice header */ |
||||
hdr_size = buf[0] >> 3; |
||||
y_data_size = AV_RB16(buf + 2); |
||||
u_data_size = AV_RB16(buf + 4); |
||||
v_data_size = slice_data_size - y_data_size - u_data_size - hdr_size; |
||||
|
||||
if (v_data_size < 0 || hdr_size < 6) { |
||||
av_log(avctx, AV_LOG_ERROR, "invalid data sizes!\n"); |
||||
return -1; |
||||
} |
||||
|
||||
sf = av_clip(buf[1], 1, 224); |
||||
sf = sf > 128 ? (sf - 96) << 2 : sf; |
||||
|
||||
/* scale quantization matrixes according with slice's scale factor */ |
||||
/* TODO: this can be SIMD-optimized alot */ |
||||
if (ctx->qmat_changed || sf != ctx->prev_slice_sf) { |
||||
ctx->prev_slice_sf = sf; |
||||
for (i = 0; i < 64; i++) { |
||||
ctx->qmat_luma_scaled[i] = ctx->qmat_luma[i] * sf; |
||||
ctx->qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * sf; |
||||
} |
||||
} |
||||
|
||||
/* decode luma plane */ |
||||
decode_slice_plane(ctx, buf + hdr_size, y_data_size, |
||||
(uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize + |
||||
(mb_x_pos << 5)), y_linesize, |
||||
mbs_per_slice, 4, slice_width_factor + 2, |
||||
ctx->qmat_luma_scaled); |
||||
|
||||
/* decode U chroma plane */ |
||||
decode_slice_plane(ctx, buf + hdr_size + y_data_size, u_data_size, |
||||
(uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize + |
||||
(mb_x_pos << ctx->mb_chroma_factor)), |
||||
u_linesize, mbs_per_slice, ctx->num_chroma_blocks, |
||||
slice_width_factor + ctx->chroma_factor - 1, |
||||
ctx->qmat_chroma_scaled); |
||||
|
||||
/* decode V chroma plane */ |
||||
decode_slice_plane(ctx, buf + hdr_size + y_data_size + u_data_size, |
||||
v_data_size, |
||||
(uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize + |
||||
(mb_x_pos << ctx->mb_chroma_factor)), |
||||
v_linesize, mbs_per_slice, ctx->num_chroma_blocks, |
||||
slice_width_factor + ctx->chroma_factor - 1, |
||||
ctx->qmat_chroma_scaled); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
|
||||
static int decode_picture(ProresContext *ctx, int pic_num, |
||||
AVCodecContext *avctx) |
||||
{ |
||||
int slice_num, slice_width, x_pos, y_pos; |
||||
|
||||
slice_num = 0; |
||||
|
||||
for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) { |
||||
slice_width = 1 << ctx->slice_width_factor; |
||||
|
||||
for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width; |
||||
x_pos += slice_width) { |
||||
while (ctx->num_x_mbs - x_pos < slice_width) |
||||
slice_width >>= 1; |
||||
|
||||
if (decode_slice(ctx, pic_num, slice_num, x_pos, y_pos, |
||||
slice_width, avctx) < 0) |
||||
return -1; |
||||
|
||||
slice_num++; |
||||
} |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
|
||||
#define FRAME_ID MKBETAG('i', 'c', 'p', 'f') |
||||
#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes) |
||||
|
||||
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, |
||||
AVPacket *avpkt) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
AVFrame *picture = avctx->coded_frame; |
||||
const uint8_t *buf = avpkt->data; |
||||
int buf_size = avpkt->size; |
||||
int frame_hdr_size, pic_num, pic_data_size; |
||||
|
||||
/* check frame atom container */ |
||||
if (buf_size < 28 || buf_size < AV_RB32(buf) || |
||||
AV_RB32(buf + 4) != FRAME_ID) { |
||||
av_log(avctx, AV_LOG_ERROR, "invalid frame\n"); |
||||
return -1; |
||||
} |
||||
|
||||
MOVE_DATA_PTR(8); |
||||
|
||||
frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx); |
||||
if (frame_hdr_size < 0) |
||||
return -1; |
||||
|
||||
MOVE_DATA_PTR(frame_hdr_size); |
||||
|
||||
if (picture->data[0]) |
||||
avctx->release_buffer(avctx, picture); |
||||
|
||||
picture->reference = 0; |
||||
if (avctx->get_buffer(avctx, picture) < 0) |
||||
return -1; |
||||
|
||||
for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) { |
||||
pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx); |
||||
if (pic_data_size < 0) |
||||
return -1; |
||||
|
||||
if (decode_picture(ctx, pic_num, avctx)) |
||||
return -1; |
||||
|
||||
MOVE_DATA_PTR(pic_data_size); |
||||
} |
||||
|
||||
*data_size = sizeof(AVPicture); |
||||
*(AVFrame*) data = *avctx->coded_frame; |
||||
|
||||
return avpkt->size; |
||||
} |
||||
|
||||
|
||||
static av_cold int decode_close(AVCodecContext *avctx) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
|
||||
if (ctx->picture.data[0]) |
||||
avctx->release_buffer(avctx, &ctx->picture); |
||||
|
||||
av_freep(&ctx->slice_data_index); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
|
||||
AVCodec ff_prores_decoder = { |
||||
.name = "ProRes", |
||||
.type = AVMEDIA_TYPE_VIDEO, |
||||
.id = CODEC_ID_PRORES, |
||||
.priv_data_size = sizeof(ProresContext), |
||||
.init = decode_init, |
||||
.close = decode_close, |
||||
.decode = decode_frame, |
||||
.capabilities = CODEC_CAP_DR1, |
||||
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)") |
||||
}; |
Loading…
Reference in new issue