fft: port FFT/IMDCT 3dnow functions to yasm, and disable on x86-64.

64-bit CPUs always have SSE available, thus there is no need to compile
in the 3dnow functions. This results in smaller binaries.
pull/28/head
Ronald S. Bultje 13 years ago
parent ddbe71b44f
commit b6a3849adb
  1. 2
      libavcodec/x86/Makefile
  2. 2
      libavcodec/x86/fft.c
  3. 23
      libavcodec/x86/fft_3dn.c
  4. 173
      libavcodec/x86/fft_3dn2.c
  5. 196
      libavcodec/x86/fft_mmx.asm

@ -38,8 +38,6 @@ YASM-OBJS-$(CONFIG_AAC_DECODER) += x86/sbrdsp.o
YASM-OBJS-$(CONFIG_AC3DSP) += x86/ac3dsp.o
YASM-OBJS-$(CONFIG_DCT) += x86/dct32_sse.o
YASM-OBJS-$(CONFIG_ENCODERS) += x86/dsputilenc_yasm.o
YASM-OBJS-FFT-$(HAVE_AMD3DNOW) += x86/fft_3dn.o
YASM-OBJS-FFT-$(HAVE_AMD3DNOWEXT) += x86/fft_3dn2.o
YASM-OBJS-$(CONFIG_FFT) += x86/fft_mmx.o \
$(YASM-OBJS-FFT-yes)
YASM-OBJS-$(CONFIG_H264CHROMA) += x86/h264_chromamc.o \

@ -25,6 +25,7 @@ av_cold void ff_fft_init_mmx(FFTContext *s)
{
#if HAVE_YASM
int has_vectors = av_get_cpu_flags();
#if ARCH_X86_32
if (has_vectors & AV_CPU_FLAG_3DNOW && HAVE_AMD3DNOW) {
/* 3DNow! for K6-2/3 */
s->imdct_calc = ff_imdct_calc_3dnow;
@ -37,6 +38,7 @@ av_cold void ff_fft_init_mmx(FFTContext *s)
s->imdct_half = ff_imdct_half_3dnow2;
s->fft_calc = ff_fft_calc_3dnow2;
}
#endif
if (has_vectors & AV_CPU_FLAG_SSE && HAVE_SSE) {
/* SSE for P3/P4/K8 */
s->imdct_calc = ff_imdct_calc_sse;

@ -1,23 +0,0 @@
/*
* FFT/MDCT transform with 3DNow! optimizations
* Copyright (c) 2008 Loren Merritt
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define EMULATE_3DNOWEXT
#include "fft_3dn2.c"

@ -1,173 +0,0 @@
/*
* FFT/MDCT transform with Extended 3DNow! optimizations
* Copyright (c) 2006-2008 Zuxy MENG Jie, Loren Merritt
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/x86_cpu.h"
#include "libavcodec/dsputil.h"
#include "fft.h"
DECLARE_ALIGNED(8, static const unsigned int, m1m1)[2] = { 1U<<31, 1U<<31 };
#ifdef EMULATE_3DNOWEXT
#define PSWAPD(s,d)\
"movq "#s","#d"\n"\
"psrlq $32,"#d"\n"\
"punpckldq "#s","#d"\n"
#define ff_fft_calc_3dnow2 ff_fft_calc_3dnow
#define ff_fft_dispatch_3dnow2 ff_fft_dispatch_3dnow
#define ff_fft_dispatch_interleave_3dnow2 ff_fft_dispatch_interleave_3dnow
#define ff_imdct_calc_3dnow2 ff_imdct_calc_3dnow
#define ff_imdct_half_3dnow2 ff_imdct_half_3dnow
#else
#define PSWAPD(s,d) "pswapd "#s","#d"\n"
#endif
void ff_fft_dispatch_3dnow2(FFTComplex *z, int nbits);
void ff_fft_dispatch_interleave_3dnow2(FFTComplex *z, int nbits);
void ff_fft_calc_3dnow2(FFTContext *s, FFTComplex *z)
{
int n = 1<<s->nbits;
int i;
ff_fft_dispatch_interleave_3dnow2(z, s->nbits);
__asm__ volatile("femms");
if(n <= 8)
for(i=0; i<n; i+=2)
FFSWAP(FFTSample, z[i].im, z[i+1].re);
}
void ff_imdct_half_3dnow2(FFTContext *s, FFTSample *output, const FFTSample *input)
{
x86_reg j, k;
long n = s->mdct_size;
long n2 = n >> 1;
long n4 = n >> 2;
long n8 = n >> 3;
const uint16_t *revtab = s->revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
const FFTSample *in1, *in2;
FFTComplex *z = (FFTComplex *)output;
/* pre rotation */
in1 = input;
in2 = input + n2 - 1;
#ifdef EMULATE_3DNOWEXT
__asm__ volatile("movd %0, %%mm7" ::"r"(1U<<31));
#endif
for(k = 0; k < n4; k++) {
// FIXME a single block is faster, but gcc 2.95 and 3.4.x on 32bit can't compile it
__asm__ volatile(
"movd %0, %%mm0 \n"
"movd %2, %%mm1 \n"
"punpckldq %1, %%mm0 \n"
"punpckldq %3, %%mm1 \n"
"movq %%mm0, %%mm2 \n"
PSWAPD( %%mm1, %%mm3 )
"pfmul %%mm1, %%mm0 \n"
"pfmul %%mm3, %%mm2 \n"
#ifdef EMULATE_3DNOWEXT
"movq %%mm0, %%mm1 \n"
"punpckhdq %%mm2, %%mm0 \n"
"punpckldq %%mm2, %%mm1 \n"
"pxor %%mm7, %%mm0 \n"
"pfadd %%mm1, %%mm0 \n"
#else
"pfpnacc %%mm2, %%mm0 \n"
#endif
::"m"(in2[-2*k]), "m"(in1[2*k]),
"m"(tcos[k]), "m"(tsin[k])
);
__asm__ volatile(
"movq %%mm0, %0 \n\t"
:"=m"(z[revtab[k]])
);
}
ff_fft_dispatch_3dnow2(z, s->nbits);
#define CMUL(j,mm0,mm1)\
"movq (%2,"#j",2), %%mm6 \n"\
"movq 8(%2,"#j",2), "#mm0"\n"\
"movq %%mm6, "#mm1"\n"\
"movq "#mm0",%%mm7 \n"\
"pfmul (%3,"#j"), %%mm6 \n"\
"pfmul (%4,"#j"), "#mm0"\n"\
"pfmul (%4,"#j"), "#mm1"\n"\
"pfmul (%3,"#j"), %%mm7 \n"\
"pfsub %%mm6, "#mm0"\n"\
"pfadd %%mm7, "#mm1"\n"
/* post rotation */
j = -n2;
k = n2-8;
__asm__ volatile(
"1: \n"
CMUL(%0, %%mm0, %%mm1)
CMUL(%1, %%mm2, %%mm3)
"movd %%mm0, (%2,%0,2) \n"
"movd %%mm1,12(%2,%1,2) \n"
"movd %%mm2, (%2,%1,2) \n"
"movd %%mm3,12(%2,%0,2) \n"
"psrlq $32, %%mm0 \n"
"psrlq $32, %%mm1 \n"
"psrlq $32, %%mm2 \n"
"psrlq $32, %%mm3 \n"
"movd %%mm0, 8(%2,%0,2) \n"
"movd %%mm1, 4(%2,%1,2) \n"
"movd %%mm2, 8(%2,%1,2) \n"
"movd %%mm3, 4(%2,%0,2) \n"
"sub $8, %1 \n"
"add $8, %0 \n"
"jl 1b \n"
:"+r"(j), "+r"(k)
:"r"(z+n8), "r"(tcos+n8), "r"(tsin+n8)
:"memory"
);
__asm__ volatile("femms");
}
void ff_imdct_calc_3dnow2(FFTContext *s, FFTSample *output, const FFTSample *input)
{
x86_reg j, k;
long n = s->mdct_size;
long n4 = n >> 2;
ff_imdct_half_3dnow2(s, output+n4, input);
j = -n;
k = n-8;
__asm__ volatile(
"movq %4, %%mm7 \n"
"1: \n"
PSWAPD((%2,%1), %%mm0)
PSWAPD((%3,%0), %%mm1)
"pxor %%mm7, %%mm0 \n"
"movq %%mm1, (%3,%1) \n"
"movq %%mm0, (%2,%0) \n"
"sub $8, %1 \n"
"add $8, %0 \n"
"jl 1b \n"
:"+r"(j), "+r"(k)
:"r"(output+n4), "r"(output+n4*3),
"m"(*m1m1)
);
__asm__ volatile("femms");
}

@ -29,6 +29,7 @@
; i.e. {4x real, 4x imaginary, 4x real, ...} (or 2x respectively)
%include "x86inc.asm"
%include "x86util.asm"
%if ARCH_X86_64
%define pointer resq
@ -105,7 +106,7 @@ SECTION_TEXT
pfadd %5, %4 ; {t6,t5}
pxor %3, [ps_m1p1] ; {t8,t7}
mova %6, %1
pswapd %3, %3
PSWAPD %3, %3
pfadd %1, %5 ; {r0,i0}
pfsub %6, %5 ; {r2,i2}
mova %4, %2
@ -396,7 +397,6 @@ fft32_interleave_avx:
%endif
INIT_XMM sse
%define movdqa movaps
align 16
fft4_avx:
@ -469,8 +469,8 @@ fft8 %+ SUFFIX:
mova Z(2), m2
T2_3DN m4, m5, Z(4), Z(5)
T2_3DN m6, m7, Z2(6), Z2(7)
pswapd m0, m5
pswapd m2, m7
PSWAPD m0, m5
PSWAPD m2, m7
pxor m0, [ps_m1p1]
pxor m2, [ps_m1p1]
pfsub m5, m0
@ -498,11 +498,11 @@ fft8 %+ SUFFIX:
ret
%endmacro
INIT_MMX 3dnow2
FFT48_3DN
%macro pswapd 2
%ifidn %1, %2
%if ARCH_X86_32
%macro PSWAPD 2
%if cpuflag(3dnow2)
pswapd %1, %2
%elifidn %1, %2
movd [r0+12], %1
punpckhdq %1, [r0+8]
%else
@ -512,9 +512,12 @@ FFT48_3DN
%endif
%endmacro
INIT_MMX 3dnow
INIT_MMX 3dnow2
FFT48_3DN
INIT_MMX 3dnow
FFT48_3DN
%endif
%define Z(x) [zcq + o1q*(x&6) + mmsize*(x&1)]
%define Z2(x) [zcq + o3q + mmsize*(x&1)]
@ -588,6 +591,7 @@ INIT_XMM sse
DECL_PASS pass_sse, PASS_BIG 1
DECL_PASS pass_interleave_sse, PASS_BIG 0
%macro FFT_CALC_FUNC 0
cglobal fft_calc, 2,5,8
mov r3d, [r0 + FFTContext.nbits]
PUSH r1
@ -597,23 +601,43 @@ cglobal fft_calc, 2,5,8
FFT_DISPATCH _interleave %+ SUFFIX, r1
POP rcx
POP r4
cmp rcx, 4
cmp rcx, 3+(mmsize/16)
jg .end
mov r2, -1
add rcx, 3
shl r2, cl
sub r4, r2
.loop
%if mmsize == 8
PSWAPD m0, [r4 + r2 + 4]
mova [r4 + r2 + 4], m0
%else
movaps xmm0, [r4 + r2]
movaps xmm1, xmm0
unpcklps xmm0, [r4 + r2 + 16]
unpckhps xmm1, [r4 + r2 + 16]
movaps [r4 + r2], xmm0
movaps [r4 + r2 + 16], xmm1
add r2, 32
%endif
add r2, mmsize*2
jl .loop
.end:
%if cpuflag(3dnow)
femms
RET
%else
REP_RET
%endif
%endmacro
%if ARCH_X86_32
INIT_MMX 3dnow
FFT_CALC_FUNC
INIT_MMX 3dnow2
FFT_CALC_FUNC
%endif
INIT_XMM sse
FFT_CALC_FUNC
cglobal fft_permute, 2,7,1
mov r4, [r0 + FFTContext.revtab]
@ -648,6 +672,7 @@ cglobal fft_permute, 2,7,1
jl .loopcopy
REP_RET
%macro IMDCT_CALC_FUNC 0
cglobal imdct_calc, 3,5,3
mov r3d, [r0 + FFTContext.mdctsize]
mov r4, [r0 + FFTContext.imdcthalf]
@ -671,22 +696,45 @@ cglobal imdct_calc, 3,5,3
POP r3
lea r0, [r1 + 2*r3]
mov r2, r3
sub r3, 16
sub r3, mmsize
neg r2
movaps xmm2, [ps_m1m1m1m1]
mova m2, [ps_m1m1m1m1]
.loop:
movaps xmm0, [r1 + r3]
movaps xmm1, [r0 + r2]
shufps xmm0, xmm0, 0x1b
shufps xmm1, xmm1, 0x1b
xorps xmm0, xmm2
movaps [r0 + r3], xmm1
movaps [r1 + r2], xmm0
sub r3, 16
add r2, 16
%if mmsize == 8
PSWAPD m0, [r1 + r3]
PSWAPD m1, [r0 + r2]
pxor m0, m2
%else
mova m0, [r1 + r3]
mova m1, [r0 + r2]
shufps m0, m0, 0x1b
shufps m1, m1, 0x1b
xorps m0, m2
%endif
mova [r0 + r3], m1
mova [r1 + r2], m0
sub r3, mmsize
add r2, mmsize
jl .loop
%if cpuflag(3dnow)
femms
RET
%else
REP_RET
%endif
%endmacro
%if ARCH_X86_32
INIT_MMX 3dnow
IMDCT_CALC_FUNC
INIT_MMX 3dnow2
IMDCT_CALC_FUNC
%endif
INIT_XMM sse
IMDCT_CALC_FUNC
%if ARCH_X86_32
INIT_MMX 3dnow
%define mulps pfmul
%define addps pfadd
@ -697,6 +745,7 @@ DECL_PASS pass_3dnow, PASS_SMALL 1, [wq], [wq+o1q]
DECL_PASS pass_interleave_3dnow, PASS_BIG 0
%define pass_3dnow2 pass_3dnow
%define pass_interleave_3dnow2 pass_interleave_3dnow
%endif
%ifdef PIC
%define SECTION_REL - $$
@ -760,12 +809,14 @@ DECL_FFT 6, _interleave
INIT_XMM sse
DECL_FFT 5
DECL_FFT 5, _interleave
%if ARCH_X86_32
INIT_MMX 3dnow
DECL_FFT 4
DECL_FFT 4, _interleave
INIT_MMX 3dnow2
DECL_FFT 4
DECL_FFT 4, _interleave
%endif
INIT_XMM sse
%undef mulps
@ -775,6 +826,37 @@ INIT_XMM sse
%undef unpckhps
%macro PREROTATER 5 ;-2*k, 2*k, input+n4, tcos+n8, tsin+n8
%if mmsize == 8 ; j*2+2-n4, n4-2-j*2, input+n4, tcos+n8, tsin+n8
PSWAPD m0, [%3+%2*4]
movq m2, [%3+%1*4-8]
movq m3, m0
punpckldq m0, m2
punpckhdq m2, m3
movd m1, [%4+%1*2-4] ; tcos[j]
movd m3, [%4+%2*2] ; tcos[n4-j-1]
punpckldq m1, [%5+%1*2-4] ; tsin[j]
punpckldq m3, [%5+%2*2] ; tsin[n4-j-1]
mova m4, m0
PSWAPD m5, m1
pfmul m0, m1
pfmul m4, m5
mova m6, m2
PSWAPD m5, m3
pfmul m2, m3
pfmul m6, m5
%if cpuflag(3dnow2)
pfpnacc m0, m4
pfpnacc m2, m6
%else
SBUTTERFLY dq, 0, 4, 1
SBUTTERFLY dq, 2, 6, 3
pxor m4, m7
pxor m6, m7
pfadd m0, m4
pfadd m2, m6
%endif
%else
movaps xmm0, [%3+%2*4]
movaps xmm1, [%3+%1*4-0x10]
movaps xmm2, xmm0
@ -795,6 +877,7 @@ INIT_XMM sse
movaps xmm0, xmm1
unpcklps xmm1, xmm2
unpckhps xmm0, xmm2
%endif
%endmacro
%macro CMUL 6 ;j, xmm0, xmm1, 3, 4, 5
@ -863,6 +946,40 @@ INIT_XMM sse
jl .post
%endmacro
%macro CMUL_3DNOW 6
mova m6, [%1+%2*2]
mova %3, [%1+%2*2+8]
mova %4, m6
mova m7, %3
pfmul m6, [%5+%2]
pfmul %3, [%6+%2]
pfmul %4, [%6+%2]
pfmul m7, [%5+%2]
pfsub %3, m6
pfadd %4, m7
%endmacro
%macro POSROTATESHUF_3DNOW 5 ;j, k, z+n8, tcos+n8, tsin+n8
.post:
CMUL_3DNOW %3, %1, m0, m1, %4, %5
CMUL_3DNOW %3, %2, m2, m3, %4, %5
movd [%3+%1*2+ 0], m0
movd [%3+%2*2+12], m1
movd [%3+%2*2+ 0], m2
movd [%3+%1*2+12], m3
psrlq m0, 32
psrlq m1, 32
psrlq m2, 32
psrlq m3, 32
movd [%3+%1*2+ 8], m0
movd [%3+%2*2+ 4], m1
movd [%3+%2*2+ 8], m2
movd [%3+%1*2+ 4], m3
sub %2, 8
add %1, 8
jl .post
%endmacro
%macro DECL_IMDCT 1
cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *input
%if ARCH_X86_64
@ -892,22 +1009,34 @@ cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *i
push rrevtab
%endif
sub r3, 4
%if ARCH_X86_64
sub r3, mmsize/4
%if ARCH_X86_64 || mmsize == 8
xor r4, r4
sub r4, r3
%endif
%if notcpuflag(3dnow2) && mmsize == 8
movd m7, [ps_m1m1m1m1]
%endif
.pre:
%if ARCH_X86_64 == 0
;unspill
%if mmsize != 8
xor r4, r4
sub r4, r3
mov rtsin, [esp+4]
%endif
mov rtcos, [esp+8]
mov rtsin, [esp+4]
%endif
PREROTATER r4, r3, r2, rtcos, rtsin
%if ARCH_X86_64
%if mmsize == 8
mov r6, [esp] ; rrevtab = ptr+n8
movzx r5, word [rrevtab+r4-2] ; rrevtab[j]
movzx r6, word [rrevtab+r3] ; rrevtab[n4-j-1]
mova [r1+r5*8], m0
mova [r1+r6*8], m2
add r4, 2
%elif ARCH_X86_64
movzx r5, word [rrevtab+r4-4]
movzx r6, word [rrevtab+r4-2]
movzx r10, word [rrevtab+r3]
@ -928,7 +1057,7 @@ cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *i
movlps [r1+r5*8], xmm1
movhps [r1+r4*8], xmm1
%endif
sub r3, 4
sub r3, mmsize/4
jns .pre
mov r5, r0
@ -953,12 +1082,23 @@ cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *i
%1 r0, r1, r6, rtcos, rtsin
%if ARCH_X86_64 == 0
add esp, 12
%endif
%if mmsize == 8
femms
%endif
RET
%endmacro
DECL_IMDCT POSROTATESHUF
%if ARCH_X86_32
INIT_MMX 3dnow
DECL_IMDCT POSROTATESHUF_3DNOW
INIT_MMX 3dnow2
DECL_IMDCT POSROTATESHUF_3DNOW
%endif
INIT_YMM avx
%if HAVE_AVX

Loading…
Cancel
Save